1. Field of the Invention
The present invention relates to a method for producing indicators and processing apparatus and system utilizing the indicators, and more particularly, to a method, an apparatus and a system for providing additional information from the indicators affixed onto the surface of an object.
2. Description of the Prior Art
Dating back to ancient time, people start delivering information by recording information on surfaces of various objects. For example, since the birth of paper, people acquire the information through characters and drawings affixed on papers. Furthermore, in recent years, with distinctive colors, characters, or pictures attached to different locations on surface of an object, people try to disclose the information with regard to each different position of the object.
When people observe the surface of object, they generally capture the information visually. However, the amount or types of the information carried by the surface of object are generally limited under the restrictions of the area size, beautification of the surface.
Nowadays, due to the advance of electronic technology, the visual information has been retrieved from its original carrier and stored as the digital information in an electronic apparatus. And people read them directly from the electronic apparatus. However, it is difficult for the digital information to totally replace the information printed in books or information attached to the surface of object.
On the other hand, through hyper link approach of computer technology, the digital information can be displayed in multiple dimensions, while the information printed in book or attached to the object still are displayed in two dimensions. Thus, if multiple dimensions information can be recorded on the book or the object, people can acquire additional information through the electronic apparatus.
One aspect of the present invention is to provide a method for producing graphical indicators. Some visually negligible graphical indicators are affixed on the surface of an object. The graphical indicators co-exist with main information, such as a text or picture, on the surface of object, and do not interfere with the perception of human eyes to the main information. A user retrieves the graphical indicators through an electronic system that does not couple with the object and acquires additional information from the graphical indicators.
Another aspect of the present invention provides an apparatus and a system utilizing the graphical indicators. The apparatus or the system includes an optical-reading device, a processing device, and an output device. The optical-reading device captures an image including the graphical indicators from the surface of object, the processing device, responsive to the graphical indicators, acquires the corresponding additional information by processing and/or transforming the graphical indicators, and the output device outputs the additional information.
The present invention provides a method for producing graphical indicators and interactive systems for utilizing the graphical indicators. Some visually negligible graphical indicators are affixed on the surface of an object. The graphical indicators co-exist with a main information, such as a text or picture, on the surface of object, and do not interfere with the perception of human eyes to the main information. A user retrieves the graphical indicators through an electronic system and acquires additional information from the graphical indicators. The user can utilize the graphical indicators without a complicated platform providing coordinate system. Furthermore, the typical book or the surface of object can carry more information through the graphical indicators.
(A) Exemplary Design for the Graphical Indicators
In the present invention, one aspect of the graphical indicators is that the graphical indicators are so visually negligible that do not interfere with the main information on the surface of object. Another aspect of the graphical indicators is that the graphical indicators are not interfered by the other information on the surface when the electronic system reads the graphical indicators.
For the visually negligible feature of graphical indicator, each graphical indicator includes multiple graphical micro-units arranged in a layout. Shown in
In practical application, the shape of the graphical micro-units may be regular or irregular shape, such as a round spot. For best result, the graphical micro-unit must be so tiny that only a microscope apparatus can detect it.
When the graphical micro-units are tiny and arranged loosely in the layout, the user easily neglects the combination 100 of graphical micro-units and pays attention to main information, like the word “APPLE” depicted in
The combination 100 of the graphical micro-units consists of multiple graphical indicators arranged in sequence. Each graphical indicator includes multiple state zones for selectively respectively storing the graphical micro-units, wherein each of the state zones displays a state from at least two candidate states.
For example, shown in
When the micro-units in state zone 113 of the first state are assigned value of one and those of the second state are assigned value of zero, a bit matrix form 114 shown in
Furthermore, the multiple graphical indicators, as well as the graphical micro-units, are arranged in two-dimension matrix forms. Such arrangements of the graphical indicators and the graphical micro-units look homogenous to human eyes. Next, the present invention provides a method for retrieving the individual graphical indicator from the matrix form of the graphical indicators.
Shown in
Furthermore, in order to rapidly retrieve the indicator information, the image corresponding to the matrix form of the graphical indicators is rotated and converted into bit matrix form, shown in
Furthermore, we divide the surface of object into multiple index zones. Each zone corresponds to an index value. The graphical indicator corresponding to identical indicator information is repeatedly arranged in each index zone. The graphical indicator corresponding to different indicator information is repeatedly arranged in different index zones. The system maker of the invention records the corresponding relationship of the indicator information to the index zone in an electronic apparatus. When the electronic apparatus captures an image from a index zone, it can acquire the index value of the zone using the corresponding relationship.
For example,
Other embodiment for the graphical indicators is possible. For example,
Furthermore,
Alternately, different graphical indicators may also be arranged in one index zone as shown in
There are requirements for the graphical indicators being negligible to human eyes. First, each graphical indicator must be tiny and human eyes can not differentiate one graphical indicator from others. Second, according to the size of the graphical micro-unit, the pitch between micro-unit, and the desired visual effect, one should reduce the number of the graphical micro-units used. In this way, the graphical indicators have little influence on the brightness of the surface of object. Furthermore, number of graphical micro-units of each graphical indicator is substantially equal to each other, and therefore the graphical indicators look more homogenous to human eyes and become invisible to human eyes.
In a first embodiment, each square centimeter of the selected zone includes more than 3000 state zones of which less than seventy percent are in the first state, and percentage of area occupied by the graphical micro-unit in the state zone is less than 80.
In a second embodiment, each square centimeter of the selected zone includes more than 6000 state zones of which less than seventy percent are in the first state, and percentage of area occupied by the graphical micro-unit in the state zone is less than 80.
The following provides the methods for capturing the graphical indicators by an electronic system without interference with main information on the surface of object.
First, a method utilizing infrared ray and oil ink is illustrated below.
While printing the information on conventional media, a desired color is obtained by combining primitive color inks: cyan (C), magenta (M), yellow (Y), and black (K). Generally, hue and saturation are obtained by adjusting combination of C, Y, and M, and brightness is obtained by adjusting K.
It is noted that infrared ray has high transmittance for most of C, M, Y primitive color inks, but has low transmittance for most of K color inks. In other words, C, M, Y color inks hardly absorb the infrared ray, but black color ink substantially absorbs the infrared ray. Therefore, infrared ray transmits through most of C, M, Y color inks and displays high brightness after reflecting from a light-coloured object surface under C, M, Y color inks. On the contrary, the surface that is printed in black color ink displays low brightness because of the absorption of the infrared ray by most of black color ink. Thus, when a detector receives an image corresponding to graphical indicators printed in most of black color ink, the image does not interfere with main information printed in most of C, M, Y color inks.
On the other hand, when the main information needs to be printed in black, one type of black color, in the specification we called it Near_K, which hardly absorbs infrared ray, is used to print the main information. Mixing C, M, Y colors under predetermined ratio makes Near_K that displays visual black, such as dark indigo or dark brown. The ratio for mixing C, M, Y colors to obtain Near_K color is well known to the people skilled in the art. Since Near_K is made by C, M, Y color inks, Near_K is transmittable by infrared ray. And, to cooperate with this arrangement, the graphical indicators are printed using K (black) color.
In the above description, the black color is used for an example and, however, it is not a limitation. Other inks that can substantially absorb the infrared ray can be used to print graphical indicators. This approach has advantage of low cost. It is to be noted that any type of oil ink, no matter what color it shows, that could substantially absorb infrared ray, are suitable for the print of graphical indicator and are intended scope of protection of present application. Any types of oil ink, that are transmittable by infrared and are close to black visually, i.e. some oil ink of edibility-class without carbon element, can also be used as Near-K color. Near-K color may act as role of black color of four primitive colors (C,M,Y,K) while printing the main information over the surface.
On the other end, it is known that most oil inks absorb ultra-violent or blue light. That is, they do not produce light in visible spectrum when irradiated by ultra-violent or blue light. However, special type ink, such as fluorescent ink, produces visual image under the irradiation of ultra-violet or blue light. Thus, under this approach, the graphical indicators are printed in fluorescent ink, and the main information is printed in a typical oil ink. To cope with the arrangement, ultra-violent or blue light is used to irradiate the surface of object while reading the image. Afterwards, the non-interference image can be obtained by implementing an optical filter for filtering out unwanted spectrum portion.
Another method is to directly use visual light. Since there are many graphical indicators that are not overlapped with the main information, as long as the detector detects single graphical indicator, the indicator information can be obtained.
There are more than one approaches to generate (prepare) the indicator information. For example, the additional information is encoded into the indicator information by method of compressed encoding. When the electronic system retrieves the indicator information, it acquires the additional information by decoding the indicator information. When this approach is adopted, the processing device of the invention, responsive to the graphical indicators, acquires the corresponding additional information by processing (decoding) the graphical indicators.
Another way to obtain the additional information from the indicator information is using a mapping unit stored in the electronic system. The embodiments of the mapping unit include a database or a lookup table, etc. Actual implementations for the mapping unit include a hard disk, a floppy disk, a compact disk, a read-only memory, or a memory card. The electronic system acquires the additional information corresponding to the indicator information through the mapping unit. When this approach is adopted, the processing device, responsive to the graphical indicators, acquires the corresponding additional information by transforming the graphical indicators. Furthermore, for a more complicated design, the processing device, responsive to the graphical indicators, acquires the corresponding additional information by processing and/or transforming the graphical indicators.
(B) Exemplary Electronic System Utilizing the Graphical Indicators
In addition, the surface of object 51 includes multiple index zones on which respective icons 511 and illustrations 513 are affixed. In particular, the index zone corresponding to the icon 511 is printed with multiple identical graphical indicators 512. To illustrate clearly, the graphical indicator 512 is visible. But in actual practice, the graphical indicator 512 may be so tiny as to be non-visible to human naked eyes.
In this embodiment, the icon 511 is directly captured by human eyes 52. In addition, the electronic system 31 is used to acquire the additional information corresponding to the graphical indicator 512.
As the electronic system 31 is directed to a zone to that the graphical indicator 512 is affixed, the optical device 311 captures the image including the graphical indicator 512 and transfers the image to the processing device 312. Then the processing device 312 retrieves the graphical indicator 512 from the image and acquires the additional information corresponding to the graphical indicator 512. In the embodiment, the additional information includes audio information, such as pronunciations of horse in English or other visual information, such as illustration of horse. Then the output device 313 outputs the audio information with a speaker 3131 and the visual information with a display panel 3132. In addition, other types of information sensible by human being, such as olfactory or tactual information, can also be outputted.
The sensor unit 611 transfers the electronic information to the image-processing circuit 62 for image processing purpose. The image-processing circuit 62 extracts the combination of the graphical micro-units from the electronic information (step 74). The exemplary combination of the graphical micro-units is denoted as 100 in
Next, the output circuit 63 outputs the additional information (step 78). In the embodiment, the additional information is audio information. The output circuit 63 includes a speaker that outputs the audio information corresponding to the zone on the surface of object irradiated by the active light source 612.
Alternatively, the read-only memory card (ROM card) 622 per se includes a built-in digital signal processor. Under this arrangement, the mapping unit, i.e. read-only memory card (ROM card) 622, retrieves additional information corresponding to the indicator information responsive to the command from digital signal processor 621.
Furthermore, the additional information may also include commands for controlling other interactive devices.
(C) Application for Input of Information
The optical device of an electronic system 91 captures the image including the graphical indicator 9012. The processing device of the electronic system 91 retrieves the graphical indicator 9012 from the image and acquires the additional information corresponding to the graphical indicator 9012. The additional information is a command corresponding to the main information 9011. The electronic system 91 transfers the command to a response device 92. For instance, the response device 92 may be an audio device capable of generating sound of corresponding piano key. Under the same concept while altering the patterns, the object 90 may easily become a computer keyboard or calculator keyboard. The response device 92 may include mobile phone, personal digital assistant, notebook, and other electronic devices.
(D) Application for Control Function
Besides visual, olfactory or vibrating effects, the additional information includes controlling commands.
As the electronic device 10016 is denoted to a dialogue 10019, the electronic device 10016 retrieves the graphical indicators corresponding to the dialogue 10019 and then acquires a command of additional information. The electronic device 10016 transfers the command to the response device 1001 and the puppet 10012. The response device 1001 displays the dialogue 10019 on the word-line display panel 10014, and the puppet 10012 speaks dialogue when making the action.
(E) Substitute for Bar Code
The feature of the present invention is different from conventional bar code.
(F) Application for Coordinate Positioning System
This invention may be implemented into a coordinate positioning system as index value mentioned above is a coordinate value when a coordinate system is predefined over the surface. Under this application, the coordinate positioning system allows a user to make positioning action over a surface of an object while the surface including a main information. The coordinate positioning system includes a coordinate system and a device.
The coordinate system, implemented over the surface, includes multiple coordinate zones. Each coordinate zone includes at least a visually negligible graphical indicator, and the graphical indicator includes multiple graphical micro-units co-existing with the main information over the surface without interference with the main information. The multiple graphical micro-units are arranged in a layout in the graphical indicator, the layout corresponds to an indicator information indicating a coordinate value of each coordinate zone.
The device is used for capturing the layout from the graphical indicator, retrieving the coordinate value responsive to the layout, and providing a response in response to the coordinate value.
Those skilled in the art will readily observe that numerous modifications and alterations of the device may be made while retaining the teaching of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
91100350 A | Jan 2002 | TW | national |
This application is a Continuation of U.S. application Ser. No. 12/003,336 filed on Dec. 21, 2007 now U.S. Pat. No. 7,669,774, which is a Divisional of U.S. application Ser. No. 10/189,244 filed on Jul. 2, 2002 now U.S. Pat. No. 7,328,845. Priority is claimed on U.S. application Ser. No. 12/003,336 filed on Dec. 21, 2007, which claims the priority date of U.S. application Ser. No. 10/189,244 filed on Jul. 2, 2002, which claims the priority date of R.O.C. Patent Application No. 091100350 filed on Jan. 11, 2002, all of which is incorporated by reference
Number | Name | Date | Kind |
---|---|---|---|
4604065 | Frazer et al. | Aug 1986 | A |
4627819 | Burrows | Dec 1986 | A |
4869532 | Abe et al. | Sep 1989 | A |
4889365 | Chouinard | Dec 1989 | A |
4891011 | Cook | Jan 1990 | A |
5051736 | Bennett et al. | Sep 1991 | A |
5234798 | Heninger et al. | Aug 1993 | A |
5329108 | Lamoure | Jul 1994 | A |
5369261 | Shamir | Nov 1994 | A |
5416312 | Lamoure | May 1995 | A |
5473536 | Wimmer | Dec 1995 | A |
5568555 | Shamir | Oct 1996 | A |
5577774 | Morikawa et al. | Nov 1996 | A |
5591957 | Morikawa et al. | Jan 1997 | A |
5686705 | Conroy et al. | Nov 1997 | A |
5729731 | Yajima et al. | Mar 1998 | A |
5852434 | Sekendur | Dec 1998 | A |
5866895 | Fukuda et al. | Feb 1999 | A |
5877458 | Flowers | Mar 1999 | A |
5896403 | Nagasaki et al. | Apr 1999 | A |
5905250 | Fukuda et al. | May 1999 | A |
5945656 | Lemelson et al. | Aug 1999 | A |
5959285 | Schuessler | Sep 1999 | A |
6052813 | Nagasaki et al. | Apr 2000 | A |
6058498 | Nagasaki et al. | May 2000 | A |
6094279 | Soscia | Jul 2000 | A |
6098882 | Antognini et al. | Aug 2000 | A |
6102505 | McIntyre et al. | Aug 2000 | A |
6144956 | Yajima et al. | Nov 2000 | A |
6208771 | Jared et al. | Mar 2001 | B1 |
6229964 | Bell | May 2001 | B1 |
6325420 | Zhang et al. | Dec 2001 | B1 |
6330976 | Dymetman et al. | Dec 2001 | B1 |
6354630 | Zhang et al. | Mar 2002 | B1 |
6412695 | Reber et al. | Jul 2002 | B1 |
6441921 | Soscia | Aug 2002 | B1 |
6460766 | Olschafskie et al. | Oct 2002 | B1 |
6473762 | Knoblock et al. | Oct 2002 | B1 |
6502756 | Fåhraeus | Jan 2003 | B1 |
6548768 | Pettersson et al. | Apr 2003 | B1 |
6556690 | Nelson | Apr 2003 | B1 |
6559690 | Waldrop | May 2003 | B2 |
6570104 | Ericson et al. | May 2003 | B1 |
6586688 | Wiebe | Jul 2003 | B2 |
6663008 | Pettersson et al. | Dec 2003 | B1 |
6666376 | Ericson | Dec 2003 | B1 |
6674427 | Pettersson et al. | Jan 2004 | B1 |
6689966 | Wiebe | Feb 2004 | B2 |
7017806 | Peterson | Mar 2006 | B2 |
7182247 | Lapstun et al. | Feb 2007 | B1 |
7753257 | Silverbrook et al. | Jul 2010 | B2 |
20020020750 | Dymetman et al. | Feb 2002 | A1 |
20040032505 | Silverbrook et al. | Feb 2004 | A1 |
20050094214 | Silverbrook et al. | May 2005 | A1 |
Number | Date | Country |
---|---|---|
2374808 | Jul 2000 | CA |
0626660 | May 1994 | EP |
0626660 | Nov 1994 | EP |
0660261 | Dec 1994 | EP |
0764944 | Aug 1996 | EP |
0907139 | Apr 1999 | EP |
9-31382 | Feb 1997 | JP |
10-251570 | Sep 1998 | JP |
11-112787 | Apr 1999 | JP |
11112787 | Apr 1999 | JP |
2000-22930 | Jan 2000 | JP |
2001-96889 | Apr 2001 | JP |
2001-346032 | Dec 2001 | JP |
2001-353955 | Dec 2001 | JP |
2001346032 | Dec 2001 | JP |
2001353955 | Dec 2001 | JP |
WO9408314 | Apr 1994 | WO |
WO 0073981 | May 2000 | WO |
WO0051072 | Aug 2000 | WO |
Entry |
---|
“Handschrift Per Funk in Die Ganze Welt”, Elektronik, Weka Fachzeitschriftenverlag, Poing, De. Vil. 49, No. 16, pp. 74-76, in German. |
“E-Commerce Mit Stift auf Papier”, CT Magazin Fuer Computer Technik, Heise Zeitschriften Verlag, pp. 22, in German. |
“Printed Embedded Data Graphical User Interfaces”, IEEE Service Center, vol. 34, No. 3, pp. 47-51 and 54. |
VTech's Preliminary Invalidity Contentions from the litigation, Nov. 12, 2010, pp. 1-164. |
Request for Reexamination of the '845 patent filed on Jan. 19, 2011 by Sunplus, pp. 1-149. |
Ex Parte Reexamination Determination of the prior filed application, mailed on Feb. 18, 2011, pp. 1-16. |
Ex Parte Reexamination Determination of the prior filed application, mailed on Aug. 11, 2011, pp. 1-31. |
Number | Date | Country | |
---|---|---|---|
20100072281 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10189244 | Jul 2002 | US |
Child | 12003336 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12003336 | Dec 2007 | US |
Child | 12591479 | US |