Information
-
Patent Application
-
20030059804
-
Publication Number
20030059804
-
Date Filed
May 29, 200222 years ago
-
Date Published
March 27, 200321 years ago
-
Inventors
-
Original Assignees
-
CPC
-
US Classifications
-
International Classifications
- C12Q001/68
- G01N033/53
- G06F019/00
- G01N033/48
- G01N033/50
Abstract
The invention provides a method for producing a microcarrier, which includes patterning pluralities of bar code on a mask; exposing the bar code to a substrate coated with photoresist; etching and removing residual photoresist and electroforming to a nickel plate; placing a bead coated with biotin or poly-L-lysine between two-nickel plates, and compressing the bar code on the surface of the bead to form a microcake-like particle with bar code; and combining the is particle with the corresponding bio-molecule thereof to produce a micro-carrier with a label. The invention also provides a test method for identifying a bio-molecule, which includes mixing several micro-carriers with the labeled unknown bio-molecules; and identifying the bar code on the micro-carrier via image recognition system, wherein the numbers and types of the known micro-carrier can be flexibly adjusted.
Description
BACKGROUND OF THE INVENTION
[0001] 1. Field of the Invention
[0002] The present invention relates to a method for preserving and testing biologically genetic information, and particularly to a micro-carrier and a test method for identifying unknown bio-molecules such as DNA or proteins by using a code labeled micro-carrier.
[0003] 2. Description of the Related Arts
[0004] Biotechnology has been developing quickly in recent years. Various products can be produced using molecular biology, biological cells, or other metabolites thereof by this technique, which can be extensively applied in the fields of pharmaceutical, pesticide, environmental protection, process development, and aquaculture.
[0005] The combination of biotechnology with electric technology is a trend; wherein the most attractive is the biochip and DNA chip (i.e. gene chip). In addition to silicon, the material of those chips can include absorbent materials such as glass, plant cellulose, gel, and organic polymers. The gene chip has various gene fragments neatly aligned and adhered onto a nail-sized chip, in which thousands upon thousands of gene fragments are accommodated. Users can select different kinds of gene chips based on their purposes.
[0006] The principle of the aforementioned gene chip is that different groups of gene fragments are adhered onto a chip, followed by immersion into a solution containing unknown genes labeled with fluorescence. If the fluorescence-labeled gene matches the specific gene fragment on the chip, a fluorescent signal retained thereon due to complementary combination will be observed by microscopy. Therefore, the unknown gene can be identified by the complementary sequence adhered on the chip.
[0007] Under the design of large production, thousands upon thousands of gene fragments or proteins are adhered onto the chip; however, it has to avoid inaccuracy resulting from different gene fragments or proteins whose locations on the chip are too close. Thus, the precise control of the spots on the chip is very important. Moreover, the precise control requires expensive equipment, which restricts the application of the chip. Therefore, there is still a need for developing a bio-molecule database and test technique thereof, which possesses advantages of more efficiency, low cost, and low limitation.
SUMMARY OF THE INVENTION
[0008] It is therefore the main purpose of the present invention to provide a convenient, inexpensive, and rapid method for producing a micro-carrier of bio-molecule (e.g. gene or protein), and a method for testing bio-molecules by using the micro-carrier.
[0009] Another purpose of the present invention is to provide a test method for identifying a bio-molecule, wherein the numbers and types of the known micro-carrier can be flexibly adjusted. The micro-carrier is constituted by a substrate with a specific code that corresponds with a known bio-molecule, wherein the code is not limited to the conventional bar code. Any means that can identify or distinguish the bio-molecules can be used as code in this invention. For example, the shape, size or color can also be used as a code of a micro-carrier.
[0010] The function of the code in this invention is for identifying the unknown bio-molecules such as the DNA or proteins. The aforementioned micro-carrier is not limited in shape, such as rectangle, sphere, hemisphere, plate or polygon.
[0011] According to the method for coding the code on the micro-carrier in the present invention, take bar code for example, bar codes are patterned on a mask using an integrated circuit process, followed by exposure to a substrate coated with photoresist using photolithography. After etching and removing residual photoresist, the desired bar code can be formed on the substrate, and subsequently a nickel plate is thus electroformed. Before or after coating with bio-molecule binding material, a substrate (Q-bot) is placed between two-nickel plates, and the bar code is then hot compressed onto the surface of the substrate to form a microcake-like particle with bar code. Afterwards, each of the particles mentioned above are combined with the corresponding genes or proteins thereof to produce large amount of micro-carriers with labels.
[0012] On the other hand, the method for identifying unknown target bio-molecule comprises providing a plurality of micro-carriers with known bio-molecules and codes; labeling unknown target bio-molecules; mixing said micro-carriers with said labeled unknown target bio-molecules to allow known bio-molecule on the micro-carrier to react with the labeled unknown target bio-molecule; and identifying the labeled unknown target bio-molecules by analyzing the code on the micro-carrier that has bound with the labeled unknown target bio-molecule.
[0013] Each code on a micro-carrier uniquely corresponds to at least one known bio-molecule attached on the micro-carrier.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] The present invention will be more fully understood and further advantages will become apparent when reference is made to the following description of the invention and the accompanying drawings in which:
[0015]
FIG. 1 is a diagram showing an insert for producing the micro-carrier of the present invention; and
[0016]
FIG. 2 is a schematic diagram showing the process for producing the micro-carrier of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0017] The present invention is characterized by the combination of biotechnology with integrated circuit process to produce a bio-molecule micro-carrier. Another feature of the present invention is a method for testing unknown bio-molecules by using the micro-carrier.
[0018] The method for producing a micro-carrier of the present invention is performed as follows. A layer of bio-molecule binding material, such as biotin, poly-L-lysine, etc., was coated onto the surface of a substrate. The desired individual bio-molecules (e.g. gene or protein) were represented by a corresponding code such as bar code, wherein pluralities of the bar codes were patterned on a mask using an integrated circuit process, followed by exposing to a substrate coated with photoresist using photolithography. After etching and removing residual photoresist, the bar code was formed on the substrate, and subsequently a nickel plate was thus electroformed. The aforementioned substrate was placed between two-nickel plates, and the bar code facing inwards was then hot compressed onto the surface of the substrate to form a microcake-like particle with the bar code. A layer of bio-molecule binding material was coated onto the particle before or after bar code patterning. Finally, the particles mentioned above were combined with the corresponding bio-molecules thereof to produce various micro-carriers of bio-molecules with labels. Therefore, users can produce a vial containing various micro-carriers with bar codes in accordance with the present invention.
[0019] The term “micro-carrier” used herein refers to a substrate marked with a specific code, then coated with a layer of bio-molecule binding material, and then carries a corresponding bio-molecule. The micro-carrier is constituted by a substrate that is not limited in shape. such as rectangle, sphere, hemisphere, plate or polygon. The material of the substrate is not limited, including silicon, glass, plant cellulose, gel, and organic polymers. The size of the bead ranges from 20 .mu.m to 200 .mu.m in diameter, preferably less than 100 .mu.m. The bio-molecules used herein can include, but are not limited to, nucleic acid, oligonucleotide, peptide nucleic acid (PNA), antigen, antibody, enzyme or protein.
[0020] In the process of producing the above particles, the hemisphere particles can be alternatively formed from the substrates placed between two-nickel plates by dropping a UV photosensitizer micelle, such as Arabic micelle, onto the nickel plates, followed by UV irradiation for curing.
[0021] In addition, the cake-like pattern and bar code can be simultaneously patterned on a mask, as shown in FIG. 1, followed by etching to form a mold. The microcake-like particle can thus be molded by injection or hot compression.
[0022] Another aspect of the present invention provides a method for identifying unknown bio-molecules by using the micro-carriers mentioned above. The method is comprised of the following steps: providing a plurality of micro-carriers with known bio-molecules and codes; labeling (for example, fluorescence-labeled) unknown target bio-molecules; mixing said micro-carriers with said labeled unknown target bio-molecules to allow known bio-molecule on the micro-carrier to react with the labeled unknown target bio-molecule (i.e. hybridizing); and identifying the labeled unknown target bio-molecule by analyzing the code on the micro-carrier that has bound with the labeled unknown target bio-molecule.
[0023] As each code on a micro-carrier uniquely corresponds to at least one known bio-molecule attached on the micro-carrier, any methods for analysis the code on the micro-carrier can be used. For example, an image recognition system (for example, microscope or CCD camera) can be used to recognize the code on the micro-carrier thereby identifying the unknown bio-molecule.
[0024] According to the method for identifying the unknown bio-molecules described herein, for example, providing a vial containing numerous micro-carriers with known bio-molecules and codes; then, adding fluorescence-labeled unknown bio-molecules into said vial and mixing. When the known bio-molecule on the micro-carrier is complementary (i.e. hybridizing) with the unknown bio-molecule, the micro-carrier will obtain a fluorescence-labeled signal. Finally, detecting the micro-carriers with fluorescence-labeled signals to identify the complementary unknown bio-molecules via image recognition system such as microscope or CCD camera to recognize the code (for example, to read the bar code) on the micro-carriers.
[0025] In addition to the bar code used to identify bio-molecules, the present invention further employs the shape, size, color, etc. of the carrier as codes, which can be classified into many categories, such as: (1) Shape. The sphere bead described above can be replaced by a rectangle or polygon. For example, a certain kind of length and width can represent a specific bio-molecule, or either a triangle or polygon with sides of different length can represent different bio-molecules. (2) Size. For example, the large micro-carrier represents one bio-molecule and the small one represents another. The diameter of the micro-carrier can be used as a bio-molecule marker. (3) Color. Different colors can represent different bio-molecules. For example, red, yellow, blue, and white can be used to represent four different kinds of bio-molecules. Similarly, each micro-carrier can be identified and counted via the microscope connected with computer and the image recognition system.
[0026] Furthermore, the insert 10 of the aforementioned carrier with different shape and/or size can also be produced by photolithography, as shown in FIG. 1, followed by injection or hot compression. The resulting particles 12 are wedged in insert 10 due to their very small size. The insert 10 can be electrified with a negative charge and the particles 12 can thus be attracted to a collection plate 14 that is electrified with a positive charge (as shown in FIG. 2), The detour among particles can be broken via rolling compression. If particles bear the detour with a broken rod, software can be employed to remove such detours during identification.
[0027] The methods of the present invention do not require expensive equipment, and a small laboratory can flexibly adjust the numbers and types of the known micro-carrier. For example, if one needs five known bio-molecules, the preparation of only five vials of micro-carriers with codes and mixing them into one vial is enough. On the contrary, the conventional biochip has the fixed number of A genes, e.g., 1,000 genes on the chip. If the user needs only five genes thereon, the manufacturer cannot customize the chip because of the expense. Therefore, the method of the present invention possesses the advantages of convenience, flexibility, and cost-saving. A general small laboratory can accomplish the bio-molecule test itself; thus the method of the present invention can be widely applied, thereby facilitating biotechnology.
[0028] In addition, according to the manufacturing process of the conventional array chips, because thousands of gene fragments or proteins are adhered onto the chip, if there are only some defects of several gene fragments or proteins on a chip, for quality control, the chip cannot be used. In this invention, because each micro-carrier with unknown bio-molecule is individual so that it can easily be removed if any defects occur during the manufacturing process. This advantage can significantly reduce the cost wasting and overcome the drawbacks of the conventional skill.
[0029] While the invention has been particularly shown and described with the reference to the preferred embodiment thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.
Claims
- 1. A method for identifying unknown target bio-molecule, comprising:
providing a plurality of micro-carriers with known bio-molecules and codes; labeling unknown target bio-molecule; mixing said micro-carriers with said labeled unknown target bio-molecules to allow known bio-molecule on the micro-carrier to react with the labeled unknown target bio-molecule; and identifying the labeled unknown target bio-molecule by analyzing the code on the micro-carrier that has bound with the labeled unknown target bio-molecule.
- 2. A method as claimed in claim 1, wherein said micro-carrier refers to a substrate with a specific code that corresponds with a known bio-molecule.
- 3. A method as claimed in claim 2, wherein the material of said substrate includes silicon, glass, plant cellulose, gel, and organic polymers.
- 4. A method as claimed in claim 1, wherein said code can use bar code attached on a micro-carrier to identify the unknown bio-molecule.
- 5. A method as claimed in claim 1, wherein said code can also use the shape, size, or color of the micro-carrier as a code to identify the unknown bio-molecule.
- 6. A method as claimed in claim 1, wherein the function of the code is for identifying the unknown bio-molecule.
- 7. A method as claimed in claim 1, wherein said bio-molecule comprises nucleic acid, oligonucleotide, peptide nucleic acid, antigen, antibody, enzyme or protein.
- 8. A method as claimed in claim 1, wherein the step of labeling the unknown target bio-molecules can use fluorescence-labeled.
- 9. A method as claimed in claim 1, wherein an image recognition system can be used to recognize the code on the micro-carrier whereby the unknown bio-molecule is identified.
- 10. A method as claimed in claim 9, wherein said image recognition system includes a microscope or a CCD camera.
- 11. A method as claimed in claim 1, wherein the each code on a micro-carrier uniquely corresponds to at least one known bio-molecule attached on the micro-carrier.
Priority Claims (1)
Number |
Date |
Country |
Kind |
89109106A |
May 2000 |
TW |
|
Divisions (1)
|
Number |
Date |
Country |
Parent |
09728317 |
Dec 2000 |
US |
Child |
09847481 |
May 2001 |
US |
Continuations (1)
|
Number |
Date |
Country |
Parent |
09847481 |
May 2001 |
US |
Child |
10156719 |
May 2002 |
US |