The invention relates to a method for producing polypropylene fibers having high tenacity and low elongation, by continuously melt spinning, withdrawing, drawing, and cutting polypropylene fiber strands.
A single zone method of this type for producing high tenacity polypropylene fibers is known from DE 35 39 185.
In the known method, fiber strands advance after spinning into a water bath for the purposes of undergoing cooling. Subsequently, they undergo drawing in a draw zone at a high draw ratio of up to 10:1. As a result of cooling the fiber strands in the water bath relatively quickly, a relatively high partial orientation occurs in the surface region of the individual fibers with the consequence of a poor stretch capability. In addition, the known method is suitable only for producing relatively coarse fibers with an individual denier in a range greater than 3 dtex. The greater friction effect on the individual filaments alone, which is caused by the water bath, does not permit spinning fibers with finer deniers.
However, right along with the use of such fibers for reinforcing concrete, there is a desire for very high-tensile and fine fibers. DE 198 60 335 A1 discloses a polypropylene fiber, wherein the disadvantage of a rapid quench in a liquid was replaced with air cooling. While this measure permitted producing fiber strands with finer individual deniers, it had the disadvantage that the fibers exhibited a high elongation of more than 60%. However, it has been found in the reinforcement of concrete base bodies that the elongation values of the reinforcement fibers should approximately correspond to those of the base material that is to be reinforced, so that the fibers are able to absorb the load at the earliest possible time, and that the base body remains unaffected. Thus, fibers with relatively high elongation values are suited only to a limited extent.
EP 0 535 373 A1 discloses a polypropylene fiber, which has a required fine denier with a high tenacity, but which can be produced only in a costly, two-zone process. In this process, the fiber is temporarily stored after spinning and drawing, while receiving an additional treatment by impregnation. Subsequently, in a second stage, the fiber strands are again taken up, dried, and cut.
It is therefore an object of the invention to provide a method for producing high tenacity polypropylene fibers of the initially described type, which permits producing particularly fine fibers with an individual denier of less than 2 dtex.
A further object of the invention is to provide an apparatus for carrying out the method.
The above and other objects and advantages of the invention are achieved by the provision of a melt spinning method and apparatus wherein a polypropylene melt is extruded at a relatively low melting temperature and withdrawn and cooled at a relatively low withdrawal speed. Thereafter, the strands are passed through at least three draw zones, with a total draw ratio which is greater than about 4:1. In the first draw zone, a partial drawing of at least about 70% of the total draw is achieved. The drawn fibers are then cut to produce staple fibers.
The invention distinguishes itself in that on the one hand the low melting point during the spinning in combination with a slow withdrawal speed assists a partial molecule orientation of the undrawn fibers, and consequently results in a higher tenacity of the fibers. Because of the slow withdrawal speed, clearly lesser internal tensions occur between the polymer chains in the filaments during the cooling process after spinning. A subsequent drawing in three successive draw zones, while taking into account that already in a first draw zone the fiber undergoes 70% of the total drawing, permits producing a constant slow polymer crystallization in the fibers, so that besides the high tenacity, a low residual elongation and a corresponding fineness result in the fibers.
To increase the favorable properties of the fibers, the partial drawing of the fiber strands in the second draw zone is performed at a higher ratio than in the following third draw zone. Thus, the total drawing in the draw zones proceeds at a respectively decreasing draw ratio.
To obtain after spinning in the first draw zone a partial drawing that is as defined as possible, the fiber strands are withdrawn after melt spinning by a first draw system with a plurality of draw rolls whose outer surfaces are cooled. Subsequently, the fiber strands advance within the first draw zone through a heated draw channel, and are heated for undergoing drawing to a temperature above 100° C.
To make a transition in the draw zones as continuous as possible, the fiber strands are continuously tempered after the first draw zone until they enter the third draw zone to a temperature>100° C. by advancing over a plurality of heated draw rolls. To this end, the draw rolls of the draw systems forming the second draw zone are preferably made heatable.
In addition, it is possible to perform within the second draw zone a further heat treatment of the fiber strands by means of a further heated draw channel. Inside the heated draw channels, the fiber strands can be heated by hot air or hot vapor. It has been found especially advantageous to temper the fiber strands in the first draw zone with hot air and in the second draw zone with hot vapor.
After having been drawn, the fiber strands are cooled, preferably by advancing over a plurality of cooled draw roll of a fourth draw system at the end of the third draw zone.
A further variant of the method consists of crimping the fiber strands after having been drawn and before being cut.
To obtain as much as possible high capacities of more than 10 t per day, it is preferred to extrude the fiber strands through an annular or rectangular spinneret with as many as about 60,000 to 120,000 spin holes.
The apparatus of the invention for carrying out the method of the invention is characterized in that the draw zones are configured and distributed such that they permit producing polypropylene fibers having a high tenacity of more than 6 cN/dtex with a low elongation of less than 40%, preferably less than 20% and a corresponding fineness in the individual deniers. The draw rolls of the intermediate draw systems are preferably made heatable to ensure a uniform and continuous tempering of the fiber strands while being drawn. The draw systems at the inlet and the outlet of the entire draw zone are preferably constructed with cooled draw rolls.
In the following, the method of the invention is described in greater detail by means of an embodiment of an apparatus according to the invention with reference to the attached drawings, in which:
The apparatus of the invention corresponds to such compact spin lines, and comprises to this end a spinning device 1 with a plurality of spinning positions 2.1-2.3 arranged in side-by-side relationship. The number of the spinning positions in the embodiment shown in
To extrude a plurality of fiber strands, it is preferred to provide an annular spinneret 3 that has on its underside a plurality of spin holes. For example, it is possible to arrange in the spinneret 3 as many as 120,000 spin holes in an annular or rectangular arrangement. The spinneret 3 connects to a melt source (not shown), which supplies a melt flow under pressure to the spinneret 3. Suitable melt sources for supplying a melt flow to the spinneret 3 are basically extruders, pumps, or combinations of both.
The spinnerets 3 of the spinning positions 2.1-2.3 are arranged in a heated spin beam 15. Downstream of the spin beam 15, the spinning position comprises a cooling device 4 arranged in substantially concentric relationship with the spinneret 3. The cooling device 4 is constructed as an air quench system, wherein a cooling air flow is generated by an annular blow nozzle, so that cooling air flows from the inside outward through an annular sheet formed by the fiber strands, and leads to a cooling thereof. In the illustrated embodiment, the cooling air of the cooling device 4 is supplied from the top through the spin beam 15. However, it is also possible to position the cooling air supply laterally adjacent to the emerging fiber strands.
To advance and treat the fiber strands which are identified in the embodiment of
The draw system 7.1 is followed by a total of three additional draw systems 7.2-7.4. The draw systems 7.1, 7.2, 7.3, and 7.4 form between themselves respectively one draw zone. Thus, a first draw zone 9.1 is formed between the first draw system 7.1 and the second draw system 7.2. A second draw zone 9.2 is formed between the draw systems 7.2 and 7.3, and a third draw zone 9.3 between the draw systems 7.3 and 7.4. Each of the draw systems 7.1-7.4 includes a plurality of draw rolls 8, over which the fiber strands 5 advance with a single looping. The draw rolls 8 of the draw systems 7.1-7.4 are driven. Depending on the desired draw ratio, the draw rolls 8 of the draw systems 7.1-7.4 are operated at different circumferential speeds. For a simultaneous thermal treatment of the fiber strands, the draw rolls 8 of the draw systems 7.1-7.4 may have, depending on need, a cooled outer surface or a heated outer surface. Furthermore, for a thermal treatment of the fiber strands between the first draw system 7.1 and the second draw system 7.2, the first draw zone 9.1 accommodates a heated draw channel 10. Inside the heated draw channel 10, the fiber strands 5 can be tempered to a predetermined temperature by means of hot air or by means of hot vapor. Arranged in the second draw zone 9.2, likewise between the draw systems 7.2 and 7.3, is a further heated draw channel 10.
Provided at the end of the fiber line formed by the successively arranged draw system 7.1-7.4 are a tension adjusting device 11 as well as a cutting device 12 for continuously cutting the fiber strands to staple fibers of a predetermined fiber length.
For carrying out the method of the invention in an apparatus shown in
The drawing of the fiber strands 5 occurs in a total of three draw zones 9.1-9.3, with a different draw ratio in each zone. The total draw ratio is greater than about 4:1. In the zones, the fiber strands are drawn with different intensity. To obtain a highly tensile, in particular fine fiber, the fiber strands undergo in the first draw zone 9.1 a partial drawing that amounts to at least 70% of the total drawing. For the drawing in the first draw zone 9.1, the fiber strands 5 are heated in the heated draw channel 10, preferably by hot air, to a temperature>100°.
Subsequently, the fiber strands advance over the draw rolls 8 of the second draw system 7.2, which are likewise heated to a temperature of more than 100° C. The second partial drawing of the fiber strands 5 occurs in the second draw zone 9.2, which likewise provides a treatment in a heated draw channel 10. The fiber strands undergo further partial drawing in the third draw system 7.3, with the partial drawing in the second draw zone 9.2 being higher than the final partial drawing in the third draw zone 9.3. The rolls 8 of the third draw system 7.3 are likewise heated to a surface temperature>100° C. to obtain a uniform continuous drawing. After the third partial drawing, the fiber strands 5 are cooled by the cooled draw rolls 8 of the fourth draw system 7.4. Subsequently, they are evenly cut to fibers of the predetermined fiber length.
With the use of a commercially available polypropylene polymer, it was possible to produce in a plurality of test series fibers with a fiber length of 6.6 mm, or alternatively 13 mm, which had an individual denier in the range from 0.9 to 1.6 dtex, a tenacity in the range from 8 to 9 cN/dtex, and an elongation ranging from 18 to 21%. During the spinning of the fiber strands, the melting point was set to a value≦250° C. The spin plate had an annular arrangement of spin holes amounting to several 10,000.
The rolls of the first draw system 7.1 operated at a withdrawal speed ranging from 25 to 40 m/min., the draw rolls of the second draw system 7.2 at a speed ranging from 80 to 115 m/min., the draw rolls of the third draw system 7.4 at a speed ranging from 100 to 140 m/min, and the draw rolls of the fourth draw system 7.4 at a speed from 110 to 160 m/min. The surface temperatures of the draw rolls 8 were in the case of the first draw system 7.1 about 30° C., in the case of the second draw system 7.2 >100° C., in the case of the third draw system 7.3 likewise >100° C., and in the case of the fourth draw system 7.4 about 30° C. In the first draw zone 9.1, the fiber strands were tempered in the heated draw channel 10 with hot air that had a temperature above 100° C. In the second draw zone 9.2, the fiber strands were treated with hot vapor at a temperature<100° C. The therewith obtained draw ratios for producing the referenced fibers ranged from 2.8 to 3.2:1 in the first draw zone 9.1, from 1.05 to 1.5:1 in the second draw zone 9.2, and from 1.05 to 1.3:1 in the third draw zone 9.3. In particular the high draw ratio in the first draw zone 9.1, and the subsequent drawing in the second draw zone 9.2 at a high temperature or at low temperatures in the third draw zone 9.3 cause in combination with the relatively low withdrawal speed the preferred slow and constant polymer crystallization in the fiber strands. This slow and constant crystallization results in that a high tenacity with little residual elongation is obtained. In this connection, the multizone drawing process permits producing a particularly fine fiber with individual deniers below 2 dtex.
In the embodiment shown in
With the embodiment shown in
The construction of the embodiments of
Important for the method and the apparatus of the invention is spinning at low melting points at simultaneously low withdrawal speeds in combination with drawing the fiber strands in at least three draw zones, while taking into account a high partial draw ratio in the first draw zone. Important for the success of the method according to the invention is, to begin with, a slightly partially oriented molecular structure of the fiber line after spinning and cooling to then obtain a uniform and constant crystallization. Basically, however, it is also possible to process with the apparatus of the invention other polymers, such as, for example, polyester or polyamide.
Number | Date | Country | Kind |
---|---|---|---|
102 44 830 | Sep 2002 | DE | national |
The present application is a continuation of international application PCT/EP2003/010453, filed 19 Sep. 2003, and which designates the U.S. The disclosure of the referenced application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4347206 | Roberts | Aug 1982 | A |
4504432 | Kamei et al. | Mar 1985 | A |
5609888 | Uda et al. | Mar 1997 | A |
5629080 | Gupta et al. | May 1997 | A |
5846654 | Modrak | Dec 1998 | A |
6210622 | Reese et al. | Apr 2001 | B1 |
6218011 | Raetzsch et al. | Apr 2001 | B1 |
Number | Date | Country |
---|---|---|
3539185 | Jun 1986 | DE |
198 60 335 | Jul 1999 | DE |
0 535 373 | Apr 1993 | EP |
WO 2004007817 | Jan 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050146071 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP03/10453 | Sep 2003 | US |
Child | 11070557 | US |