The present invention relates to a method for producing a porous member.
Conventionally, the present inventors have developed, namely, a molten metal refining method as a method for producing a porous metal member. This method involves immersing a metal material comprising a compound, an alloy, or a nonequilibrium alloy that simultaneously contains a second component and a third component having a positive heat of mixing and a negative heat of mixing, respectively, relative to a first component and having a melting point higher than the solidifying point of a metal bath comprising the first component in a molten metal bath that is controlled to have a temperature lower than the lowest liquidus temperature over the range of compositional variation, in which the third component is decreased so that the metal material is mainly composed of the second component, thereby selectively eluting the third component in the molten metal bath and thus obtaining a metal member having microgaps (for example, see Patent Literature 1). According to the molten metal refining method, a porous body made of the metal material having nanometer-sized microgaps can be readily produced.
Note that it has been reported that when solid Ni and solid Mg are brought into contact with each other and heat treatment is performed to conduct an interfacial reaction between different solid metals, interdiffusion takes place between Ni and Mg, and then a compound comprising Mg2Ni is formed in the interface (for example, see Non-patent Literature 1).
The molten metal refining method according to Patent Literature 1 involves immersing a metal material in a metal bath for selective elution of a third component, which is characterized by rapid elution. However, the method is problematic in that such rapid elution results in coarse shapes of the thus formed microgaps, and increases the sizes of the microgaps to some extent. The method is also problematic in that a porous layer(s) is also formed in the deep portion of the member, even when only the surface of the member should be made porous. Furthermore, the method is also problematic in that when a porous layer is formed on the surface of a material where phase transformation and crystal grain coarsening take place at the temperature of a metal bath, the characteristics of a portion where no porous layer is formed are deteriorated.
The present invention has been achieved noting such problems. An objective of the present invention is to provide a method for producing a porous member, whereby a member having smaller microgaps can be produced, and additionally, only the outermost surface can be made porous and a porous layer can be formed on the surface while maintaining the characteristics of a portion where no porous layer is formed.
To achieve the above objective, the method for producing a porous member according to the present invention comprises bringing a solid metal body comprising a first component into contact with a solid metal material comprising a compound, an alloy or a non-equilibrium alloy that simultaneously contains a second component and a third component having a positive heat of mixing and a negative heat of mixing, respectively, relative to the first component, performing heat treatment at a predetermined temperature for a predetermined length of time, so as to diffuse the first component to the metal material side and diffuse the third component to the metal body side, selectively removing (dealloying) portions other than those mainly composed of the second component from the portions where the first component and/or the third component is diffused, and thus obtaining a member having microgaps.
The method for producing a porous member according to the present invention is based on a metallurgic technique focusing on the properties whereby when a solid metal body is brought into contact with a solid metal material comprising a compound, an alloy or a non-equilibrium alloy, and then heat treatment is performed, interdiffusion takes place so that a third component is diffused from the metal material into the metal body and a first component is diffused from the metal body into the metal material depending on the heat of mixing relative to the first component of the metal body. In the interdiffusion process, the second component has a positive heat of mixing relative to the first component, and thus is not diffused to the metal body side. Accordingly, a co-continuous composite is obtained, in which portions comprising the first component and the third component and portions mainly composed of the second component are intertwined with each other in nanometer order in the metal material. Through selective removal of portions other than those mainly composed of the second component under such a condition, a porous member which is mainly composed of the second component and has nanometer-sized microgaps can be produced. In addition, upon selective removal of portions other than those mainly composed of the second component, the portions mainly composed of the second component are preferably exposed.
Interdiffusion between solids slowly proceeds, compared to elution to a metal bath as described in Patent Literature 1, so that the method for producing a porous member according to the present invention creates a condition where portions comprising a first component and a third component and portions mainly composed of a second component are intertwined with each other more finely. Moreover, the method for producing a porous member according to the present invention can realize a smaller size of the thus formed microgaps compared to Patent Literature 1.
The method for producing a porous member according to the present invention varies the temperature and the length of time for heat treatment, so as to be able to changes the size of the microgaps of a member to be produced. Moreover, since the reaction proceeds from the surface of a metal material due to diffusion of the first component, and heat treatment is stopped in the middle thereof, only the surface of the metal material can be reformed, and a member having microgaps only on the surface can be produced. Unlike the technique of Patent Literature 1, regions to be reformed can be limited to portions on the outermost surface of the member. Furthermore, the temperature for heat treatment can be lower than that in Patent Literature 1, so as to be able to prevent phase transformation from taking place in portions where no porous metal is formed and deteriorated characteristics due to crystal grain growth, and to form a porous layer on the surface while maintaining the characteristics of the portions where no porous layer is formed. Furthermore, a metal material is shaped into any form such as a thin film and a hollow shape, and thus a member in an arbitrary shape having microgaps on the surface or throughout the member can also be produced. A member having microgaps can also be produced by performing vapor deposition of a first component on the surface of a metal material, and then performing heat treatment.
In the method for producing a porous member according to the present invention, a first component, a second component, and a third component may be single-type pure elements or multiple-type elements, respectively. Note that in the present invention, examples of metal components include metalloid elements such as carbon, silicon, boron, germanium, and antimony. Furthermore, the term “heat of mixing” refers to calories (negative heat of mixing) generated or calories (positive heat of mixing) absorbed when 2 or more types of substances are mixed at a constant temperature.
According to the method for producing a porous member according to the present invention, when the melting point of the first component on the basis of the absolute temperature is a half or higher than the melting point of the second component on the basis of the absolute temperature, the first component and the second component may be used in an opposite order. In this case, a co-continuous composite is obtained, in which portions comprising the second component and the third component and portions mainly composed of the first component are intertwined with each other in nanometer order in the metal material. Under such a condition, through selective removal of portions other than those mainly composed of the first component, a porous member mainly composed of the first component and having nanometer-sized microgaps can be produced.
In the method for producing a porous member according to the present invention, the heat treatment is preferably performed such that after the metal body is brought into contact with the metal material, the first component and the third component are interdiffused for binding with each other. Furthermore, after the heat treatment, a compound, an alloy or a non-equilibrium alloy formed by binding of the first component with the third component is preferably removed selectively. In addition, when interdiffusion regions are not formed throughout the metal body and the metal material, unreacted portions may be removed or left unremoved.
In the method for producing a porous member according to the present invention, after heat treatment, portions mainly composed of the second component may be exposed from the interdiffusion regions by any method. For example, portions containing the first component and the third component may be selectively eluted and removed by etching using an etching solution, an aqueous nitric acid solution, or the like.
In the method for producing a porous member according to the present invention, the temperature of the heat treatment is preferably maintained at a temperature that is 50% or more of the melting point of the metal body on the basis of the absolute temperature. This case can ensure the easy production of a member having even smaller microgaps.
In the method for producing a porous member according to the present invention, for acceleration of interdiffusion, during heat treatment, the solid metal body and the solid metal material are preferably brought into close contact with each other via their polished faces. In particular, the contact face of the metal body, which is to be in contact with the metal material, and the contact face of the metal material, which is to be in contact with the metal body, are subjected in advance to mirror finishing, and then during the heat treatment, the polished contact face of the metal body and the polished contact face of the metal material are preferably brought into close contact with each other.
In the method for producing a porous member according to the present invention, the first component preferably comprises Li, Mg, Ca, Cu, Zn, Ag, Pb, Bi, a rare earth metal element, or a mixture that is an alloy or a compound containing any one of them as a major component, the second component preferably comprises any one of Ti, Zr, Hf, Nb, Ta, V, Cr, Mo, W, Fe, Co, Ni, C, Si, Ge, Sn, and Al, or a mixture that is an alloy or a compound containing a plurality of them, and the third component preferably comprises any one of Li, Mg, Ca, Mn, Fe, Co, Ni, Cu, Ti, Zr, Hf, Nb, Ta, Cr, Mo, and W, or a mixture containing a plurality of them.
Furthermore, in the method for producing a porous member according to the present invention, the first component may comprise Mg, the third component may comprise Ni, and the metal material may comprise a Ni-containing alloy. In this case, a nickel-free member having microgaps can be readily produced. Here, the term “nickel-free” means that the concentration of nickel in atom % in a material is 1.0% or less.
According to the present invention, a method for producing a porous member can be provided, whereby a member having smaller microgaps can be produced, and additionally, the outermost surface alone can be made porous and a porous layer can be formed on the surface while maintaining the characteristics of portions where no porous layer is formed.
Hereafter, embodiments of the present invention are described below based on drawings with reference to examples.
According to the method for producing a porous member of an embodiment of the present invention, firstly, as shown in
In a specific example shown in
[Heat Treatment]
Next, as shown in
In a specific example shown in
As shown in
A scanning electron micrograph when heat treatment was similarly performed at 460° C. for 12 hours is shown in
As shown in
The relationship between the time for heat treatment and the thickness of the reaction layer 13 was examined when heat treatment was performed at 440° C., 460° C., and 480° C., and then shown in
An Arrhenius plot obtained by plotting the rate constant “k” of each temperature of heat treatment found in
[Etching Treatment]
Next, after heat treatment, portions other than portions mainly composed of the second component are removed by etching from the reaction layer 13, and specifically, the first component and the third component are selectively removed by elution, thereby exposing portions mainly composed of the second component. When the first component and the third component bind with each other to form a compound, an alloy or a non-equilibrium alloy, this is selectively removed. Accordingly, a porous member mainly composed of the second component and having nanometer-sized microgaps can be produced. At this time, interdiffusion between solids produces a condition where portions comprising the first component and the third component and portions comprising the second component are finely mixed with each other, so as to be able to realize the smaller size of microgaps to be formed, compared to Patent Literature 1.
In a specific example shown in
Actually, after 12 hours of heat treatment at 460° C., the resultant was immersed in an aqueous nitric acid solution, subjected to etching, and then shown in
A member obtained by etching after 72 hours of heat treatment at 480° C. was examined for the relationship between the depth from dealloying front “x” of the reaction layer 13 and the average ligament width “w” of a filamentary structure or a band structure having microgaps and mainly composed of Fe0.8Cr0.2, and the results are shown in
A 30-micron thick Ti50Cu50 (atom %) amorphous ribbon (metal material 12) was pressed at 20 MPa against a mirror-polished Mg plate (metal body 11), the resultant was heated to 480° C., that is, the temperature corresponding to 50% or more of the melting point of Mg, and then maintained. Therefore, a co-continuous-structured nanocomposite formation comprising portions that contain Cu (third component) and Mg (first component) as major components and portions that contain Ti (second component) as a major component was formed in the contact interface of the two. The formation was immersed in nitric acid to remove portions other than those containing Ti as a major component, and thus a porous metal member having gaps with a size of 100 nm or less was obtained. Furthermore, a 1-micron thick Mn85C15 (atom %) alloy thin film (metal material 12) was deposited on a 30-micron thick Ag foil (metal body 11) by a magnetron sputtering technique. The thin film was subjected to heat treatment in an argon atmosphere at 800° C., Mn was diffused from the alloy thin film to the Ag foil side, so that a co-continuous-structured nanocomposite formation comprising portions containing Ag (first component) and Mn (third component) as major components and portions containing C (second component) as a major component was formed in the interface. This was immersed in nitric acid to remove portions other than those containing C as a major component, thereby obtaining a porous carbon member having gaps with a size of 100 nm or less.
Furthermore, a 1-micron thick Mn85C15 (atom %) alloy thin film (metal material 12) was deposited on the 30-micron thick Cu foil (metal body 11) by a magnetron sputtering technique. The thin film was subjected to heat treatment in an argon atmosphere at 800° C., Mn was diffused from the alloy thin film to the Cu foil side, and thus a co-continuous-structured nanocomposite formation comprising portions containing Cu (first component) and Mn (third component) as major components and portions containing C (second component) as a major component was formed in the interface. The formation was immersed in nitric acid to remove portions other than those containing C as a major component, thereby obtaining a porous carbon member having gaps with a size of 100 nm or less.
An (Fe0.8Cr0.2)50Ni50 alloy (metal material 12) was pressed at 20 MPa to a 30-micron thick Mg86Ni9Ca5 (atom %) metal glass ribbon (metal body 11), and then the temperature was increased to 140° C. or higher, which is the glass transition temperature of the metal glass ribbon. Therefore, the metal glass ribbon was transformed into a super cooled liquid, and then the viscous flow phenomenon caused the two to come into contact with no gaps regardless of their surface finishing state. Next, the resultant was heated to and maintained at 450° C., that is, the temperature corresponding to 50% or more of the melting point of the Mg86Ni9Ca5 alloy. In this manner, a co-continuous-structured nanocomposite formation comprising portions containing Mg (first component) and Ni (third component) as major components and portions containing Fe and Cr (second component) as major components was formed in the contact interface between the two. The resultant was immersed in nitric acid to remove portions other than those containing Fe and Cr as major components, thereby obtaining a porous metal member having gaps with a size of 100 nm or less.
Using porous Cu having a specific surface area of 100 m2/g as a substrate (metal body 11), a Mn85C15 (atom %) alloy thin film (metal material 12) was uniformly deposited on the surface of nanoporous Cu by the CVD method. The resultant was subjected to heat treatment in an argon atmosphere at 800° C., Mn was diffused from the alloy thin film to the nanoporous Cu side, and thus a co-continuous-structured nanocomposite formation comprising portions containing Cu (first component) and Mn (third component) as major components and portions containing C (second component) as a major component was formed in the interface. The resultant was immersed in nitric acid to remove portions other than those containing C as a major component, so that a bimodal porous product composed of a macro structure that is the skeletal shape of porous Cu used as a substrate, and a micro structure that is nanoporous carbon. Accordingly, the surface area of C generated per gram of Cu could be increased to an area about 10 times the original surface area.
In addition, according to the method for producing a porous member of an embodiment of the present invention, a reaction proceeds from the surface of the metal material 12 due to diffusion of the first component, so that only the surface of the metal material 12 can be reformed by stopping heat treatment in the middle thereof, and a member having microgaps only on the surface can be produced. Furthermore, the metal material 12 is formed into any shape such as a thin film or a hollow shape, and thus a member formed in an arbitrary shape having microgaps on the surface or throughout the member can also be produced.
Mg (metal body 11; first component) was deposited by vacuum deposition on the surface of a coil spring (metal material 12) made of HASTELLOY C-276 (Ni57Cr16Mo16W4Fe5 (wt %) alloy), and then heat treatment was performed for 12 hours in an Ar gas atmosphere at 460° C. at which all compounds in the coil spring and Mg can maintain the solid phase. Scanning electron micrographs (SEM) of the coil spring made of HASTELLOY C-276 before vacuum deposition, and the results of analyzing each element (Ni, Mo, Cr, Fe, and W) by EDX (energy dispersive X-ray spectrometry) are shown in
As shown in
Heat treatment was performed and then the resultant was immersed in nitric acid, thereby performing etching to remove portions other than those containing Mo as a major component. Scanning electron micrographs of the outermost surface of the coil spring at this time are shown in
As described above, according to the method for producing a porous member of an embodiment of the present invention, the steam of the first component was sprayed over the surface of the metal material 12 for adhesion, followed by heat treatment, so that a member having microgaps can also be produced. In this case, even if the metal material 12 has a complicated shape, a porous member can be relatively readily produced. Therefore, for example, a stent or the like having microgaps that are formed only on the surface can be produced.
Number | Date | Country | Kind |
---|---|---|---|
2016-026731 | Feb 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/001154 | 1/16/2017 | WO | 00 |