The present invention relates generally to improvements made in the field of the production of containers comprising a narrow opening and a long body, such as bottles or similar, by means of stretch blow molding preforms containing PET. The invention may be applied in particular in injection stretch-blow molding method (ISBM).
It is known to produce containers, and in particular bottles or similar, by means stretch blow molding from preforms made from various materials. The technology ISBM is well known and comprises at first injecting the material by:
Then a blowing is performed, the blowing including following steps: reheating of preforms, stretching-preblowing and blowing.
The material which is used most frequently nowadays is polyethylene terephthalate (PET) due to certain very advantageous properties of bottles made from this material (namely their good mechanical resistance, allowing them to contain carbonated drinks, the facility to be filled with a hot liquid, the good transparency of the PET which does not adversely affect the appearance of the liquid which they contain, a relatively good barrier effect to oxygen, etc.).
While Extrusion blow molding (EBM) machines are much cheaper, ISBM equipment is often preferred to obtain plastic containers such as PET bottles from preforms because the PET containers made by the ISBM method are stronger, lighter, have better clarity, and are leak proof (injection molded neck) than anything else possible by the EBM method. Some containers can only be made by ISBN, soft drinks bottles for example cannot be molded by EBM. The average thickness of the container side wall may be typically inferior to 300 μm when produced by means of stretch-blow molding.
Nevertheless, the weight of the PET bottles cannot be easily reduced since the PET preforms have to be injected properly and without any deformation and stretched so as to obtain uniform shapes. Problems caused by the high injection pressures with preforms having thin walls are mentioned in Patent application FR2898293-A1 of the Applicant.
With the conventional ISBM equipments, attempts made to highly reduce the thickness of PET containers comprising a narrow opening and a long body have resulted in failure (in particular problems during molding due to high injection pressure, non-uniform shapes from one container to the other and apparition of “short shots” with a lack of material in area(s) at the opposite of the material injection point). Indeed, following research undertaken in this field, the applicant has been able to establish that, to obtain satisfactory containers comprising a narrow opening and a body of a standard capacity of 500 mL, with mass production and with production equipment operating at a high rate, it was necessary to have an average thickness of the preform body not inferior to 2 mm. The phrase “container comprising a narrow opening and a long body”, in the remainder of the present description, is understood to be any container of which the opening has a smaller section than that of its body: this may be a bottle or a similar container such as a can, flask or similar, which has a narrow neck or mouth.
There are already some solutions to provide to the consumers containers with less thick walls and thus containing less material through mixing of PET with aromatic polyester. The patent EP1436203 concerns containers obtained by an ISBM method where PET is mixed with an amorphous aromatic polyester such as PEN (polyethylene naphtalate). However, this method is not adapted for containers such as bottles with a conventional shape, including a rigid bottom or similar base and one or more side walls allowing the bottle to be easy manipulated and transported.
The present invention is aimed at alleviating the disadvantages of the known ISBM methods and its purpose is to supply a preform which allow producing a container comprising a narrow opening and a long body which, for the same volume, requires less plastic than a standard container obtained by an ISBM method.
To this end, embodiments of the present invention provide a method for producing containers comprising a narrow opening and a body having a base and at least one side wall extending longitudinally between the narrow opening and the base, by stretch-blow molding an injection-molded preform that comprises a body, characterized in that the body of the preform comprises, preferably essentially comprises, 50-95 wt % of PET and 5-50 wt % of PTT, and in that the body of the preform is subjected to an overall stretching ratio comprised between 16 and 50, the overall stretching ratio being the product of a longitudinal stretching ratio L/l and a radial stretching ratio D/d, where
L is the developed half length L of said body of the container;
l is the developed half length l of the body of the preform;
D is the average diameter of said body of the container; and
d is the average diameter d of the body of the preform.
The body comprises 50-95 wt % of PET and 5-50 wt % of PTT. In other words, the body is made of a material, typically a plastic composition, comprising 50-95 wt % of PET and 5-50 wt % of PTT. The material can essentially comprise 50-95 wt % of PET and 5-50 wt % of PTT. The material can essentially consist of 50-95 wt % of PET and 5-50 wt % of PTT. In one embodiment the material consists of 50-95 wt % of PET and 5-50 wt % of PTT.
Surprisingly, the use of PTT does not affect the molding workability by stretch blow-molding of the preform and the biaxial stretching rate is highly increased. This was unexpected as PTT was not used in ISBM methods because of its high tendency to crystallize (a crystallized polymer is rigid and can neither be molded, nor stretched by a blowing gas). By working with a plastic material, for example with PET, by stretch blow molding, the above mentioned stretching ratio is limited, while keeping a good integrity of the container.
Advantageously with this method, the operating rate of the ISBM production equipment is not reduced (i.e. with the same rate as for the production of the conventional PET containers). Thanks to the high overall stretching ratio (also called biaxial ratio), a preform having a wall thickness not inferior to 2 mm may be used to obtain the container of lower weight.
One further advantage of PTT is that it can be based on renewable resources and thus minimizes the depletion of oil, which is a non-renewable resource.
In one embodiment the material comprises 75-95 wt % of PET and 5-25 wt % of PTT. In one embodiment the material essentially comprises 75-95 wt % of PET and 5-25 wt % of PTT. In one embodiment the material essentially consists of 75-95 wt % of PET and 5-25 wt % of PTT. In one embodiment the body consists of 75-95 wt % of PET and 5-25 wt % of PTT.
The preferred amounts mentioned above can be typically in the ranges below:
The material can comprise a crystallization accelerator or a nucleating agent. In one embodiment the material does not comprise a crystallization accelerator or a nucleating agent.
The material can comprise optional additives such as colouring agents, plasticizers, stabilisation agents, for example antioxidants, anti-static agents, lubricants, processing aids, fire-retardants, charges and fillers. Such additives are known by the one skilled in the art.
These additives can be to the mixture the mixture of PET and PET, or to the PET or the PTT, before mixing the PET and the PTT.
The material having the mixture of PET and PTT can be obtained by melting and mixing the PET and the PTT, or compositions comprising the PET and the PTT, for example by melting and mixing plastic chips. In one embodiment the material is formed before production of the preform, by melting, mixing, extruding to obtain a material in the form of chips, flakes, pellets or powder. These are then typically used in the method of the invention, to form the injection molded perform. In one embodiment the material is formed during production of the preform, by separate introduction during the injection molding of the PET and the PTT, or compositions comprising the PET and the PTT, for example in the form of plastic chips.
According to a particular feature, the body of the preform comprises, preferably essentially comprises, 75-95 wt % of PET and 5-25 wt % of PTT, the body of the preform being subjected to an overall stretching ratio comprised between 16 and 25. With such a composition for the preform, an advantageous compromise is obtained for producing bottles or similar containers having mechanical resistance adapted for good formability. In particular, the containers may be shaped as the conventional PET containers with an elongated body and a bottom sufficiently rigid to support weight of the content (typically more than 300 mL water), the bottom allowing a vertical storage of the container. This composition of the preform is suitable for producing 250-2000 mL containers, while a higher proportion of PTT is more suitable for 3000-5000 mL containers with enhanced flexibility (these containers of higher capacity typically have a substantially circular cross-section and optionally an ovoid overall shape).
According to a particular feature, the following formula is satisfied:
0.002 g/cm≦wP·eP/SB≦0.005 g/cm
where wP and eP are respectively weight and average thickness of the preform body, while SB is inner surface area of the body of the container.
Surprisingly in this range, the process is reliable because the average thickness eP of the preform may be advantageously not inferior to 2 mm, while the ratio wP/SB may be very low. This offers an advantageous compromise between quality requirements for mass production and reduction of the cost with decrease of the preform weight.
In various embodiments of the method of the invention, recourse may optionally also be had to one or more of the following dispositions:
It is also provided, according to the invention, a preform for implementation of the method for producing containers, characterized in that the preform has a body of which the wall has a maximum thickness eP which is comprised between 1.8 mm and 3.0 mm and preferably between 2.0 mm and 2.4 mm, said body comprising, preferably essentially comprising, a mixing of two aromatic polyesters in the proportions 50-95 wt % of PET and 5-50 wt % of PTT.
A further purpose of the invention is to provide hollow containers of reduced weight, such as bottles, having physical properties adapted for storage of a still liquid beverage, preferably mineral water, the containers being further adapted to be obtained by using an injection stretch blow molding equipment and being sufficiently resistant to allow transport with superposition of the containers. The containers can also be used for storage of non beverage products such as cosmetics and detergents.
To this end, embodiments of the present invention provide a hollow plastic container comprising a narrow opening and a body having a base and at least one side wall extending longitudinally between the narrow opening and the base, obtained by stretch-blow molding an injection-molded preform, the body of the container comprising a bottom and at least one side wall, characterized in that said body comprises, preferably essentially comprises, a mixing of two aromatic polyesters in the proportions 50-95 wt % of PET and 5-50 wt % of PTT, the average thickness of said side wall being inferior to 300 μm, and preferably not superior to 120 μm.
In various embodiments of the container according to the invention, recourse may optionally also be had to one or more of the following dispositions:
16≦L/l*D/d≦50
where
L/l is the ratio of the developed half length L of said body of the container to the developed half length l of the body of the preform, and
D/d is the ratio of the average diameter D of said body of the container to the average diameter d of the body of the preform
Other features and advantages of the invention will become apparent to those skilled in the art during the description which will follow, given by way of a non-limiting example, with reference to the appended drawings.
In the various figures, the same references are used to designate identical or similar elements.
This second tapered part 4b is extended by two successive parts 5, 6 respectively forming the body and base of the preform 1 of which the constituent material will be found respectively on the body 2b and on the base 10 of the container 2.
In the non limitative embodiment shown in
The developed half length is the dimension of the neutral axis of the wall taken from the bottom 3a (in this case the lower face of the flange) of the neck 3 and the center of the base 6 for the preform 1 (shown by a dotted line in the left half of the preform 1 on
Advantageously, the production may be performed at a high rate and with high efficiency for a longitudinal stretching ratio of between approximately 3.5 and 4.5 and a radial stretching ratio of between approximately 4.5 and 7. Preferably, so that a sufficiently wide treatment window is formed to satisfy the demands of industrial mass production, it is desirable that the radial stretching ratio is greater than or at least equal to the longitudinal stretching ratio.
In these conditions, in a typical example for implementing the arrangements of the invention, the longitudinal stretching ratio is approximately 4, whilst the radial stretching ratio is approximately 5. More generally, the body 5 of the preform 1 may be subjected to an overall stretching ratio comprised between 16 and with a preform 1 having a body 5 essentially comprising 50-95 wt % of PET and 5-50 wt % of PTT. The body 5 and the neck 3 are preferably made as a single piece. This makes it possible to avoid any join or weld which may constitute a region of greater weakness.
To make it possible to ensure a production rate of the same size as that permitted by using PET preforms, it is desirable that the preform 1 made of a mixing of PET and PTT has a body 5 of which the wall has a maximum thickness eP which is less than approximately 3 mm, and preferably typically approximately 2.0 mm; it is also desirable that it has a base 6 of which the thickness of is not greater than approximately 3 mm, and preferably no greater than 2.2 mm.
In a preferred embodiment, bottles or similar containers 2 are produced by means of stretch blow molding from preforms made from a PET/PTT mixing with a proportion of PTT comprised between 5 and 50 wt %. A blend of polyethylene terephtalate (PET) and polytrimethylene terephtalate (PTT) in this composition range is homogeneously mixed and forms the plasticized material that is injected in the mold, and then cooled after being shaped into a preform in the mold. In this case, the body 5 of the preform 1 and the neck 3 are made of the same material. Those skilled in the art will appreciate that the central axis of the preform 1 defines the longitudinal direction of the container 2 at the time of its manufacture.
The body 5 of the preform 1 is then subjected to an overall stretching ratio comprised between 16 and 50, by using blowing fluid at a pressure comprised between 20*105 and 40*105 Pa, and preferably between 30*105 and 40*105 Pa.
A preform 1 is injection molded by using A PET and PTT. The body 5 and the neck 3 are made as a single piece. The mixing between PET and PTT is made in such a way that the preform 1 has a body 5, here an elongated body 5, including 85 wt % of PET and 15 wt % of PTT.
The body 2b of the preform 1 has characteristics as indicated in above table A1. This body 2b is subjected to a stretching during operation of stretch blow molding, so as to obtain a bottle having characteristics as indicated in table B1 and adapted to contain 0.5 L mineral water. For example, the general shape of such a bottle corresponds to that of the container 2 shown in
The overall stretching ratio is thus greater than 18 in this case. The average thickness E of the side wall of the bottle may be 126 μm in this non-limitative example.
Tests made with a body 5 of the preform 5 essentially comprising 75-95 wt % of PET and 5-25 wt % of PTT show that the body 5 of the preform 1 can be subjected to an overall stretching ratio comprised between 16 and 25, without any modification in the steps of the ISEM method as compared when using a PET preform, so as to produce a plastic bottle (i.e. a container 2 with a narrow opening 2a and a long body 2b) with good mechanical properties. The base 10 may have a substantial wall thickness, proportionally greater than that of the remainder of the container 2 so as to support the liquid weight without any deformation. With such a composition of the preform 1, the base 10 may be obtained with a particular shape as in the PET conventional containers. With such a minor proportion of PTT, the base 10 may be shaped as shown in
With a stretching ratio comprised between 16 and 25, the weight of the container 2 may be reduced and the side wall of the long body 2b has an average thickness E inferior to 200-300 μm, for instance less than 150 μm.
The body 2b of the preform 1 having geometry characteristics as indicated in a table A1 and having a larger proportion of PTT may be subjected to a higher stretching than according to EXAMPLE 1. The mixing between PET and PTT is made in such a way that the preform 1 has an elongated body 5 that includes 75 wt % of PET and 25 wt % of PTT.
In this case, a bottle adapted to contain 1 L mineral water and having characteristics as indicated in table B2 is obtained. For example, the general shape of such a bottle corresponds to that of the container 2 shown in
Features of the 1 L bottle and stretching ratios are reported in table B2.
The overall stretching ratio is thus greater than 26 in this case. The average thickness E of the side wall of the bottle may be 90 μm in this non-limitative example.
More generally, when using a preform with 50-75 wt % PET and 25-50 wt % PTT, the overall stretching ratio advantageously increases so as to highly reduce the quantity of material. In this case, the side wall of the long body 2b has an average thickness E inferior to 120 μm. According to a preferred embodiment of the invention, the side wall of the long body 2b has an average thickness E that remains inferior to 200 μm, for instance comprised between 50 and 120-130 μm.
With a proportion of PTT comprised between 25 and 50 wt % and when the overall stretching ratio is comprised between 25 and 50, the material of which the side wall or side walls of the body 2b is or are made is thin and flexible enough for these walls to be able to deform locally, but also rigid enough for the container 2 to be able, under certain conditions, to maintain its initial shape obtained at the time of its manufacture. In particular, the empty container 2 having 25-50 wt % PTT does not collapse on itself when empty.
The tests above show that the following formula is satisfied:
0.002 g/cm≦wP·eP/SB≦0.005 g/cm
where wP and eP are respectively weight and average thickness of the preform body 5, while SB is inner surface area of the body 2b of the container 2.
The container 2 obtained with a preform 1 essentially comprising 50-95 wt % PET and 5-50 wt % PTT can be used for 250-5000 mL capacity, for instance to contain water or a still liquid beverage, particularly still mineral water or sparkling mineral water. Of course, the containers 2 of the present invention are not in any way limited to flat or sparkling mineral water but can be intended to contain all sorts of Plowable products, edible or inedible liquids of greater or lesser fluidity such as, for example, fruit juices, milk-based beverages, etc., and also sauces or condiments (ketchup, mustard, dressing, etc.) or non-food liquids (deionised water, cleaning products, detergents, etc.).
The present invention has been described in connection with the preferred embodiments. These embodiments, however, are merely for example and the invention is not restricted thereto. It will be understood by those skilled in the art that other variations and modifications can easily be made within the scope of the invention as defined by the appended claims, thus it is only intended that the present invention be limited by the following claims.
Any reference sign in the following claims should not be construed as limiting the claim. It will be obvious that the use of the verb “to comprise” and its conjugations does not exclude the presence of any other elements besides those defined in any claim. The word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
Number | Date | Country | Kind |
---|---|---|---|
PCT/IB2010/001116 | Mar 2010 | IB | international |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/053679 | 3/11/2011 | WO | 00 | 8/15/2012 |