The present invention relates to a method for producing an optical fiber.
Optical fibers including cores that contain alkali metal elements are known (see Japanese Unexamined Patent Publication (Translation of PCT Application) Nos. 2005-537210, 2007-504080, 2008-536190, 2009-541796, 2010-501894, and 2010-526749, U.S. Patent Application Publication No. 2006/0130530, U.S. Pat. No. 5,146,534, and International Publication No. 98/002389). It is believed that the incorporation of an alkali metal element into a core reduces the viscosity of the core in drawing an optical fiber preform to produce an optical fiber and allows the relaxation of the glass network structure to proceed, thereby reducing the attenuation of the optical fiber.
In addition, optical fibers including cores that are composed of pure silica glass free from an alkali metal element are known as other low-loss optical fibers. It is known that in the production of such an optical fiber, an annealing furnace is arranged below a drawing furnace to prolong the heating time in order to promote the relaxation of the glass network structure.
It is an object of the present invention to provide a method for producing an optical fiber including a core that contains an alkali metal element, the optical fiber having low attenuation.
In order to achieve the object, a method for producing an optical fiber includes drawing a silica-based optical fiber preform into an optical fiber, the optical fiber preform including a core part and a cladding part, the core part having an average concentration of an alkali metal element of 5 atomic ppm or more, the cladding part containing fluorine and chlorine, the optical fiber including a glass portion and a resin coating portion, and the glass portion being under residual stress which is a compressive stress of 130 MPa or less.
In the method for producing an optical fiber according to the present invention, in the drawing of the optical fiber preform, the time during which an individual position of the optical fiber preform is maintained at 1500° C. or higher may be 110 minutes or less. The average concentration of the alkali metal element in the core part of the optical fiber preform may be 500 atomic ppm or less. The core part of the optical fiber preform may contain a halogen element, and the average concentration of an additive element other than the alkali metal element and the halogen atom in the core part is equal to or lower than the average concentration of the halogen element in the core part. The average concentration of the halogen element in the core part of the optical fiber preform is preferably in the range of 1,000 atomic ppm to 20,000 atomic ppm. The alkali metal element may be potassium.
In the method for producing an optical fiber according to the present invention, the drawing speed during the drawing of the optical fiber preform may be 1200 m/min or more or 2500 m/min or less. The optical fiber preform preferably has a diameter of 70 mm to 170 mm. A force applied to a glass portion during the drawing of the optical fiber preform may be in the range of 0.29 N to 1.47 N.
In the method for producing an optical fiber according to the present invention, during the drawing of the optical fiber preform, the drawn glass fiber having a diameter of 200 μm or less may be heated at 1500° C. or higher for 0.3 seconds or less, and the residence time in which the optical fiber preform is heated in a drawing furnace is 4 hours or less. The drawn glass fiber having a diameter of 200 μm or less may be heated at 1500° C. or higher for 0.01 seconds or more. In the drawing of the optical fiber preform, the residence time of any position of the optical fiber preform in the drawing furnace may be 4 hours or less.
As another aspect of the present invention, a method for producing an optical fiber that includes a glass portion and resin coating portion is provided. The glass portion includes a core and a cladding surrounding the core. In the method, a core part of an optical fiber preform has an average concentration of an alkali metal of 5 atomic ppm or more and an average concentration of a halogen element of 1000 atomic ppm or more, the concentration of an additive element other than the alkali metal or the halogen element in the core part is equal to or lower than the average concentration of the halogen element in the core part, the optical fiber preform has a diameter of 70 to 170 mm, the drawing speed of the optical fiber when the optical fiber is drawn is 600 m/m in or more, a force applied to a glass portion is in the range of 0.29 N to 1.47 N, and the glass portion is under residual stress which is a compressive stress of 130 MPa or less.
The drawing speed of the optical fiber may be in the range of 1200 m/min to 3000 m/min.
According to an embodiment of the present invention, it is possible to produce an optical fiber having low attenuation, the optical fiber including a core that contains an alkali metal element.
Embodiments of the present invention will be described below with reference to the attached drawings. The drawings are provided for illustrative purposes and are not intended to limit the scope of the invention. In the drawings, the same elements are designated using the same reference numerals, and redundant description is not repeated.
The ratios of dimensions in the drawings are not always the same as those of the actual objects described in the respective drawings.
According to findings of the inventors, in the case of producing an optical fiber including a core that contains an alkali metal element, when a heating time is prolonged by arranging an annealing furnace below a drawing furnace as in the production of an optical fiber including the core composed of pure silica, the resulting optical fiber has an increased attenuation, in some cases. Thus, in a method for producing an optical fiber according to the present invention, when an optical fiber preform including a core part that contains an alkali metal element is drawn, a time that the optical fiber preform is heated in a drawing furnace is reduced.
In a method for producing an optical fiber according to an embodiment of the present invention, the average concentration of an alkali metal element (for example, potassium) contained in a core part of an optical fiber preform is 5 atomic ppm or more and preferably 50 atomic ppm or less in order to suitably achieve a reduction in loss. A higher potassium concentration results in a higher loss due to radiation exposure. Thus, the upper limit of the average potassium concentration in the core part is 500 atomic ppm. The time during which an individual position of the optical fiber preform is maintained at 1500° C. or higher in a drawing furnace is 110 minutes or less. The drawing speed is preferably 1200 m/min or more and more preferably 1500 m/min to 2300 m/min. The optical fiber preform preferably has a diameter of 70 mm to 170 mm and more preferably 90 mm to 150 mm.
In this case, the optical fiber preform had a diameter of 140 mm. The drawing tension (applied to the glass portion) during the drawing of the optical fiber preform was 30 g (0.29N) to 150 g (1.47 N). The glass fiber having a diameter of 200 μm or less was heated at 1500° C. or higher for 0.01 seconds to 0.3 seconds.
The drawn optical fiber includes a glass portion and a resin coating portion (fiber coating) and the glass portion includes a core composed of a silica-based glass containing potassium, chlorine (Cl), and fluorine. The cladding part is composed of a silica-based glass containing fluorine and Cl. The core had an average potassium concentration of 0.1 atomic ppm to 100 atomic ppm. The core of the drawn optical fiber had an average chlorine concentration of about 10,000 atomic ppm. The core does not substantially contain dopants, such as a transition metal and GeO2, other than potassium, chlorine, and fluorine. The concentration of the dopants other than potassium, chlorine, and fluorine in the core part is 1 ppm or less.
When the drawing tension during the drawing of the optical fiber preform is higher or lower than the range of 30 g (0.29 N) to 150 g (1.47 N), the attenuation of the optical fiber is increased.
As illustrated in
An increase in tension applied to the glass increases the amount of residual stress change around the core. For example, the maximum amount of stress change per micrometer in a region extending from the center of the core to a radius of 15 μm (the region with a diameter of three times the MFD) is 16 MPa/μm at a force applied to the glass of 150 g (1.47 N). However, the maximum amounts of stress change per micrometer are 25 and 23 MPa/μm at 175 g (1.72 N) and 200 g (1.96 N), respectively. That is, the change in stress is significantly increased in the radial direction. This leads to a nonuniform glass structure, thereby disadvantageously increasing the attenuation. Accordingly, an optimum force applied to the glass during drawing is in the range of 30 g (0.29 N) to 150 g (1.47 N). At this time, the peripheral portion of the core is under residual stress that is a compressive stress of 0 MPa to 130 MPa.
Also in this case, the optical fiber preform had a diameter of 140 mm.
As illustrated in
An optical fiber preform is drawn with the drawing apparatus 1 illustrated in
As illustrated in
An increase in drawing speed enables the diffusion of potassium to be inhibited. However, the upper limit of the drawing speed is 3000 m/min from the viewpoint of productivity and the power of the drawing furnace. Thus, the optical fiber preform preferably has a diameter of 70 mm to 170 mm and more preferably 90 mm to 150 mm. The drawing speed is preferably in the range of 1200 m/min to 2500 m/min and more preferably 1500 m/min to 2300 m/min.
In this case, the optical fiber preform had a diameter of 140 mm. The residence time T2 in the drawing furnace is preferably 4 hours or less and more preferably 3 hours or less.
Optical fiber preforms each including a core part that has an average potassium concentration of 5 atomic ppm were drawn with a drawing apparatus illustrated in
The drawing furnace has a short length, so that the resulting fiber is readily exposed to air. It is thus speculated that the length of time the fiber is maintained at 1500° C. or higher is reduced. Hence, the residence time in the furnace can be reduced even when the optical fiber preforms are drawn at low speed, thereby reducing the attenuation.
Each of the optical fibers in Example 1 had a refractive index profile (the vertical axis representing the relative refractive-index difference with respect to the refractive index of pure SiO2) illustrated in
As described above, the resulting optical fibers had low attenuations and other satisfactory characteristics.
An optical fiber in Example 2 was produced by drawing an optical fiber preform at a drawing speed of 1700 m/min and a drawing tension of 50 gf (0.49 N), the optical fiber preform having a diameter of 125 mm, a potassium-containing core part, and a refractive index profile different from that in Example 1. The optical fiber had a refractive index profile (the vertical axis representing the relative refractive-index difference with respect to the refractive index of pure SiO2) as illustrated in
The core may have a diameter of 6 μm to 20 μm. The relative refractive-index difference between the core and the cladding may be in the range of 0.2% to 0.5%. When the cladding contains fluorine, the average refractive index of the cladding is lower than the refractive index of the core, the core is made of silica-based glass which contains an alkali metal element as well as chlorine and fluorine elements, which are halogens, and the halogen concentration is the highest of all the additional elements in the core, the attenuation is reduced. Furthermore, in the optical fiber preform, each of the core part and the cladding part may have a refractive-index structure. For example, while refractive index profiles as illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2012-063960 | Mar 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2012/082658 | 12/17/2012 | WO | 00 |