C. Hao et al., “Plasma Production of Metallic Nanoparticles,” J. Mater. Res., 1992, vol. 7, No. 8, pp. 2107-2113. |
C. G. Graqvist et al., “Ultrafine Metal Particles,” J. Applied Physics, May 1976, vol. 47, 1976, No. 5, pp. 2200-2219. |
S. Panda et al., “Modeling the Synthesis of Aluminum Particles by Evaporation-Condensation in an Aersol Flow Reactor,” Nanostructed Mater., 1995, vol. 5, No. 7/8, pp. 755-767. |
D. Vollath et al., “Synthesis of Nanosized Ceramic Nitride Powders by Microwave Supported Plasma Reactions,” Nanostructed Mater., 1993, vol. 2, pp. 451-456. |
D. Vollath et al., “Synthesis of Nanosized Ceramic Oxide Powders by Microwave Plasma Reactions,” Nanostructed Mater., 1992, vol. 1, pp. 427-437. |
J. R. Brenner et al., “Microwave Plasma Synthesis of Carbon-Supported Ultrafine Metal Particles,” Nanostructed Mater., 1997, vol. 8, No. 1, pp. 1-17. |
S. Iwama et al., “Vaporization and Condensation of Metals in a Flowing Gas With High Velocity,” Nanostructed Mater., 1992, vol. 1, pp. 113-118. |
H. J. Fecht, “Synthesis and Properties of Nanocrystalline Metals and Alloys Prepared by Mechanical Attrition,” Nanostructed Mater., 1992, vol. 1, pp. 125-130. |
V. Haas et al., “The Morphology and Size of Nanostructed Cu, Pd, and W Generated by Sputtering,” Nanostructed Mater., 1992, vol. 1, pp. 491-504. |
P. J. Herley et al., “Nanoparticle Generation by Electron Beam Induced Atomization of Binary Metal Azides,” Nanostructed Mater., 1993, vol. 2, pp. 553-562. |
K. Recknagle et al., “Properties of Nanocrystalline Zinc Produced by Gas Condensation,” Nanostructed Mater., 1994, vol. 4, No. 1, pp. 103-111. |
T. Yamamoto et al., “Synthesis of Nanocrystalline NbAl3 by Laser Ablation Technique,” Nanostructed Mater., 1996, vol. 7, No. 3, pp. 305-312. |
G. Yang et al., “Characterization and Sinterability of Nanophase Titania Particles Processed in Flame Reactors,” Nanostructured Mater., 1996, vol. 7, No. 6, pp. 675-689. |
J. A. Eastman et al., Synthesis of Nanophase Materials by Electron Beam Evaporation, Nanostructured Mater., 1993, vol. 2, pp. 377-382. |
J. P. Chen et al., “Enhanced Magnetization of Nanoscale Colloidal Particles,” Phys. Rev. B, May 1995, vol. 51, No. 17, pp. 11527-11532. |
W. Gong et al., “Ultrafine Particles of Fe, Co, and Ni Ferromagnetic Metals,” J. Appl. Phys., Apr. 1991, vol. 69, No. 8, pp. 5119-5121. |
T. Majima et al., “Preparation of Iron Ultrafine Particles by the Dielectric Breakdown of Fe(CO)5 Using a Transversely Excited Atmospheric CO2 Laser and Their Characteristics,” Jpn. J. Appl. Phys., Aug. 1994, vol. 33, pt. 1, No. 8, pp. 4759-4763. |
Y. Sawada et al., “Synthesis and Magnetic Properties of Ultrafine Iron Particles Prepared by Pyrolysis of Carbonyl Iron,” Jpn. J. Appl. Phys., Dec. 1992, vol. 31, pt. 1, No. 12A, pp. 3858-3861. |
A. Chatterjee et al., “Preparation of Nickel Nanoparticles by Metalorganic Route,” Appl. Phys. Lett., Jan. 1992, vol. 60, No. 1, pp. 138-140. |
Josep Costa, “Nanoparticles From Low-Pressure, Low-Temperature Plasmas,” Chapter 2, Handbook of Nanostructured Materials and Nanotechnology, H. S. Nalwa, ed., vol. 1, 2000, pp. 57-158. |
Chun-Ki Chen, “Low-power Plasma Torch Method for the Production of Crystalline Spherical Creamic Particles,” J. Mater. Res., vol. 16 No. 5, May 2001, pp. 1256-1265. |
H. Shim and J. Phillips, “Restructuring of Alumina Particles Using a Plasma Torch,” J. Mater. Res., vol. 14, No. 3, Mar. 1999, pp. 849-854. |