The present invention relates to a method for producing high-pressure sensors having a sensor element for pressure sensing, and having a connector piece for coupling the sensor element to a system to be measured. A diaphragm is embodied in the base element of the sensor element, and a pressure conduit is embodied in the base element of the connector piece. The sensor element is mounted on the connector piece in such a way that the pressure to be measured is able to act upon the diaphragm via the pressure conduit.
A variety of concepts for constructing high-pressure sensors having a sensor element and a connector piece are known from practical use.
These two components are usually fabricated independently of one another from a metallic base element. In the case of the sensor element, the base element is equipped with a blind opening in order to expose a diaphragm in the oppositely located surface of the base element. Circuit elements for signal acquisition are disposed on this surface, semiconductor technology methods being used, for example, for this purpose. A pressure conduit is embodied in the base element of the connector piece. In addition, the connector piece can also be equipped, for example, with a thread for coupling to the system to be measured. The sensor element is then mounted on the connector piece in such a way that the rearward blind opening of the sensor element is disposed in alignment with the pressure conduit in the connector piece.
This mounting of the sensor element on the connector piece proves to be problematic in practical use.
For cost reasons, the sensor element is usually welded to the connector piece. Care must be taken in this context that neither the pressure conduit in the connector piece nor the blind opening of the sensor element becomes sealed off, contaminated, or unfavorably deformed; this complicates production of a welded connection having reproducible mechanical properties. The compressive strength of the welded connection is influenced by the geometry of the weld bead and of the contact surfaces with respect to the sensor element and the connector piece. Notches or depressions in the welded connection constitute initiation points for cracks under high pressure loads, in particular in the case of pulsating loads. The field of application of such high-pressure sensors is therefore typically limited to pressure ranges below 2200 bar.
Clamped connections are more reliable than a welded connection between the sensor element and connector piece. They are suitable even for use at pressures greater than 10,000 bar. The costs associated therewith are, however, very high, so that this construction and connection technology is utilized only in very small production runs for special applications.
The sensor element and the connector piece can also be produced in one piece from a metallic base element. In this case, however, because of the component size, the circuit elements for signal acquisition cannot readily be applied onto the sensor diaphragm using semiconductor technology methods.
The present invention provides a construction concept for high-pressure sensors that enables simple and economical production of reliable high-pressure sensors even for pressure ranges above 2200 bar.
This is achieved according to the present invention in that the base element of the sensor element is mounted on the base element of the connector piece, a full-area connection being generated between the mounting surfaces of the two base elements. Only thereafter is the pressure conduit configured in the connector piece, and the diaphragm of the sensor element exposed.
What has been recognized according to the present invention is specifically that in terms of process engineering, it is substantially simpler to create a reproducible and particularly pressure-resistant welded connection between the mounting surfaces of the two components (sensor element and connector piece) if the continuity of a through conduit does not need to be taken into account. Alignment of the two components is also very uncomplicated in this case. According to the present invention, the pressure conduit in the connector piece and the blind opening, adjacent thereto, in the sensor element are generated only later, in a method that optionally may also have multiple stages. The composite unit made up of the sensor element and connector piece is in this context, advantageously treated as one workpiece.
In a particularly advantageous variant of the method according to the present invention, circuit elements for signal acquisition are applied onto the base element of the sensor element in the diaphragm region before the base element of the sensor element is mounted on the base element of the connector piece. With this method variant, the circuit elements can also be implemented using technologies that, because of the dimensions of the connector piece, can no longer readily be utilized after assembly, for example by the application of semiconductor processes. The circuit elements can thus easily be implemented in a thin-layer structure having at least one deflection-sensitive, i.e. for example piezoresistive or piezoelectric, layer.
In the context of the method according to the present invention, sensor elements and connector pieces made of steel or a steel alloy are preferably used. The two components of the pressure sensor construction according to the present invention can likewise be implemented in the form of blanks made of a sintered material. With these materials, the full-area connection between the two base elements is advantageously produced by welding. The pressure conduit in the connector piece and the diaphragm of the sensor element can then easily be configured using a suitable technology, for example electropolishing, drilling, or milling. Depending on the materials of the base element and the desired shape of the pressure connection, different methods can also be combined for this purpose.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 042 982 | Oct 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/060896 | 8/25/2009 | WO | 00 | 7/1/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/046157 | 4/29/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3410779 | Whitehead, Jr. et al. | Nov 1968 | A |
5255427 | Hafner | Oct 1993 | A |
5829520 | Johnson | Nov 1998 | A |
5867886 | Ratell et al. | Feb 1999 | A |
6740216 | Diakonov et al. | May 2004 | B2 |
8241474 | Jiang et al. | Aug 2012 | B2 |
20020152817 | Landgraf et al. | Oct 2002 | A1 |
20050000292 | Muchow et al. | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
199 34 114 | Jan 2001 | DE |
1 619 488 | Jan 2006 | EP |
09-101218 | Apr 1997 | JP |
2000-241273 | Sep 2000 | JP |
2006-220430 | Aug 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20110252621 A1 | Oct 2011 | US |