Field of the Invention
The present invention relates to a method for producing a hot dip plated steel sheet and an apparatus for hot dip plating used in the method.
The present application is a national stage application of International Application No. PCT/JP2009/005089, filed Oct. 1, 2009, which claims priority to Japanese Patent Application No. 2008-256208, filed on Oct. 1, 2008, the content of which is incorporated herein by reference in its entirety.
Description of Related Art
In a process of producing a hot dip plated steel sheet, a coating weight is controlled by injecting a gas from a wiping nozzle toward a steel sheet during a time when the moving steel sheet (steel strip) is continuously immersed into a plating bath, the steel sheet is pulled up from the plating bath, and then plating metal coated onto a surface of the steel sheet is solidified. At this time, oxide films (dross) are formed on the plated surface of the steel sheet due to the oxidization of the molten plating metal, which degrades the appearance of a product.
In order to prevent the oxidization of the plating metal, there is proposed a technique in which an entire region from a bath surface of the plating bath to a gas injection position of the wiping nozzle is covered with a seal box and an inert gas is introduced into the seal box so as to decrease the oxygen concentration of the entire atmosphere in the seal box (for example, see Japanese Unexamined Patent Application, First Publication No. H11-140615, No. S62-30864, No. H04-285148, and Japanese Examined Patent Application, Second Publication No. S61-34504). According to this technique, since it is possible to decrease the oxygen concentration to less than that of an ambient atmosphere during a time when the steel sheet is pulled up from the plating bath and the molten plating metal is solidified, it is possible to prevent the oxidization of the plating metal.
However, in the technique of covering the entire region from the bath surface of the plating bath to the gas injection position of the wiping nozzle by using the seal box as in the techniques disclosed in Japanese Unexamined Patent Application, First Publication No. H11-140615, No. S62-30864, No. H04-285148, and Japanese Examined Patent Application, Second Publication No. S61-34504, it is possible to obtain the advantage of suppressing the formation of the oxide films, but it is difficult to visually recognize the gas injection position for controlling the coating weight which is important for the hot dip plating operation. In addition, it is difficult to remove surface oxide films formed on the surface of the plating bath or to maintain the wiping nozzle. For this reason, there is a problem in that the operation is inconvenient. In addition, in the case where a surface of a plating liquid is not covered with a certain amount of oxide films, zinc fume is generated from the surface. When metallic zinc is adhered to an apparatus such as the wiping nozzle due to the zinc fume, it is not possible to normally perform the wiping operation. For this reason, there is a problem in that the quality of the product is degraded. Accordingly, when the techniques are used in a practical application, there is a problem in that the operability and the plating quality are degraded.
The present invention is contrived in consideration of such circumstances, and an object of the present invention is to provide a method for producing a hot dip plated steel sheet and an apparatus for hot dip plating used in the method capable of suppressing the formation of the oxide films on the surface of the plated steel sheet during controlling the coating weight and eliminating the disadvantages in the operation and quality.
The inventors found that the oxide film formation position of the surface of the plated steel sheet is the gas injection position of steel sheet edge (end of the steel sheet) as a result of the repeated studies in order to solve the problems. Thus, the inventors decreased the oxygen concentration in the seal box by installing a seal box smaller than seal boxes of the conventional techniques so as to cover at least the steel sheet edge in the gas injection position where the coating weight is controlled. The inventors found that the formation of the oxide films in the surface of the plated steel sheet can be suppressed and the disadvantages in the operation and quality can be eliminated using this technique, and have contrived the present invention on the basis of this finding.
The main points of the present invention are as below.
(1) A method for producing a hot dip plated steel sheet, the method controlling a coating weight by injecting a gas toward a surface of a steel sheet from a time when the steel sheet continuously immersed into a plating bath is pulled up from the plating bath to a time when plating metal adhered onto the surface of the steel sheet is solidified, the method includes: setting an oxygen concentration of a bath surface of the plating bath to be more than or equal to 0.05 vol % and less than or equal to 21 vol % when the gas is injected toward the surface of the steel sheet; and setting an oxygen concentration in a space of an end of the steel sheet at a position where the gas collides with the steel sheet pulled up from the plating bath to be more than or equal to 0.05 vol % and less than or equal to 3 vol % when the gas is injected toward the surface of the steel sheet.
(2) The method for producing the hot dip plated steel sheet described in the above (1), wherein the oxygen concentration of the space is set to be more than or equal to 0.05 vol % and less than or equal to 1.5 vol %.
(3) The method for producing the hot dip plated steel sheet described in the above (1) or (2), wherein the space has a barrier against an ambient atmosphere so as to control the atmosphere, and is disposed so as to include at least the end of the steel sheet.
(4) The method for producing the hot dip plated steel sheet described in the above (1) or (2), wherein the oxygen concentration of the bath surface of the plating bath is not controlled.
(5) The method for producing the hot dip plated steel sheet described in the above (1) or (2), wherein the space includes at least a region, the region is from the position where the gas collides with the steel sheet to a position of more than or equal to 5 mm on the downstream side in the sheet feeding direction of the steel sheet, and, the region is from the end of the steel sheet to a position more than or equal to 50 mm and less than or equal to 400 mm in the sheet width direction.
(6) The method for producing the hot dip plated steel sheet described in the above (1) or (2), wherein a plurality of the spaces is provided in the sheet width direction of the steel sheet, and a width of a gap between the adjacent spaces is more than or equal to 10 mm.
(7) The method for producing the hot dip plated steel sheet described in the above (1) or (2), wherein the space is set so that an area covering the steel sheet becomes smaller in a direction from the end of the steel sheet to the center in the sheet width direction of the steel sheet.
(8) The method for producing the hot dip plated steel sheet described in the above (1) or (2), wherein the coating weight of one surface of the steel sheet from the end of the steel sheet to a position of 10 mm in the sheet width direction is more than or equal to 50 g/m2 and less than or equal to 380 g/m2.
(9) The method for producing the hot dip plated steel sheet described in the above (1) or (2), wherein the plating bath contains at least one of Zn, Al, Mg, Si, Sr, Cr, Sn, and Ca.
(10) The method for producing the hot dip plated steel sheet described in the above (1) or (2), wherein the plating bath is a Zn-based plating bath containing Al more than or equal to 0.1 mass % and less than or equal to 60 mass % and Mg more than or equal to 0.2 mass % and less than or equal to 5 mass %.
(11) An apparatus for hot dip plating includes: a plating bath into which a steel sheet moving through a production line is continuously immersed; a gas wiping nozzle which injects a gas toward a surface of the steel sheet pulled up from the plating bath; a seal box which is provided at a position spaced from a bath surface of the plating bath and covers a space of an end of the steel sheet at a position where the gas collides with the steel sheet pulled up from the plating bath; and a purge gas supply member which introduces an inert gas into the seal box so as to control an oxygen concentration inside the seal box.
(12) The apparatus for hot dip plating described in the above (11), wherein the purge gas supply member controls the oxygen concentration inside the seal box to be more than or equal to 0.05 vol % and less than or equal to 3 vol %.
(13) The apparatus for hot dip plating described in the above (11), wherein the purge gas supply member controls the oxygen concentration inside the seal box to be more than or equal to 0.05 vol % and less than or equal to 1.5 vol %.
(14) The apparatus for hot dip plating described in the above (11), wherein at least a pair of the seal boxes is provided at positions facing each other with the steel sheet interposed therebetween, and injects a gas toward the steel sheet so as to seal a region between the seal boxes facing each other by a gas curtain.
(15) The apparatus for hot dip plating described in the above (11), wherein the seal box is provided so as to cover an assisting nozzle for assisting the gas injection of the wiping nozzle in the vicinity of the wiping nozzle.
(16) The apparatus for hot dip plating described in the above (11), further includes: a seal box moving mechanism which moves the seal box in the sheet width direction in accordance with the sheet width of the steel sheet.
(17) The apparatus for hot dip plating described in the above (11), wherein the seal box covers a space including at least a region, the region is from the position where the gas collides with the steel sheet to a position of more than or equal to 5 mm on the downstream side in the sheet feeding direction of the steel sheet, and, the region is from the end of the steel sheet to a position more than or equal to 50 mm and less than or equal to 400 mm in the sheet width direction of the steel sheet.
(18) The apparatus for hot dip plating described in the above (11), wherein a plurality of the seal boxes is provided in the sheet width direction of the steel sheet, and a width of a gap between the adjacent spaces is more than or equal to 10 mm.
(19) The apparatus for hot dip plating described in the above (11), wherein the seal box has a shape in which an area covering the steel sheet becomes smaller in a direction from the end of the steel sheet to the center in the sheet width direction of the steel sheet.
(20) The apparatus for hot dip plating described in the above (11), wherein a length of the seal box in the sheet width direction of the steel sheet is more than or equal to a sheet width of the steel sheet.
(21) The apparatus for hot dip plating described in the above (11), wherein the seal box includes a gas injection member which injects a gas toward the steel sheet, and the gas injection member is provided in an end of the seal box facing the steel sheet.
(22) The apparatus for hot dip plating described in the above (11), wherein the seal box includes a gas injection member which injects a gas toward the steel sheet, and the gas injection member is formed in an L-shape.
In the present invention, in the method for producing the hot dip plated steel sheet and the apparatus for the hot dip plating used in the method, it is possible to decrease the oxygen concentration in the seal box by installing a seal box smaller than seal boxes of the conventional techniques so as to cover at least the steel sheet edge in the gas injection position where the coating weight is controlled. According to the present invention, by means of the technique, it is possible to suppress the formation of the oxide films on the surface of the plated steel sheet and to easily and visually recognize the gas injection position for controlling the coating weight. In addition, it is easy to remove the surface oxide films formed on the surface of the plating bath or to maintain the wiping nozzle. Furthermore, according to the present invention, since it is possible to suppress the generation of zinc fume by the oxide films on the surface of the plating liquid, it is possible to ensure the quality of the plating by preventing metallic zinc from being adhered onto the apparatus such as the wiping nozzle. Thus, according to the present invention, it is possible to use the controlling technique of the coating weight for practical application so as to suppress the formation of the oxide films in the end of the plated steel sheet without degrading the operability and the plating quality.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the specification and the drawings, the same reference numerals will be given to the members substantially having the same function and configuration, and the repetitive description thereof will be omitted.
(Mechanism of Forming Oxide Films)
Before the description of the present invention, a mechanism for forming oxide films (dross) formed on a surface of a plated steel sheet will be described with reference to
As shown in
In addition, the inventors have obtained the following findings. As shown in
The whisker-shaped oxide films 2 are formed in the steel sheet edge 1a at the wiping gas injection position. For this reason, the inventors thought that the degraded appearance of the plated steel sheet 1 was improved by suppressing the formation of the oxide films 2 in the steel sheet edge 1a at the wiping gas injection position so as to suppress the formation of the whisker-shaped oxide films 2 remaining at the end of the plated steel sheet 1.
Here, it is thought that the formation of the oxide films 2 on the surface of the plated steel sheet 6 is largely influenced by the oxygen concentration in the vicinity of the formation position where the oxide films 2 are formed. For this reason, a relationship between the formation of the whisker-shaped oxide films 2 and the oxygen concentration in the steel sheet edge 1a at the wiping gas injection position was studied. As a result, as described below, the inventors found that the formation of the whisker-shaped oxide films is remarkably suppressed by setting the oxygen concentration in a space including at least the steel sheet edge 1a at the wiping gas injection position to a predetermined range of oxygen concentration, and thereby contrived the present invention. Hereinafter, the preferred embodiments of the present invention will be described in detail.
(Method for Producing Hot Dip Plated Steel Sheet)
First, a method for producing a hot dip plated steel sheet according to the present invention will be described in detail. In the method for producing the hot dip plated steel sheet according to the present invention, when the coating weight is controlled by injecting a gas toward the surface of the steel sheet from a time when the steel sheet continuously immersed into the plating bath is pulled up from the plating bath to a time when plating metal adhered to the surface of the steel sheet is solidified, the plating is performed on the basis of the following conditions (A) and (B).
(A) The oxygen concentration of the bath surface of the plating bath is set to be more than or equal to 0.05 vol % and less than or equal to 21 vol %. The oxygen concentration of the bath surface of the plating bath need not be controlled.
(B) The oxygen concentration in a space of the end (steel sheet edge) of the steel sheet at a position where the gas collides with the steel sheet pulled up from the plating bath is set to be more than or equal to 0.05 vol % and less than or equal to 3 vol %, and preferably more than or equal to 0.05 vol % and less than or equal to 1.5 vol %.
(Condition of Bath Surface of Plating Bath)
Regarding the condition (A), as described above, in the conventional techniques, the bath surface of the plating bath was covered with a seal box or the like so as to be isolated from the ambient atmosphere. However, in the techniques of sealing an entire region from the bath surface of the plating bath to the gas injection position of the wiping nozzle using a seal box, the advantage of suppressing the formation of the oxide films is obtained, but it is difficult to visually recognize the gas injection position for controlling the coating weight which is important for the hot dip plating operation. In addition, it is difficult to remove surface oxide films formed on the surface of the plating bath or to maintain the wiping nozzle. For this reason, there is a problem in that it is difficult to perform the operation. In addition, if the surface of the plating liquid is not covered by a certain amount of oxide films, zinc fume is generated from the surface. When metallic zinc is adhered to an apparatus such as the wiping nozzle due to the zinc fume, it is not possible to normally perform the wiping operation. For this reason, there is a problem in that the quality of the product is degraded. Furthermore, since it is not necessary to control the oxygen concentration of the bath surface of the plating bath, it is possible to decrease the used amount of an inert gas and to decrease the operation cost.
Meanwhile, in the present invention, the condition (B) to be described later is sufficiently satisfied by sealing a space of the end (steel sheet edge) of the steel sheet at a position where a gas collides with the steel sheet pulled up from the plating bath by means of a seal box or the like. In addition, in the present invention, since it is possible to allow the bath surface of the plating bath to have the ambient atmosphere, it is possible to remarkably decrease the size of the seal box or the like. As a result, since it is easy to visually recognize the gas injection position for controlling the coating weight, it is easy to remove the surface oxide films formed on the surface of the plating bath or to maintain the wiping nozzle. In addition, since it is possible to suppress the generation of the zinc fume by means of the oxide films on the surface of the plating bath, it is possible to prevent the metallic zinc from being adhered to the apparatus such as the wiping nozzle and thus to ensure the quality of the plating. Furthermore, the inventors found that the molten plating liquid evaporates when the oxygen concentration is less than 0.05 vol %. Due to the evaporation of the molten plating liquid (the molten plating liquid of the surface of the plating bath), the apparatuses in the vicinity of the wiping portion are contaminated. As a result, the wiping nozzle is clogged, and a difference in coating weight may be generated. Accordingly, the oxygen concentration of the bath surface of the plating bath is set to be more than or equal to 0.05 vol % and less than or equal to 21 vol % (the oxygen concentration of the ambient atmosphere).
(Control of Oxygen Concentration)
Regarding the condition (B), as a result of the study, the inventors obtained the findings that the oxygen concentration in a space of the end (steel sheet edge) of the steel sheet at a position where a gas collides with the steel sheet pulled up from the plating bath is required to be set to a predetermined range. Specifically, on the basis of the findings obtained from the embodiments to be described later, the inventors found that the formation of the whisker-shaped oxide films is suppressed when the oxygen concentration in a space of the steel sheet edge at a position where a gas collides with the steel sheet pulled up from the plating bath is not more than 3 vol % and the formation of the whisker-shaped oxide films is remarkably suppressed when the oxygen concentration in the space of the steel sheet edge is not more than 1.5 vol %. Thus, in the method for producing the hot dip plated steel sheet according to the present invention, the oxygen concentration in the space of the steel sheet edge is set to be less than or equal to 3 vol %, and preferably less than or equal to 1.5 vol %. In addition, as described above, the inventors found that the molten plating liquid evaporates when the oxygen concentration is not more than 0.05 vol %. Due to the evaporation of the molten plating liquid (the molten plating liquid on the surface of the plated steel sheet), the apparatuses in the vicinity of the wiping portion is contaminated. As a result, the wiping nozzle is clogged, and a difference in coating weight may be generated. When the oxygen concentration in the space of the steel sheet edge is set to be more than or equal to 0.05 vol %, the generation of zinc fume in the space (for example, the inside of the seal box) of the steel sheet edge is suppressed due to the oxide films on the surface of the plated steel sheet. For this reason, since it is possible to prevent metallic zinc from being adhered to the apparatus such as the wiping nozzle, it is possible to ensure the quality of the plating. Accordingly, the oxygen concentration in the space of the steel sheet edge is set to be more than or equal to 0.05 vol %.
Although it will be described later in detail, as a method for controlling the oxygen concentration, for example, the oxygen concentration inside the edge seal box can be controlled in such a manner that the space requiring the control of the oxygen concentration is sealed by the edge seal box and an inert gas such as nitrogen or argon is introduced into the edge seal box. As described above, in order to suppress the formation of the whisker-shaped oxide films, it is necessary to prevent the involvement of oxygen caused by the ejector effect of the wiping gas. Accordingly, it is preferable that the space requiring the control the oxygen concentration have a barrier against the ambient atmosphere for the purpose of the atmosphere control. “The barrier” in the present invention includes a gas curtain and a gas barrier formed by purge gas such as a gas flow from the seal box to the ambient atmosphere, which will be described later, in addition to a barrier such as the seal box physically blocking the inflow of gas. The space requiring the control of the oxygen concentration may be shifted in accordance with the plating condition or whether the operation is performed or not, but it is preferable that the space be disposed so as to include at least the steel sheet edge.
In addition, it is preferable that the space having the oxygen concentration set to be more than or equal to 0.05 vol % and less than or equal to 3 vol % include at least a region from the collision position of the wiping gas to a position of 5 mm or more on the downstream side in the sheet feeding direction and from the end of the steel sheet to a position of 50 mm or more in the sheet width direction. That is, “the space” of the end of the steel sheet in the present invention is, for example, a space including at least a region from the end of the steel sheet to a position of 50 mm or more in the sheet width direction. When the space requiring the control of the oxygen concentration includes at least a region obtained by adding the length of the whisker-shaped oxides to 50 mm or so in the sheet width direction, it is possible to sufficiently suppress the formation of the whisker-shaped oxide films on the surface of the plated steel sheet. Accordingly, in consideration of the case where the whisker-shaped oxide films are not formed, it is preferable that the space requiring the control of the oxygen concentration include at least a region from the end of the steel sheet to a position of 50 mm or more in the sheet width direction. In addition, as shown in
Furthermore, in order to visually recognize the gas injection position, a plurality of spaces requiring the control of the oxygen concentration may be provided in the sheet width direction so that the width of the gaps between the adjacent spaces is more than or equal to 10 mm. In order to prevent a difference in the coating weight, the space requiring the control of the oxygen concentration may be set so that an area covering the steel sheet becomes smaller from the steel sheet edge to the center of the steel sheet in the width direction.
(Composition of Plating Bath)
The whisker-shaped oxide films are formed even in a typical plating composition of a Zn-based plating bath containing 0.2 mass % or less of Al. However, the whisker-shaped oxide films formed by the oxidization of plating metal are easily formed in the case where the plating bath contains a large amount of easily oxidized elements such as Al or Mg. Specifically, for example, if the plating bath is a Zn-based plating bath, as a range for practical use in operation, the plating bath may contain Al more than or equal to 0.1 mass % and less than or equal to 60 mass % and Mg more than or equal to 0.2 mass % and less than or equal to 5 mass %. Particularly, if the concentration of Al or Mg is close to the upper limit of the range, the whisker-shaped oxide films are easily formed. According to the method for producing the hot dip plated steel sheet of the present invention, it is possible to obtain the advantage of remarkably suppressing the formation of the whisker-shaped oxide films even in the composition of the plating bath in which the whisker-shaped oxide films are easily formed. In addition, the plating bath may contain Si more than or equal to 0.1 mass % and less than or equal to 0.25 mass %. In the present invention, since the oxygen concentration causing the formation of the oxide films is reduced, it is possible to obtain the advantage of suppressing the formation of the whisker-shaped oxide films even in the compositions (the plating containing elements such as Zn, Al, Mg, Sn, Si, Sr, Cr, and Ca) of other plating baths in which the whisker-shaped oxide films are easily formed. That is, the plating bath may contain at least one of Zn, Al, Mg, Sn, Si, Sr, Cr, and Ca. For example, a Zn-based plating bath may contain a plurality of elements.
(Coating Weight)
In addition, when the plating removal amount (the amount of the plating scraped by the wiping gas to be dropped) is small, the whisker-shaped oxide films are easily formed. The inventors have studied the range of the coating weight in which the whisker-shaped oxide films are easily formed. Specifically, in the condition that the oxygen concentration was not controlled, the gas supply amount was controlled through the wiping nozzle so as to change the coating weight in the region from the steel sheet edge to a position of 10 mm in the sheet width direction, and the maximum length of the formed whisker-shaped oxide films were measured. The result is shown in
As shown in
However, when the coating weight is too large, it is not possible to ensure the satisfactory appearance of the obtained plated steel sheet. For this reason, it is preferable that the coating weight of one surface in the region from the steel sheet edge to the position of 10 mm in the sheet width direction be set to be less than or equal to 380 g/m2.
As described above, the method for producing the hot dip plated steel sheet according to the present invention is described in detail. Hereinafter, an apparatus for hot dip plating according to the embodiments used in the method for producing the hot dip plated steel sheet will be described in detail.
(Apparatus for Hot Dip Plating According to First Embodiment of the Present Invention)
First, an entire configuration of an apparatus for hot dip plating according to a first embodiment of the present invention will be described with reference to
As shown in
A steel sheet (steel strip) 1 moving through the production line is continuously immersed into the plating bath 11. In more detail, the steel sheet 1 subjected to a typical rolling process is continuously immersed into the plating bath 11 through a snout 16, the sheet feeding direction thereof is changed by a bath roll 17, and then the steel sheet 1 is pulled up in the vertical direction. As a composition of the plating bath, for example, in the case of a Zn-based plating bath, as a range for practical use in operation, the plating bath may contain Al more than or equal to 0.1 mass % and less than or equal to 60 mass % and Mg more than or equal to 0.2 mass % and less than or equal to 5 mass %. In addition, the plating bath may contain Si more than or equal to 0.1 mass % and less than or equal to 0.25 mass %. Here, as described above, when a large amount of Al or Mg is contained in the plating bath, the whisker-shaped oxide films are easily formed. However, according to the apparatus 10 for the hot dip plating of the first embodiment of the present invention, it is possible to remarkably suppress the formation of the whisker-shaped oxide films even in the composition of the plating bath.
The gas wiping nozzles 12 control the coating weight onto the surface of the steel sheet 1 by injecting a gas toward the surface of the steel sheet 1 pulled up from the plating bath 11 as described above. The gas wiping nozzles 12 are respectively disposed opposite to both surfaces of the steel sheet 1 so as to face each other and to be located above the plating bath 11 and below the position where the molten plating metal adhered onto the surface of the steel sheet 1 pulled up from the plating bath 11 is solidified. In addition, from the viewpoint of suppressing the oxidization of the plating metal using the wiping gas injected from the gas wiping nozzles 12, it is preferable that nonoxidizing gas be a main component of the wiping gas.
The seal boxes 13 are disposed at a position spaced from the bath surface of the plating bath 11, and cover the space of the end (steel sheet edge) of the steel sheet 1 at a position where the wiping gas collides with the steel sheet 1 pulled up from the plating bath 11 so that the inside of the seal boxes 13 has an atmosphere isolated from the ambient atmosphere. “The space” of the end of the steel sheet in the present invention is a region from the steel sheet edge to a position of a predetermined length at the collision position of the wiping gas to the steel sheet 1. In the apparatus 10 for the hot dip plating according to the first embodiment of the present invention, if the space of the end (steel sheet edge) of the steel sheet 1 at the position where the wiping gas collides with the steel sheet 1 pulled up from the plating bath 11 is covered by the seal boxes 13, the substantial advantage is obtained. For this reason, since it is possible to allow the bath surface of the plating bath 11 to have the ambient atmosphere, it is possible to remarkably decrease the size of the seal boxes 13 compared with the conventional seal boxes. As a result, since it is easy to visually recognize the wiping gas injection position, it is easy to remove the surface oxide films formed on the surface of the plating bath 11 and to maintain the gas wiping nozzles 12. In addition, since it is possible to suppress the generation of zinc fume due to the oxide films on the surface of the plating liquid, it is possible to prevent metallic zinc from being adhered to the apparatus such as the wiping nozzles, and thus to ensure the reliable quality of the plating.
It is preferable that the seal boxes 13 cover a space including at least a region from the collision position of the wiping gas to a position of 5 mm or more on the downstream side in the sheet feeding direction of the steel sheet 1 and from the end of the steel sheet 1 to a position more than or equal to a length (for example, 50 mm) of the whisker-shaped oxide films in the sheet width direction. That is, it is preferable that “the space” of the end of the steel sheet 1 according to the first embodiment of the present invention include at least a region from the end of the steel sheet 1 to a position more than or equal to a length (for example, 50 mm) of the whisker-shaped oxide films in the sheet width direction. When the seal boxes 13 cover at least the space, it is possible to sufficiently suppress the formation of the whisker-shaped oxide films during the plating. Naturally, on the assumption that the seal box 13 is spaced from the bath surface of the plating bath 11, each seal box 13 may increase in size. However, from the viewpoint of preventing the inconvenience in operation caused by an increase in size of the seal box 13, it is preferable that the seal box 13 be decreased in size as much as possible. The minimum horizontal length may be a length obtained by adding the length of the whisker-shaped oxide films to 50 mm or so. Accordingly, in consideration of the case where the whisker-shaped oxide films are not formed, it is preferable that the seal box 13 cover a space including at least a region from the end of the steel sheet to a position of 50 mm or more in the sheet width direction. It is more preferable that the seal box 13 cover a space including at least a region from the end of the steel sheet to a position of 200 mm or more in the sheet width direction. The region of the steel sheet 1 covered with the seal box 13 in the sheet feeding direction may include a region on the upstream side in the sheet feeding direction in addition to a region on the downstream side in the sheet feeding direction. However, since it is necessary to allow the seal box 13 to be spaced from the bath surface of the plating bath 11, the region on the upstream side in the sheet feeding direction has to be located above the bath surface of the plating bath 11. If the movable seal box to be described later is used, it is necessary to obtain the satisfactory movement (moving operation) of the seal box 13 following the steel sheet edge. Therefore, it is preferable that the length of the seal box 13 in the sheet width direction be less than or equal to 400 mm. In addition, in the operation, it is necessary to easily and visually recognize the gas injection position and to suppress a risk of the steel sheet 1 contacting the seal box 13. Therefore, it is preferable that the seal box 13 cover a region from the collision position of the wiping gas to a position of 200 mm or less (that is, the vertical height of the seal box 13 is not more than 200 mm) on the downstream side in the sheet feeding direction of the steel sheet 1. In addition, in order to ensure the movability of the seal box, it is preferable that the seal box 13 cover a region from the surface of the steel sheet to a position of 200 mm or less in a direction perpendicular to the surface of the steel sheet. Furthermore, in order to prevent the seal box from contacting the steel sheet, it is preferable that the seal box 13 cover a region from the surface of the steel sheet to a position of 3 mm or more in a direction perpendicular to the steel sheet.
The purge gas supply members (for example, the purge gas supply nozzle) introduces an inert gas such as nitrogen or argon into the seal box 13 so that the oxygen concentration inside the seal box 13 is controlled to be more than or equal to 0.05 vol % and less than or equal to 3 vol %, and preferably more than or equal to 0.05 vol % and less than or equal to 1.5 vol %.
Next, the configuration of the seal boxes 13 and the purge gas supply nozzle 14 according to the first embodiment of the present invention will be described in detail with reference to
As shown in
As shown in
However, in general, the width of the steel sheet 1 to be plated by the apparatus 10 for the hot dip plating is not constant. Even when the steel sheet 1 having a different width is fed to the apparatus 10 for the hot dip plating, it is necessary to always reliably cover a space including the edge (see the above description) of the steel sheet 1 in order to suppress the formation of the whisker-shaped oxide films. For this reason, in the first embodiment of the present invention, a seal box moving mechanism is provided so as to move the seal box 13 in the sheet width direction of the steel sheet 1 in accordance with the sheet width of the steel sheet 1 moving in the sheet feeding direction. The seal box moving mechanism is a mechanism for horizontally moving the seal box 13 in the sheet width direction of the steel sheet 1. For example, a moving mechanism using an air cylinder or screw may be exemplified. The seal box moving mechanism is provided even in the apparatus for the hot dip plating according to the modified examples (a part of the fifth modified example is excluded) of the first embodiment, the second embodiment, and the modified examples of the second embodiment of the present invention.
Here, an example of the configuration of the seal box moving mechanism according to the embodiment will be described with reference to
As shown in
Each of the driving motors 51 is connected to one end of each screw shaft 53, and rotationally drives the screw shaft 53. In addition, the screw shaft 53 is provided so that the longitudinal direction (axial direction) thereof is aligned with the sheet width direction of the steel sheet 1. In the embodiment, two screw shafts 53 respectively corresponding to the seal boxes 13 are provided so as to parallel to each other. Furthermore, the opposite end (hereinafter, referred to as “the other end”) of the end (one end) of the screw shaft 53 connected to the driving motor 51 is screwed into the seal box 13.
The steel sheet edge detecting sensors 55A and 55B are disposed on the seal box 13 so as to detect the end (steel sheet edge) of the steel sheet 1. For example, each of the steel sheet edge detecting sensors 55A and 55B includes a sensor such as a photo sensor. In detail, for example, the light emitted from the steel sheet edge detecting sensor 55A including a light emitting element is received by the steel sheet edge detecting sensor 55B including a light receiving element. On the basis of the output of the light receiving element changing due to the shielded condition of the light emitted from the light emitting element, the edge position of the steel sheet 1 is detected. However, the steel sheet edge detecting sensor is not limited to the transmission-type photo sensor. For example, the steel sheet edge detecting sensor may be configured as other sensors such as a reflection-type photo sensor including a light emitting element and a light receiving element.
According to the seal box moving mechanism having the above-described configuration, when the driving motor 51 rotates the screw shaft 53, the seal box 13 screwed to the screw shaft 53 moves in the longitudinal direction (that is, the sheet width direction of the steel sheet 1) of the screw shaft 53. At this time, the edge position of the steel sheet 1 is detected by the steel sheet edge detecting sensors 55A and 55B. When the steel sheet edge detecting sensors 55A and 55B detect the edge of the steel sheet 1, it is determined that the seal box 13 is located at an appropriate position. Subsequently, the operation of driving the driving motor 51 is controlled to be stopped, so that the movement of the seal box 13 stops.
With the above-described configuration, in the apparatus for the hot dip plating according to the embodiment, the seal box 13 is moved to the above-described appropriate position for each of the sheet width of the steel sheet 1 by the seal box moving mechanism. The configuration of the seal box moving mechanism described above is only an example, and may have an arbitrary configuration provided that the configuration has a function of moving the seal box 13 in the sheet width direction of the steel sheet 1. Here, as an example, the driving motor 51 is used as a driving unit, and the screw shaft 53 is used as a driving shaft. However, for example, a cylinder may be used as a driving unit, and an air cylinder may be used as a driving shaft.
In the pair of seal boxes 13, the surface (the surface facing the steel sheet 1) on the side of the steel sheet 1 is opened, and the surface (the surface not facing the steel sheet 1 or the wiping nozzle 12) not on the side of the steel sheet 1 or the wiping nozzle 12 is closed. As shown in
Furthermore, in the first embodiment of the present invention, a tubular purge gas supply nozzle 14 is provided so as to communicate with the end on the side of the steel sheet edge of the seal box 13. The longitudinal direction (the axial direction of the tube) of the purge gas supply nozzle 14 is set to be parallel to the sheet width direction of the steel sheet 1. The purge gas such as an inert gas is introduced from the purge gas supply nozzle 14 into the seal box 13, and thereby the oxygen concentration inside the seal box 13 is controlled so as to be more than or equal to 0.05 vol % and less than or equal to 3 vol % (preferably, more than or equal to 0.05 vol % and less than or equal to 1.5 vol %). It is possible to control the oxygen concentration inside the seal box 13 by controlling the supply amount of the purge gas using the purge gas supply nozzle 14.
In the first embodiment of the present invention, one pair of seal boxes 13 and one pair of purge gas supply nozzles 14 are respectively provided in the both ends of steel sheets of the upper portion of the gas wiping nozzles 12, but two or more pairs of seal boxes and two or more pairs of purge gas supply nozzles may be provided therein. For example, in a first modified example of the first embodiment of the present invention, as shown in
As in the seal boxes 131 according to the modified example, when one pair of seal boxes 131 is respectively provided in both upper and lower portions of the gas wiping nozzle 12, it is possible to widen the region (space) requiring the control of the oxygen concentration in the periphery of the wiping gas injection position, that is, the position where the wiping gas collides with the steel sheet 1. For this reason, it is possible to further improve the advantage of suppressing the formation of the whisker-shaped oxide films compared with the case of the first embodiment of the present invention. Meanwhile, due to the problem related to the installation, the installation of the seal box 131 in the lower portion of the gas wiping nozzle 12 may be difficult, as in the modified example. In addition, the inventors have checked that the advantage of suppressing the formation of the whisker-shaped oxide films is sufficiently exhibited when the seal box 13 is provided in at least the upper portion of the gas wiping nozzle 12, that is, only the downstream side in the sheet feeding direction of the steel sheet 1 as in the seal box 13 according to the first embodiment. Accordingly, as in the embodiment of the present invention, the seal box may be provided in at least the upper portion of the gas wiping nozzle 12, that is, only the downstream side in the sheet feeding direction of the steel sheet 1. In addition, a plurality of the seal boxes may be provided in the sheet width direction of the steel sheet. In this case, in order to easily and visually recognize the collision position of the wiping gas, it is preferable that the width of the gap between the adjacent seal boxes be more than or equal to 10 mm.
A second modified example of the first embodiment of the present invention shown in
In addition, unlike the case of the first embodiment of the present invention, a purge gas supply nozzle 142 is provided in the upper portion of the portion (the U-shaped bottom) adjacent to the opening of the seal box 132 so that the longitudinal direction is parallel to the vertical direction.
In the case of the modified example, it is possible to further decrease the size of the seal box 132. However, the distance between two opening surfaces of the seal box 132 facing the steel sheet 1 is fixed. For this reason, the wiping nozzle gap control may be difficult compared with the case of the first embodiment of the present invention.
A third modified example of the first embodiment of the present invention shown in
Since the structure of the seal box 133, a curtain seal nozzle 133a, a purge gas supply nozzle 143, and the like is the same as that of the case of the second modified example, the description thereof will be omitted.
A fourth modified example of the first embodiment shown in
In addition, the structure of the curtain seal nozzle 134a and the purge gas supply nozzle 144 according to the modified example is the same as that of the first embodiment.
A fifth modified example of the first embodiment shown in
As shown in
A modified example shown in
In addition, it is preferable that a purge gas supply nozzle 146 blowing the purge gas be located in a direction (parallel to the steel sheet 1) perpendicular to the direction of the seal gas injection. This arrangement is to reduce the non-uniformity of the distribution of the seal gas injection.
When the L-shaped nozzle 136a is provided, it is possible to allow the amount of the seal gas colliding with the steel sheet 1 to be more uniform in the sheet width direction. Using the L-shaped nozzle 136a, it is possible to prevent troubles that the plating is scraped by the seal gas so as to be split and a difference in coating weight is generated. In the embodiment of the present invention, in order to use the L-shaped nozzle 136a, the seal box 136 having a simple triangular prism shape is used. However, in order to prevent a difference in coating weight in accordance with the flow of the fluid (the molten plating liquid and gas), the seal box 136 may have a shape in which an area covering the steel sheet becomes smaller in a direction from the steel sheet edge to the center of the sheet width direction of the steel sheet 1. In this case, the nozzle 136a injecting the gas is provided in the end (the bold line portion and the outline portion in
(Apparatus for Hot Dip Plating According to Second Embodiment of the Present Invention)
Next, the structure of the seal box, the purge gas supply nozzle, and the like in the apparatus for the hot dip plating according to a second embodiment of the present invention will be described with reference to
As shown in
A modified example shown in
In addition, it is preferable that a purge gas supply nozzle 241 blowing the purge gas be located in a direction (parallel to the steel sheet 1) perpendicular to the direction of the seal gas injection. This arrangement is to reduce the non-uniformity of the distribution of the seal gas injection.
When the L-shaped nozzle 231a is provided, it is possible to allow the amount of the seal gas colliding with the steel sheet 1 to be more uniform in the sheet width direction. Using the L-shaped nozzle 231a, it is possible to prevent troubles that the plating is scraped by the seal gas so as to be split and a difference in coating weight is generated. In the example of the present invention, in order to use the L-shaped nozzle 231a, the seal box 231 having a simple triangular prism shape is used. However, in order to prevent a difference in coating weight in accordance with the flow of the fluid (the molten plating liquid and gas), the seal box 231 may have a shape in which an area covering the steel sheet becomes smaller in a direction from the steel sheet edge to the center of the sheet width direction of the steel sheet 1. In this case, the nozzle 231a injecting the gas is provided in the end (the bold line portion and the outline portion in
Hereinafter, the present invention will be described in more detail on the basis of the example.
In the example, the hot dip Zn-based plating is applied to the steel sheet continuously moving under the condition shown in TABLE 1 by using the apparatus for the hot dip plating shown in
As shown in TABLE 2, it was observed that the maximum length of the whisker-shaped oxide films in the examples in which the seal box according to the present invention was provided and the oxygen concentration was in the range of the present invention was remarkably smaller than that of the comparative examples in which the seal box was not provided and the oxygen concentration was not in the range of the present invention.
As shown in
While the preferred embodiments of the present invention are described above with reference to the accompanying drawings, the present invention is not limited to the examples. It is obvious to those skilled in the art that various changes and modifications can be made in a category described in claims, without departing from the technical scope of the present invention.
In the method for producing the hot dip plated steel sheet and the apparatus for the hot dip plating used in the method, when the coating weight is controlled, the formation of the oxide films on the surface of the plated steel sheet is suppressed and the inconvenience in operation is eliminated.
Number | Date | Country | Kind |
---|---|---|---|
2008-256208 | Oct 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/005089 | 10/1/2009 | WO | 00 | 3/25/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/038472 | 4/8/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2526731 | Coburn | Oct 1950 | A |
4369211 | Nitto et al. | Jan 1983 | A |
5201132 | Jacob | Apr 1993 | A |
6235410 | Komatsu et al. | May 2001 | B1 |
6752870 | Tanokuchi et al. | Jun 2004 | B1 |
20050247262 | Yoshikawa et al. | Nov 2005 | A1 |
20090208665 | Eriksson et al. | Aug 2009 | A1 |
20110177253 | Oohashi et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
2 073 785 | Oct 1981 | GB |
53-052549 | May 1978 | JP |
53052549 | May 1978 | JP |
53-095831 | Aug 1978 | JP |
55-110770 | Aug 1980 | JP |
56-163252 | Dec 1981 | JP |
57-192953 | Dec 1982 | JP |
61-34504 | Aug 1986 | JP |
62-030864 | Feb 1987 | JP |
63-317655 | Dec 1988 | JP |
01-177350 | Jul 1989 | JP |
02-285060 | Nov 1990 | JP |
04-285148 | Oct 1992 | JP |
11-140615 | May 1999 | JP |
2003-277908 | Oct 2003 | JP |
2007-063647 | Mar 2007 | JP |
4988045 | Aug 2012 | JP |
Entry |
---|
International Search Report dated Oct. 27, 2009 issued in corresponding PCT Application No. PCT/JP2009/005089. |
Taiwanese Notice of Allowance dated Apr. 1, 2013, issued in corresponding Taiwanese Application No. 098133398, with an English translation of the Search Report only. |
Office Action in Japanese Patent Application No. 2010-531757 dated Oct. 25, 2011 (with English translation). |
Office Action dated Jul. 4, 2014 issued in related Vietnamese Application No. 1-2011-00823 [with English Translation]. |
Number | Date | Country | |
---|---|---|---|
20110177253 A1 | Jul 2011 | US |