Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries

Abstract
The present invention provides a method for producing a high quality positive electrode active material for lithium ion batteries at low cost and at excellent production efficiency. The method for producing a positive electrode active material for lithium ion batteries includes a step of firing a powder of lithium-containing carbonate that is a precursor for positive electrode active material for lithium ion batteries in a rotary kiln. In the step, a temperature at a powder feed part inside of the rotary kiln is kept at 500° C. or more.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates to a method for producing a positive electrode active material for lithium ion batteries and a positive electrode active material for lithium ion batteries.


BACKGROUND OF THE INVENTION

As a positive electrode active material for lithium ion batteries, a lithium transition metal composite oxide is well known. The lithium transition metal composite oxide is produced as described, for example, in Patent document 1 in such a manner that a lithium compound and a transition metal compound are mixed to prepare a precursor for positive electrode active material for lithium ion batteries and, after that, the mixture is fired to form a composite.


A lithium ion battery is, from the uses thereof, used over a long period of time, and, because charge and discharge are repeated, various kinds of characteristics such as the cycle characteristics and storage characteristics are required, and high capacity of very high level is being demanded. Further, as a market for lithium batteries for use in consumer equipment such as portable telephones and personal computers and for use in automobiles expands, it is demanded to produce lithium ion batteries at low cost and with high efficiency.


In a step of producing lithium ion batteries like this, as described above, it is necessary to fire a precursor for positive electrode active material for lithium ion batteries to form a composite. In such a step of firing, generally, a method where a firing vessel in which the precursor is filled is set inside of a firing furnace (static furnace) and heated according to a conveyer method or a batch method is in use.

  • (Patent document 1) Japanese Patent No. 3334179


SUMMARY OF THE INVENTION

However, a fired body prepared in such a manner is usually flocculated and forms a block. Accordingly, in order to use as a positive electrode active material, a step of crushing into powder is necessary. Since a crusher is necessary in the step of crushing, it increases costs by that amount and also causes a decrease in production efficiency.


The invention intends to provide a method for producing a high quality positive electrode active material for lithium ion batteries at low cost and at excellent production efficiency.


The present inventors have found, after studying hard that, in the step of firing a precursor for positive electrode active material for lithium ion batteries, when a precursor is heated at a low temperature of about 300° C. before firing at a high temperature, a liquid phase is generated inside thereof, thereby moisture is generated inside of the precursor to result in flocculating to form a block. And in order to avoid the low temperature heating before firing like this, it was also found that when a rotary kiln is used to fire and a temperature at a powder feed part of the precursor inside of the rotary kiln is maintained at 500° C. or more, the precursor charged inside of the rotary kiln is immediately heated to 500° C. or more, thereby high temperature firing can be conducted without forming a liquid phase. A fired body fired at a high temperature of 500° C. or more without forming a liquid phase like this does not flocculate to form a block, thereby the step of crushing after that is not necessary.


The invention completed based on the above findings is, in an aspect, a method for producing a positive electrode active material for lithium ion batteries that includes a step of firing a powder of lithium-containing carbonate that is a precursor for positive electrode active material for lithium ion batteries in a rotary kiln, in the step a temperature at a powder feed part inside of the rotary kiln being kept at 500° C. or more.


In an embodiment of the method for producing a positive electrode active material for lithium ion batteries related to the invention, a temperature of the powder at a position where the powder feeding into the rotary kiln is started is kept at 150° C. or lower.


In another embodiment of the method for producing a positive electrode active material for lithium ion batteries related to the invention, a rotary block where at least 3 blades are formed is set inside of the rotary kiln, and, with at least one of 3 blades of the rotary block brought into contact with an inner wall of the rotary kiln, the positive electrode active material is fired by the rotary kiln.


In still another embodiment of the method for producing a positive electrode active material for lithium ion batteries related to the invention, a plurality of the rotary blocks are set inside of the rotary kiln in parallel in a longitude direction of the rotary kiln.


In another embodiment of the method for producing a positive electrode active material for lithium ion batteries related to the invention, an apex of the blade of the rotary block is formed into a concavo-convex shape.


In still another embodiment of the method for producing a positive electrode active material for lithium ion batteries related to the invention, the positive electrode active material is represented by a compositional formula: LixNi1-yMyO2+α


(In the formula, M is one or more kinds selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr, 0.9≦x≦1.2, 0<y≦0.7, and 0.05≦α).


In another embodiment of the method for producing a positive electrode active material for lithium ion batteries related to the invention, M is one or more kinds selected from Mn and Co.


The invention is in another aspect a positive electrode active material for lithium ion batteries, which is represented by a compositional formula: LixNi1-yMyO2+α


(In the formula, M is one or more kinds selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr, 0.9≦x≦1.2, 0<y≦0.7, and 0.05≦α) and has the tap density of 1.8 to 2.2 g/cc.


In one embodiment of the positive electrode active material for lithium ion batteries related to the invention, M is one or more kinds selected from Mn and Co.


Advantageous Effect of the Invention

According to the invention, a method for producing a high quality positive electrode active material for lithium ion batteries at low cost and at excellent production efficiency can be provided.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of a firing equipment.



FIG. 2 is a pattern diagram of a rotary block in a furnace core tube.



FIG. 3 is a plan view of a blade of the rotary block.



FIG. 4 is a pattern diagram of metal balls plurally set in the furnace core tube.



FIG. 5 is a pattern diagram at a posterior part of an inner wall of the furnace core tube provided with a classifying filter.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

(Constitution of Positive Electrode Active Material for Lithium Ion Batteries)


As a raw material of positive electrode active material for lithium ion batteries produced in the invention, compounds useful as a general positive electrode active material for positive electrodes for lithium ion batteries can be broadly used. However, lithium-containing transition metal oxides such as lithium cobalt oxide (LiCoO2), lithium nickel oxide (LiNiO2) and lithium manganese oxide (LiMn2O4) can be preferably used. The positive electrode active material for lithium ion batteries produced with the materials described above is represented by, for example, a compositional formula: LixNi1-yMyO2+α


(In the formula, M is one or more kinds selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr, 0.9≦x≦1.2, 0<y≦0.7, and 0.05≦α).


A ratio of lithium to all metals in the positive electrode active material for lithium ion batteries is 0.9 to 1.2. This is because when the ratio is less than 0.9, a stable crystal structure is difficult to maintain, and when the ratio is more than 1.2, the capacity becomes low.


In the positive electrode active material for lithium ion batteries of the invention, oxygen is excessively contained as shown as O2+α (and 0.05≦α) in the above compositional formula. When the positive electrode active material is used in lithium ion batteries, battery characteristics such as capacity, rate characteristics and capacity retention rate become excellent. Here, the a is preferably larger than 0.10, more preferably larger than 0.15, and typically 0.05≦α≦0.25.


Further, in the compositional formula of the positive electrode active material for lithium ion batteries of the invention, M is preferable to be one or more kinds selected from Mn and Co.


Further, the tap density of the positive electrode active material for lithium ion batteries of the invention is 1.8 to 2.2 g/cc. When the positive electrode active material is used in lithium ion batteries, battery characteristics such as capacity, rate characteristics and capacity retention rate become excellent. So far, when lithium-containing carbonate that is a precursor is fired only in a static furnace, since the precursor is sparse between particles, it was difficult to improve the tap density. According to the invention, by calcining the lithium-containing carbonate that is a precursor while flowing in the rotary kiln, particles are granulated with each other to be dense, thereby the tap density is improved.


(Method for Producing Positive Electrode Active Material for Lithium Ion Batteries)


Next, a method for producing a positive electrode active material for lithium ion batteries related to an embodiment of the invention will be described in detail. Firstly, a metal salt solution is prepared. The metal is Ni, and one or more kinds selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr. Further, the metal salt is sulfate, chloride, nitrate or acetate, and the nitrate is particularly preferable. This is because even when the nitrate is mixed in a firing raw material as an impurity, it can be fired as it is to result in dispensing with the step of washing, and the nitrate works as an oxidizing agent to promote oxidation of metals in the firing raw material. Each of the metals contained in the metal salt is adjusted to be a desired molar ratio. Thereby, a molar ratio of each of the metals in the positive electrode active material is determined.


Next, lithium carbonate is suspended in pure water, after that, a metal salt solution of the metal is poured therein to prepare a slurry of lithium salt solution. At this time, fine particulate lithium-containing carbonate is segregated in the slurry. When the lithium compound does not react during heating sulfate or chloride as the metal salt, the lithium compound is, after washing with a saturated solution of lithium carbonate, filtered off. When, like nitrate or acetate, the lithium compound thereof reacts as a lithium raw material during heat treatment, it is, without washing, filtered off as it is, and dried, thereby it can be used as a fired precursor.


Then, the filtered lithium-containing carbonate is dried, a powder of a composite of lithium salt (precursor for positive electrode active material for lithium ion batteries) is obtained.


Next, a firing equipment 20 such as shown in FIG. 1 is prepared. The firing equipment 20 includes a rotary kiln 10, a powder feeder 11, a gas feeder 12, a bag filter 13 and a powder exhaust part 14.


The rotary kiln 10 includes a furnace core tube 17, an external cylinder 15 formed by surrounding the furnace core tube 17, and a heater 16 that is set outside of the external cylinder 15 and heats the furnace core tube 17. The furnace core tube 17 is formed with predetermined inner diameter and length depending on an amount of the precursor to be fired and a firing time. For example, the furnace core tube 17 having the inner diameter of 125 to 3500 mm and a total length of 1 to 30 m can be used.


The furnace core tube 17 is provided with a rotary block 21 as shown in FIG. 2 and having 3 blades for stirring the powder to be fired. The rotary block 21 includes a columnar body 22 that extends in a longitudinal direction of the furnace core tube 17 and has a predetermined length, and blades 23 each formed so as to erect from a surface of the columnar body 22 and to extend in a longitudinal direction of the furnace core tube 17. The rotary block 21 may well be provided with at least 3 blades, and 4 or more blades may be provided. FIG. 3 shows a plan view of the blades 23 of the rotary block 21. Each of the blades 23 of the rotary block 21 has a plurality of convex parts 24 and concave parts 25 alternately formed at an apex thereof. When the apex of the blade 23 of the rotary block 21 is formed in a concavo-convex shape, the precursor stuck onto an inner wall of the furnace core tube 17 can be more excellently scraped. The rotary block 21 is set plurally in parallel in a longitudinal direction of the rotary kiln 10. When the rotary block 21 is plurally set in parallel like this, the precursor can be stirred by the rotary block 21 inside of the furnace core tube 17 and the precursor stuck onto the inner wall of the furnace core tube 17 can be scraped with higher degree of freedom, and thereby the precursor can be excellently inhibited from flocculating. The rotary block 21 may be set by only one inside of the rotary kiln 10. The furnace core tube 17 is preferably formed of a material that excellently conducts heat from the heater 16 and does not generate a contaminating substance that may mingle with the precursor. For example, Ni, Ti, stainless or ceramic can be used to form. Also the external cylinder 15 is preferably formed of a material that excellently conducts heat from the heater 16, for example, Ni, Ti, stainless or ceramic can be used to form. The heater 16 is not particularly restricted in its position as long as the position is outside of the external cylinder 15. Further, in FIG. 1, the heater 16 is set at one position. However, the heater 16 may be set at a plurality of positions. The rotary kiln 10 inclines so as to come down from an anterior part to a posterior part. Thereby, the precursor charged from the anterior part moves backward during firing. An angle of inclination is not particularly restricted and can be determined depending on a firing time.


In a powder feeder 11, a precursor to be fired is set inside thereof. The powder feeder 11 is connected to an anterior part (powder feeding part) of the rotary kiln 10 and therefrom the precursor is fed to the anterior part. The powder feeder 11 is, in order to inhibit heat from conducting from the rotary kiln 10 heated to a high temperature to fire the precursor, set distanced by a predetermined distance from the anterior part of the rotary kiln 10.


The powder exhaust part 14 is set at a posterior part of the rotary kiln 10. From the powder exhaust part 14, a powder (fired body) fired by going through the furnace core tube 17 is exhausted.


The gas feeder 12 feeds a gas that circulates inside of a firing equipment 20.


From the gas feeder 12, an inert gas such as nitrogen or argon, and oxygen are fed. A pathway shown with an arrow mark in FIG. 1 is a circulation pathway of gas fed from the gas feeder 12.


The bag filter 13 is set at an anterior part of the rotary kiln 10. The bag filter 13 recovers the precursor mingled in an exhaust gas. The bag filter 13 uses a woven-fabric or non-woven fabric as a filtering material and is formed by superposing these cylindrically.


According to the embodiment, the stirring of the precursor and the scraping of the precursor stuck onto the inner wall of the furnace core tube 17 are conducted with the rotary block 21 set inside of the furnace core tube 17. However, without restricting thereto, a metal ball 27 as shown, for example, in FIG. 4 may be used. At this time, the metal ball 27 is plurally set inside of the furnace core tube 17, and, as the furnace core tube 17 rotates, these balls 27 and the precursor 26 rotate to collide with each other. Thereby, the metal balls 27 can disintegrate and well stir the precursor 26, and further can excellently scrape the precursor 26 stuck to the inner wall of the furnace core tube 17. When the metal ball 27 is composed of, for example, zirconia, alumina, or silicon nitride, the media material can preferably have an advantage that the melting temperature thereof is higher than a firing temperature in the rotary kiln. Further, as shown in FIG. 5, a classifying filter 28 for classifying the precursor 26 disintegrated by the metal balls 27 may be set along an end part of the inner wall of the furnace core tube 17. The classifying filter 28 may be, for example, a cancellous metallic filter made of titanium, in which a plurality of classifying holes having a pore diameter of predetermined magnitude is formed.


As the step of firing, firstly, while rotating the furnace core tube 17, the heater 16 is used to start heating. Here, depending on the firing time and firing temperature to a mass of a precursor for a positive electrode active material for lithium ion batteries to be fed later, an angle of inclination and a rotating speed of the furnace core tube 17 are determined. For example, when a mass of the precursor is 20 to 110 g, the firing time is 0.5 to 48 hr, and the firing temperature is 700 to 1200° C., the angle of inclination of the furnace core tube 17 can be set at 8 to 15° and the rotating speed can be set at 3.6 to 9.6 rad/sec. At this time, the powder feeder 11 located at a position where the precursor is begun to feed into the rotary kiln 10 is, in order to avoid to receive heat from the rotary kiln 10 at a high temperature for heating the precursor, separated by a predetermined distance from the anterior part of the rotary kiln 10, and the temperature of the powder therein is maintained at 150° C. or less. Accordingly, the precursor can be excellently inhibited from being heated before feeding the precursor into the rotary kiln 10 to generate a liquid phase that later causes the flocculation.


Next, when the temperature inside of the furnace core tube 17 goes up to 500 to 1200° C., in particular, the anterior part (powder feeder) of the furnace core tube 17 goes up to 500° C. or more, while maintaining the temperature, a precursor for positive electrode active material for lithium ion batteries is fed from the powder feeder 11 to the anterior part (powder feeder) of the furnace core tube 17. Accordingly, the precursor fed into the rotary kiln 10 is, without being immediately heated at 500° C. or more to form a liquid phase, heated at a high temperature.


The precursor for positive electrode active material for lithium ion batteries which is fed is, while being stirred and heated inside of the rotating furnace core tube 17, transported to the posterior part of the furnace core tube 17. At this time, the rotary block 21 moves, as the rotary kiln 10 rotates, in a direction the same as a direction of the rotation and thereafter rotates. During this, the blade 23 of the rotary block 21 is in contact with the inner wall of the furnace core tube 17 at an apex thereof, the precursor inside of the furnace core tube 17 is, after once being scraped up by the blade 23, dropped downward. Further, the blade 23 of the rotary block 21 stirs and disintegrates the precursor inside of the furnace core tube 17 like this and scrapes down the precursor stuck to the inner wall of the furnace core tube 17. Accordingly, the precursor does not flocculate to solidify inside of the furnace core tube 17, the prepared precursor becomes excellent powder, and the step of crushing after that becomes unnecessary. Further, during the firing, powder of the precursor and so on exhausted from the furnace core tube 17 together with a feed gas is recovered with a bag filter 13. The precursor recovered by the bag filter 13, after purification, may be used as a raw material again.


Thereafter, the fired body is exhausted from a powder exhaust part 14 to outside of the equipment.


EXAMPLES

In what follows, examples will be provided to promote better understanding of the invention and advantages thereof. However, the invention is not restricted to the examples.


Examples 1 to 13

Firstly, lithium carbonate of a charging amount described in Table 1 was suspended in 3.2 L of pure water, thereafter, 4.8 L of a solution of metal salts was poured therein. Here, the solution of metal salts was prepared in such a manner that hydrates of nitrate of the respective metals were adjusted so that the respective metals were a composition ratio described in Table 1 and a total mole number of the metals was 14 moles.


An amount of lithium carbonate suspension is an amount where x is a value of Table 1 when a product (a positive electrode active material for lithium ion secondary batteries, that is, a positive electrode active material) is represented by LixNi1-yMyO2+α, and each thereof was calculated according to the following equation.

W(g)=73.9×14×(1+0.5XA


In the equation, “A” is a numerical value multiplied to subtract in advance, in addition to an amount of necessary as a precipitation reaction, an amount of lithium due to the lithium compound other than lithium carbonate remaining in the raw material after filtration, from a suspension amount. The “A” is 0.9 when a lithium salt reacts with a firing raw material like nitrate and acetate, and 1.0 when a lithium salt does not react with the firing raw material like sulfate and chloride.


According to the treatment, microparticulate lithium-containing carbonate precipitated in the solution and the precipitate was filtered off by use of a filter press.


Subsequently, the precipitate was dried, thereby a lithium-containing carbonate (precursor for positive electrode active material for lithium ion batteries) was obtained.


Next, a firing equipment as shown in FIG. 1 was prepared by use of a rotary kiln (manufactured by Takasago Industry Co., Ltd., furnace core tube: length 2000 mm×inner diameter 250 mm). With oxygen circulating from a gas feeder into a system, a heater was used to start heating, and the rotary kiln was rotated at a rotating speed of 9.6 rad/sec. The angle of inclination of the rotary kiln was set at 10°. Further, a powder (precursor) set in the powder feeder is set separated from the furnace core tube, and the temperature thereof was kept at the temperature described in Table 2. Then, when the temperature inside of the furnace core tube became 500 to 800° C. and the temperature of the anterior part that is a feeding part of the precursor became a temperature described in Table 2, with the temperature maintained, the precursor was charged from the powder feed part into the furnace core tube. A charging amount of the precursor was set at 110 g/min. The precursor charged into the furnace core tube was fired by stirring and transporting in the rotating furnace core tube by the rotary block. The fired body was exhausted from the powder exhaust part to outside of the equipment and visually examined whether a block was formed by flocculation or not, namely, whether the step of crushing is necessary or not.


Examples 14 and 15

As Examples 14 and 15, except that the rotary block was not used in the firing equipment, fired bodies were prepared under the condition the same as that of Examples 1 to 13 and visually examined whether a block was formed by flocculation or not, namely, whether the step of crushing is necessary or not.


Examples 16 to 18

As Examples 16 to 18, except that the temperature of the powder at the position where the charge was started was set at 200° C. or more, fired bodies were prepared under the condition the same as that of Examples 1 to 13 and visually examined whether a block was formed by flocculation or not, namely, whether the step of crushing is necessary or not.


Example 19

As Example 19, except that the respective metals of raw material were set to a composition shown in Table 1, the metal salts were selected from chlorides thereof, and after the precipitation of the lithium-containing carbonate, the precipitate was washed with a saturated solution of lithium carbonate and filtered, the treatment the same as that of Examples 1 to 13 was conducted, and resulted fired body was visually examined whether a block was formed by flocculation or not, namely, whether the step of crushing is necessary or not.


Example 20

As Example 20, except that the respective metals of raw material were set to a composition shown in Table 1, the metal salts were selected from sulfates thereof, and after the precipitation of the lithium-containing carbonate, the precipitate was washed with a saturated solution of lithium carbonate and filtered, the treatment the same as that of Examples 1 to 13 was conducted, and resulted fired body was visually examined whether a block was formed by flocculation or not, namely, whether the step of crushing is necessary or not.


Comparative Examples 1 to 5

As Comparative Examples 1 to 5, the respective metals of raw material were set to a composition shown in Table 1. Then, lithium-containing carbonates (precursors for positive electrode active material for lithium ion batteries) the same as that of Examples 1 to 13 were obtained. Then, except that the temperature of the powder feed part inside the rotary kiln was maintained at less than 500° C., the precursors were fired under the same equipment and same condition as that of Examples 1 to 13. The resulted fired bodies were visually examined whether a block was formed by flocculation or not, namely, whether the step of crushing is necessary or not.


Contents of metals in each of positive electrode materials were measured with an inductively-coupled plasma optical emission spectrometer (ICP-OES) and the composition ratio (molar ratio) of the respective metals was calculated. Further, a content of oxygen was measured by LECO method and a was calculated. As the result thereof, it was confirmed that the results are just as shown in Table 1. The tap density was a value after 200 times of tapping.


Each of the positive electrode materials, a conductive material and a binder was weighed at a ratio of 85:8:7. In a solution obtained by dissolving the binder in an organic solvent (N-methyl pyrrolidone), the positive electrode material and conductive material were mixed to form a slurry. The slurry was coated on an aluminum foil and, after drying, pressed to form a positive electrode. Then, a 2032 coin cell for use in evaluation, in which Li is used as a counter electrode was prepared, and, with a solution obtained by dissolving 1 M-LiPF6 in EC-DMC (1:1) as an electrolytic solution, the discharge capacity when a current density is 0.2 C was measured. Further, a ratio of discharge capacity under the current density of 2 C to the battery capacity when the current density is 0.2 C was calculated and thereby the rate characteristics were obtained. Further, the capacity retention rate was measured by comparing the initial discharge capacity obtained under a discharge current of 1 C at room temperature to the discharge capacity after 100 cycles.


The test condition and results are shown in Tables 1 and 2.













TABLE 1









amount of





lithium



carbonate
composition ratio of each metal



suspension
in all metals except Li





















(g)
Ni
Co
Mn
Ti
Cr
Fe
Cu
Al
Sn
Mg
x
α
























Example 1
1396.7
33.3
33.3
33.3







1.0
0.15


Example 2
1443.3
33.3
33.3
33.3







1.1
0.09


Example 3
1350.2
33.3
33.3
33.3







0.9
0.09


Example 4
1489.8
33.3
33.3
33.3







1.2
0.18


Example 5
1396.7
65
20
15







1.0
0.08


Example 6
1396.7
80
10
10







1.0
0.06


Example 7
1396.7
33
33
33






1
1.0
0.13


Example 8
1396.7
80
15

5






1.0
0.07


Example 9
1396.7
80
15


5





1.0
0.19


Example 10
1396.7
80
15



5




1.0
0.08


Example 11
1396.7
80
15




5



1.0
0.07


Example 12
1396.7
80
15





5


1.0
0.05


Example 13
1396.7
80
15






5

1.0
0.06


Example 14
1396.7
33.3
33.3
33.3







1.0
0.13


Example 15
1396.7
33.3
33.3
33.3







1.0
0.11


Example 16
1396.7
33.3
33.3
33.3







1.0
0.12


Example 17
1396.7
33.3
33.3
33.3







1.0
0.09


Example 18
1396.7
33.3
33.3
33.3







1.0
0.12


Example 19
1551.9
33.3
33.3
33.3







1.0
0.09


Example 20
1551.9
33.3
33.3
33.3







1.0
0.08


Comparative
1396.7
33.3
33.3
33.3







1.0
0.20


Example 1


Comparative
1396.7
33.3
33.3
33.3







1.0
0.21


Example 2


Comparative
1396.7
33.3
33.3
33.3







1.0
0.11


Example 3


Comparative
1396.7
33.3
33.3
33.3







1.0
0.09


Example 4


Comparative
1396.7
80
15





5


1.0
0.04


Example 5

























TABLE 2







temperature at a
temperature of the powder









powder feed part of
at a position where the





capacity



the powder inside
powder feeding into the
firing
firing
tap
discharge
rate
retention



of the rotary kiln
rotary kiln was started
time
temperature
density
capacity
characteristics
rate



(° C.)
(° C.)
(hour)
(° C.)
(g/cc)
(mAh/g)
(%)
(%)
























\Example 1
600
50
12
1050
1.8
154
91
91


Example 2
800
150
0.5
1200
2.2
151
89
86


Example 3
500
30
12
1070
1.9
153
91
87


Example 4
600
120
6
1070
2.1
151
90
89


Example 5
600
80
12
1000
2.1
170
88
86


Example 6
500
80
36
770
1.9
184
85
81


Example 7
650
70
12
1050
2.0
153
91
89


Example 8
650
120
48
700
1.7
186
86
82


Example 9
650
120
48
700
1.7
188
84
82


Example 10
600
90
48
730
1.9
183
83
81


Example 11
600
80
36
780
2.1
181
84
81


Example 12
650
80
36
770
1.9
189
89
82


Example 13
600
80
48
720
1.8
184
85
83


Example 14
750
120
12
1050
2.0
155
92
89


Example 15
750
120
12
1070
2.1
154
91
89


Example 16
500
200
12
1050
1.8
152
88
89


Example 17
700
300
12
1070
1.8
151
89
87


Example 18
800
350
12
1050
1.9
153
89
88


Example 19
650
80
24
1070
1.9
151
87
85


Example 20
650
80
24
1050
1.8
151
86
86


Comparative
100
30
12
1000
1.4
149
88
83


Example 1


Comparative
200
30
24
980
1.3
149
87
82


Example 2


Comparative
400
40
12
1070
1.7
151
88
83


Example 3


Comparative
450
50
12
1070
1.8
152
89
85


Example 4


Comparative
300
40
36
770
1.7
177
82
78


Example 5










(Evaluation)


In all of Examples 1 to 20, the tap density and battery characteristics were excellent.


Among these, in Examples 14 and 15, the rotary block was not used in the rotary kiln. As the result thereof, in comparison with Examples 1 to 13 where the firing was more homogeneously conducted with the rotary block, the battery characteristics were poor.


Further, in Examples 16 to 18, the temperature of the powder at a position where the powder feeding was started was set to 200° C. or more. As the result thereof, in comparison with Examples 1 to 13 where the corresponding temperature was set to 150° C. or lower and thereby the precursor is inhibited from being heated before charging into the rotary kiln to generate a liquid phase that cause flocculation thereafter, the battery characteristics were poor.


Still further, in Examples 19 and 20, chloride and sulfate were used as the metal salt of each of the raw materials. Accordingly, in comparison with Examples 1 to 13 where, by use of the nitrate in a raw material, the nitrate works as an oxidant to promote oxidation of metals in the firing raw material, the battery characteristics were poor.


In Comparative Examples 1 to 5, the temperature of the powder feed part inside of the rotary kiln was maintained lower than 500° C. Accordingly, the precursor charged into the rotary kiln was considered not immediately heated at a high temperature to have generated a liquid phase. Thereby, the battery characteristics thereof were poorly compared with that of Examples 1 to 13.


EXPLANATION OF REFERENCE NUMBERS




  • 10 rotary kiln


  • 11 powder feeder


  • 12 gas feeder


  • 13 bag filter


  • 14 powder exhaust part


  • 15 external cylinder


  • 16 heater


  • 17 furnace core tube


  • 20 firing equipment


  • 21 rotary block


  • 22 columnar body


  • 23 blade


  • 24 convex part


  • 25 concave part


  • 26 precursor


  • 27 metal ball


  • 28 classifying filter


Claims
  • 1. A method for producing a positive electrode active material for lithium ion batteries, comprising: firing a powder of lithium-containing carbonate that is a precursor for positive electrode active material for lithium ion batteries in a rotary kiln, said rotary kiln comprising a furnace core having a powder feed part for receiving said powder into said furnace core;wherein a temperature at said powder feed part is kept at 500° C. or more, and wherein a temperature of the powder at a position where the powder is directly fed into said powder feed part is kept at 150° C. or lower;such that the powder of lithium-containing carbonate is immediately heated to the temperature at said powder feed part when said powder is received into said furnace core;wherein a rotary block, where at least 3 blades are formed, is set inside of the rotary kiln, and, with at least one of 3 blades of the rotary block brought into contact with an inner wall of the rotary kiln, the positive electrode active material is fired by the rotary kiln.
  • 2. The method for producing a positive electrode active material for lithium ion batteries of claim 1, wherein a plurality of the rotary blocks are set inside of the rotary kiln in parallel in a longitude direction of the rotary kiln.
  • 3. The method for producing a positive electrode active material for lithium ion batteries of claim 1, wherein an apex of the blade of the rotary block is formed into a concavo-convex shape.
  • 4. The method for producing a positive electrode active material for lithium ion batteries of claim 1, wherein the positive electrode active material is represented by a compositional formula: LixNi1-yMyO2+α (In the formula, M is one or more kinds selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr, 0.9≦x≦1.2, O<y≦0.7, and 0.05≦α.
  • 5. The method for producing a positive electrode active material for lithium ion batteries of claim 4, wherein M is one or more kinds selected from Mn and Co.
  • 6. The method for producing a positive electrode active material for lithium ion batteries of claim 2, wherein an apex of the blade of the rotary block is formed into a concavo-convex shape.
Priority Claims (1)
Number Date Country Kind
2011-073298 Mar 2011 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP2011/072860 10/4/2011 WO 00 11/1/2012
Publishing Document Publishing Date Country Kind
WO2012/132071 10/4/2012 WO A
US Referenced Citations (92)
Number Name Date Kind
2165128 Cheesman Jul 1939 A
4443186 Shell Apr 1984 A
4462793 Maeda et al. Jul 1984 A
4469654 Haskett et al. Sep 1984 A
5393622 Nitta et al. Feb 1995 A
5478674 Miyasaka Dec 1995 A
5759714 Matsufuji et al. Jun 1998 A
6037095 Miyasaka Mar 2000 A
6123911 Yamaguchi et al. Sep 2000 A
6423447 Ohsaki et al. Jul 2002 B1
6582854 Qi et al. Jun 2003 B1
6984469 Kweon et al. Jan 2006 B2
7332248 Kase et al. Feb 2008 B2
7410728 Fujimoto et al. Aug 2008 B1
7645542 Kase et al. Jan 2010 B2
8354191 Shizuka et al. Jan 2013 B2
8623551 Kawahashi et al. Jan 2014 B2
8748041 Satoh et al. Jun 2014 B2
8993160 Nagase Mar 2015 B2
9090481 Satoh Jul 2015 B2
20020106561 Lee et al. Aug 2002 A1
20030082448 Cho et al. May 2003 A1
20030104279 Miyazaki et al. Jun 2003 A1
20030126803 Rosenflanz Jul 2003 A1
20030211391 Cho et al. Nov 2003 A1
20040053134 Ozaki et al. Mar 2004 A1
20040110063 Uchitomi et al. Jun 2004 A1
20040197658 Kase et al. Oct 2004 A1
20050079416 Ohzuku et al. Apr 2005 A1
20050142442 Yuasa et al. Jun 2005 A1
20050158546 Shizuka Jul 2005 A1
20060083989 Suhara et al. Apr 2006 A1
20060121350 Kajiya et al. Jun 2006 A1
20060127765 Machida et al. Jun 2006 A1
20060204849 Saito et al. Sep 2006 A1
20060233696 Paulsen et al. Oct 2006 A1
20060281005 Cho et al. Dec 2006 A1
20070015058 Takezawa et al. Jan 2007 A1
20070141469 Tokunaga et al. Jun 2007 A1
20070202405 Shizuka et al. Aug 2007 A1
20070248883 Oda et al. Oct 2007 A1
20070298512 Park et al. Dec 2007 A1
20080044736 Nakura Feb 2008 A1
20080081258 Kim et al. Apr 2008 A1
20090117464 Cho et al. May 2009 A1
20090117469 Hiratsuka et al. May 2009 A1
20090148772 Kawasato et al. Jun 2009 A1
20090233176 Kita et al. Sep 2009 A1
20090286164 Wada et al. Nov 2009 A1
20090289218 Kajiya et al. Nov 2009 A1
20090299922 Malcus et al. Dec 2009 A1
20090305136 Yada et al. Dec 2009 A1
20100015514 Miyagi et al. Jan 2010 A1
20100019194 Fujiwara et al. Jan 2010 A1
20100112447 Yamamoto et al. May 2010 A1
20100136412 Watanabe Jun 2010 A1
20100143583 Honda et al. Jun 2010 A1
20100183922 Cho et al. Jul 2010 A1
20100209757 Ooyama et al. Aug 2010 A1
20100209771 Shizuka et al. Aug 2010 A1
20100227222 Chang et al. Sep 2010 A1
20110031437 Nagase et al. Feb 2011 A1
20110033749 Uchida et al. Feb 2011 A1
20110076558 Miyazaki et al. Mar 2011 A1
20110250499 Hiratsuka Oct 2011 A1
20120034525 Satoh et al. Feb 2012 A1
20120231342 Satoh et al. Sep 2012 A1
20120231343 Nagase et al. Sep 2012 A1
20120244434 Nagase Sep 2012 A1
20120292562 Kajiya et al. Nov 2012 A1
20120319036 Kajiya et al. Dec 2012 A1
20120319037 Kawahashi et al. Dec 2012 A1
20120319039 Satoh et al. Dec 2012 A1
20120319040 Okamoto et al. Dec 2012 A1
20120321956 Kawahashi et al. Dec 2012 A1
20120326080 Okamoto et al. Dec 2012 A1
20120326098 Satoh Dec 2012 A1
20120326099 Satoh Dec 2012 A1
20120326101 Satoh Dec 2012 A1
20120326102 Satoh Dec 2012 A1
20130001463 Okamoto et al. Jan 2013 A1
20130004849 Satoh Jan 2013 A1
20130108921 Kase et al. May 2013 A1
20130143121 Kobayashi et al. Jun 2013 A1
20130175470 Kajiya et al. Jul 2013 A1
20130221271 Nagase et al. Aug 2013 A1
20130316239 Okamoto Nov 2013 A1
20140306152 Okamoto Oct 2014 A1
20140339465 Okamoto Nov 2014 A1
20140339466 Okamoto Nov 2014 A1
20150123029 Nagase et al. May 2015 A1
20150188134 Kameyama et al. Jul 2015 A1
Foreign Referenced Citations (159)
Number Date Country
1520621 Aug 2004 CN
1701451 Nov 2005 CN
1710735 Dec 2005 CN
101478044 Jul 2009 CN
0794155 Sep 1997 EP
0903796 Mar 1999 EP
1244164 Sep 2002 EP
1317008 Jun 2003 EP
1391950 Feb 2004 EP
1450423 Aug 2004 EP
1742281 Jan 2007 EP
2023426 Feb 2009 EP
2207226 Jul 2010 EP
2207227 Jul 2010 EP
2219251 Aug 2010 EP
2533333 Dec 2012 EP
4-328277 Nov 1992 JP
6-275274 Sep 1994 JP
7-29603 Jan 1995 JP
7-211311 Aug 1995 JP
8-138669 May 1996 JP
8-213015 Aug 1996 JP
09-82325 Mar 1997 JP
9-120813 May 1997 JP
9-270257 Oct 1997 JP
10-83815 Mar 1998 JP
10-116618 May 1998 JP
10-188986 Jul 1998 JP
10-206322 Aug 1998 JP
10-208744 Aug 1998 JP
10-302779 Nov 1998 JP
10-321224 Dec 1998 JP
11-16573 Jan 1999 JP
11-67205 Mar 1999 JP
11-273676 Oct 1999 JP
11-292542 Oct 1999 JP
11-307094 Nov 1999 JP
11-345615 Dec 1999 JP
2000-30693 Jan 2000 JP
2000-72445 Mar 2000 JP
2000-149945 May 2000 JP
2000-215884 Aug 2000 JP
2000-348721 Dec 2000 JP
2001-110420 Apr 2001 JP
2001-148249 May 2001 JP
2001-223008 Aug 2001 JP
2001-266851 Sep 2001 JP
2002-63901 Feb 2002 JP
2002-124261 Apr 2002 JP
3276183 Apr 2002 JP
2002-164053 Jun 2002 JP
2002-203552 Jul 2002 JP
2002-216745 Aug 2002 JP
2002-260655 Sep 2002 JP
2002-289261 Oct 2002 JP
2002-298914 Oct 2002 JP
3334179 Oct 2002 JP
2003-7299 Jan 2003 JP
2003-17052 Jan 2003 JP
2003-81637 Mar 2003 JP
2003-151546 May 2003 JP
2003-229129 Aug 2003 JP
2004-6264 Jan 2004 JP
2004-146374 May 2004 JP
2004-172109 Jun 2004 JP
2004-193115 Jul 2004 JP
2004-214187 Jul 2004 JP
2004-227790 Aug 2004 JP
2004-253169 Sep 2004 JP
2004-273451 Sep 2004 JP
2004-355824 Dec 2004 JP
2004-356094 Dec 2004 JP
2005-11713 Jan 2005 JP
2005-44743 Feb 2005 JP
2005-53764 Mar 2005 JP
2005-56602 Mar 2005 JP
2005-60162 Mar 2005 JP
2005-75691 Mar 2005 JP
2005-183366 Jul 2005 JP
2005-225734 Aug 2005 JP
2005-235624 Sep 2005 JP
2005-243636 Sep 2005 JP
2005-251700 Sep 2005 JP
2005-285572 Oct 2005 JP
2005-289700 Oct 2005 JP
2005-302507 Oct 2005 JP
2005-302628 Oct 2005 JP
2005-324973 Nov 2005 JP
2005-327644 Nov 2005 JP
2005-332707 Dec 2005 JP
2005-347134 Dec 2005 JP
2006-4724 Jan 2006 JP
2006-19229 Jan 2006 JP
2006-19310 Jan 2006 JP
2006-54159 Feb 2006 JP
2006-107818 Apr 2006 JP
2006-107845 Apr 2006 JP
2007-257890 Apr 2006 JP
2006-127923 May 2006 JP
2006-127955 May 2006 JP
2006-134816 May 2006 JP
2006-134852 May 2006 JP
2006-156126 Jun 2006 JP
2006-156235 Jun 2006 JP
2006-164758 Jun 2006 JP
2006-286614 Oct 2006 JP
3835266 Oct 2006 JP
2006-302542 Nov 2006 JP
2006-351379 Dec 2006 JP
2007-48744 Feb 2007 JP
2007-95443 Apr 2007 JP
2007-194202 Aug 2007 JP
2007-214138 Aug 2007 JP
2007-226969 Sep 2007 JP
2007-227368 Sep 2007 JP
2007-257890 Oct 2007 JP
2007-280723 Oct 2007 JP
2008-13405 Jan 2008 JP
4070585 Apr 2008 JP
2008-103132 May 2008 JP
2008-181708 Aug 2008 JP
2008-192547 Aug 2008 JP
2008-266136 Nov 2008 JP
2008-277106 Nov 2008 JP
4175026 Nov 2008 JP
2008-544468 Dec 2008 JP
2009-117365 May 2009 JP
2009-135070 Jun 2009 JP
2009-151959 Jul 2009 JP
4287901 Jul 2009 JP
2009-289726 Dec 2009 JP
2010-15959 Jan 2010 JP
2010-47466 Mar 2010 JP
2010-192200 Sep 2010 JP
2011-44364 Mar 2011 JP
2012-169224 Sep 2012 JP
2012-243572 Dec 2012 JP
2013-152911 Aug 2013 JP
10-2010-0060362 Jun 2010 KR
363940 Jul 1999 TW
02086993 Oct 2002 WO
03003489 Jan 2003 WO
2004064180 Jul 2004 WO
2007072759 Jun 2007 WO
2008084679 Jul 2008 WO
2009011157 Jan 2009 WO
2009060603 May 2009 WO
2009063838 May 2009 WO
2009128289 Oct 2009 WO
2010049977 May 2010 WO
2010113512 Oct 2010 WO
2010113583 Oct 2010 WO
2011007751 Jan 2011 WO
2011065391 Jun 2011 WO
2011108720 Sep 2011 WO
2011122448 Oct 2011 WO
2012098724 Jul 2012 WO
2012132072 Oct 2012 WO
2012157143 Nov 2012 WO
Non-Patent Literature Citations (149)
Entry
English Machine Translation of JP 2007-257890 (2006).
English Machine Translation of CN1710735 (2005).
International Preliminary Report on Patentability mailed Nov. 22, 2012 in co-pending PCT application No. PCT/JP2011/054938.
International Preliminary Report on Patentability mailed Nov. 22, 2012 in co-pending PCT application No. PCT/JP2011/055111.
International Search Report mailed Nov. 1, 2011 in co-pending PCT application No. PCT/JP2011/066722.
International Search Report mailed Apr. 10, 2012 in co-pending PCT application No. PCT/JP2011/079535.
Office Action-Restriction-mailed Mar. 12, 2013 in co-pending U.S. Appl. No. 13/508,887.
Office Action mailed Mar. 13, 2013 in co-pending U.S. Appl. No. 13/582,091.
European communication issued May 9, 2014 in co-pending European patent application No. EP 11739870.1.
Chinese communication dated May 12, 2014 in co-pending Chinese patent application No. CN 201180008573.3.
European communication issued May 9, 2014 in co-pending European patent application No. EP 11750704.6.
European communication issued May 22, 2014 in co-pending European patent application No. EP 11750705.3.
European communication issued May 6, 2014 in co-pending European patent application No. EP 11845955.1.
International Search Report mailed Dec. 25, 2012 in co-pending PCT application No. PCT/JP2012/074263.
International Search Report mailed Dec. 25, 2012 in co-pending PCT application No. PCT/JP2012/074266.
International Search Report mailed Dec. 25, 2012 in co-pending PCT application No. PCT/JP2013/064941.
Final Rejection mailed Jun. 18, 2014 in co-pending U.S. Appl. No. 13/508,880.
Final Rejection mailed Jun. 3, 2014 in co-pending U.S. Appl. No. 13/514,080.
Office Action mailed Jul. 1, 2014 in co-pending U.S. Appl. No. 13/576,548.
Office Action mailed Jul. 8, 2014 in co-pending U.S. Appl. No. 13/576,753.
International Search Report mailed Jun. 8, 2010 in co-pending PCT application No. PCT/JP2010/053443.
International Preliminary Report on Patentability mailed Nov. 17, 2011 in co-pending PCT application No. PCT/JP2010/053443.
International Search Report mailed May 24, 2011 in co-pending PCT application No. PCT/JP2011/053271.
International Search Report/Written Opinion mailed Mar. 8, 2011 in co-pending PCT application No. PCT/JP2010/071723.
International Preliminary Report on Patentability mailed Jul. 12, 2012 in co-pending PCT application No. PCT/JP2010/071723.
International Search Report mailed Jan. 24, 2012 in corresponding PCT application No. PCT/JP2011/072860.
International Search Report/Written Opinion mailed Jan. 25, 2011 in co-pending PCT application No. PCT/JP2010/071724.
International Preliminary Report on Patentability issued Jul. 10, 2012 in co-pending PCT application No. PCT/JP2010/071724.
International Search Report mailed Apr. 26, 2011 in co-pending PCT application No. PCT/JP2011/052394.
International Preliminary Report on Patentability mailed Oct. 11, 2012 in co-pending PCT application No. PCT/JP2011/052394.
International Search Report mailed May 10, 2011 in co-pending PCT application No. PCT/JP2011/052399.
International Preliminary Report on Patentability mailed Oct. 11, 2012 in co-pending PCT application No. PCT/JP2011/052399.
International Search Report mailed Nov. 15, 2011 in co-pending PCT application No. PCT/JP2011/069042.
International Search Report/Written Opinion mailed Jun. 7, 2011 in co-pending PCT application No. PCT/JP2011/054935.
International Preliminary Report on Patentability mailed Oct. 11, 2012 in co-pending PCT application No. PCT/JP2011/054935.
International Search Report mailed Jun. 7, 2011 in co-pending PCT application No. PCT/JP2011/054938.
International Search Report/Written Opinion mailed May 17, 2011 in co-pending PCT application No. PCT/JP2011/054942.
International Preliminary Report on Patentability issued Oct. 2, 2012 in co-pending PCT application No. PCT/JP2011/054942.
International Search Report/Written Opinion mailed Jun. 7, 2011 in co-pending PCT application No. PCT/JP2011/054934.
International Preliminary Report on Patentability mailed Oct. 11, 2012 in co-pending PCT application No. PCT/JP2011/054934.
International Search Report/Written Opinion mailed May 17, 2011 in co-pending PCT application No. PCT/JP2011/054941.
International Preliminary Report on Patentability issued Oct. 2, 2012 in co-pending PCT application No. PCT/JP2011/054941.
International Search Report mailed May 10, 2011 in co-pending PCT application No. PCT/JP2011/055111.
International Search Report/Written Opinion mailed May 17, 2011 in co-pending PCT application No. PCT/JP2011/053710.
International Preliminary Report on Patentability issued Oct. 2, 2012 in co-pending PCT application No. PCT/JP2011/053710.
International Search Report/Written Opinion mailed May 24, 2011 in co-pending PCT application No. PCT/JP2011/054777.
International Preliminary Report on Patentability issued Oct. 2, 2012 in co-pending PCT application No. PCT/JP2011/054777.
International Search Report mailed May 24, 2011 in co-pending PCT application No. PCT/JP2011/054781.
Written Opinion mailed Jun. 24, 2011 in co-pending PCT application No. PCT/JP2011/054781.
International Preliminary Report on Patentability mailed Oct. 11, 2012 in co-pending PCT application No. PCT/JP2011/054781.
International Search Report/Written Opinion mailed May 24, 2011 in co-pending PCT application No. PCT/JP2011/054779.
International Preliminary Report on Patentability issued Oct. 2, 2012 in co-pending PCT application No. PCT/JP2011/054779.
Electrochimica Acta, vol. 51, 2006, pp. 5581-5586, “Preparation and electrochemical properties of LiCoO2—LiNi0.5Mn0.5O2—Li2MnO3 solid solutions with high Mn contents”, Sun, et al.
International Preliminary Report on Patentability mailed Oct. 10, 2013 in co-pending PCT application No. PCT/JP0212/057974.
Office Action mailed Dec. 4, 2013 in co-pending U.S. Appl. No. 13/508,880.
Office Action mailed Dec. 18, 2013 in co-pending U.S. Appl. No. 13/514,080.
Final Rejection mailed Jan. 9, 2014 in co-pending U.S. Appl. No. 13/576,548.
Notice of Allowance mailed Nov. 6, 2013 in U.S. Appl. No. 13/582,091, now U.S. Pat. No. 8,623,551.
Int. J. Electrochem. Sci., vol. 4, 2009, pp. 1770-1778, “Improved High Rate Cycling of Li-rich Li(1.10)Ni(1/3)Co(1/3)Mn(1/3)O(2) Cathode for Lithium Batteries”, Santhanam, et al.
Notice of Allowance mailed Mar. 20, 2014 in co-pending U.S. Appl. No. 13/258,120.
Final Rejection mailed Feb. 27, 2014 in co-pending U.S. Appl. No. 13/856,514.
Final Rejection mailed Jan. 27, 2014 in co-pending U.S. Appl. No. 13/581,546.
Final Rejection mailed Jan. 24, 2014 in co-pending U.S. Appl. No. 13/582,067.
Final Rejection mailed Jan. 27, 2014 in co-pending U.S. Appl. No. 13/581,814.
Final Rejection mailed Feb. 20, 2014 in co-pending U.S. Appl. No. 13/582,096.
Final Rejection mailed Feb. 7, 2014 in co-pending U.S. Appl. No. 13/582,101.
Final Rejection mailed Feb. 18, 2014 in co-pending U.S. Appl. No. 13/582,113.
Office Action mailed Jun. 10, 2013 in co-pending U.S. Appl. No. 13/508,887.
Office Action mailed Jul. 16, 2013 in co-pending U.S. Appl. No. 13/514,080.
Office Action mailed Jul. 29, 2013 in co-pending U.S. Appl. No. 13/576,548.
Office Action mailed Aug. 1, 2013 in co-pending U.S. Appl. No. 13/581,546.
Office Action mailed Jul. 17, 2013 in co-pending U.S. Appl. No. 13/581,814.
Office Action mailed Jun. 19, 2013 in co-pending U.S. Appl. No. 13/582,096.
Office Action mailed Jul. 12, 2013 in co-pending U.S. Appl. No. 13/582,101.
Office Action mailed Jul. 15, 2013 in co-pending U.S. Appl. No. 13/582,113.
Office Action mailed Aug. 13, 2013 in co-pending U.S. Appl. No. 13/582,067.
International Preliminary Report on Patentability mailed Sep. 26, 2013 in co-pending PCT application No. PCT/JP2011/053271.
International Preliminary Report on Patentability mailed Oct. 10, 2013 in corresponding PCT application No. PCT/JP2011/072860.
International Preliminary Report on Patentability mailed Aug. 1, 2013 in co-pending PCT application No. PCT/JP2011/069042.
Japanese Communication mailed Oct. 1, 2013 in co-pending Japanese patent application No. JP 2012-503253.
Japanese Communication mailed Oct. 1, 2013 in co-pending Japanese patent application No. JP 2012-503255.
Japanese Communication mailed Oct. 1, 2013 in co-pending Japanese patent application No. JP 2012-503252.
International Preliminary Report on Patentability mailed Jun. 13, 2013 in co-pending PCT application No. PCT/JP2011/066722.
International Search Report mailed Jun. 5, 2012 in co-pending PCT application No. PCT/JP2012/057974.
International Journal of Inorganic Materials 3 (2001), pp. 323-329, “Structural and electrochemical properties of Li—Ni—Co oxides synthesized by wet chemistry via a succinic-acid-assisted technique”, Castro-Garcia, et al.
Office Action mailed Oct. 3, 2013 in co-pending U.S. Appl. No. 13/258,120.
Final Rejection mailed Sep. 19, 2013 in co-pending U.S. Appl. No. 13/508,887.
Office Action mailed Sep. 17, 2013 in co-pending U.S. Appl. No. 13/856,514.
International Preliminary Report on Patentability mailed Jul. 31, 2014 in co-pending PCT application No. PCT/JP2012/074263.
International Preliminary Report on Patentability mailed Jul. 31, 2014 in co-pending PCT application No. PCT/JP2012/074266.
Journal of the Electrochemical Society, 151 (11), 2004, pp. A1899-A1904, “Synthesis, Thermal, and Electrochemical Properties of AIPO4-Coated LiNi0.8Co0.1Mn0.1O2 Cathode Materials for Li-Ion Cell”, Cho, et al.
Journal of The Electrochemical Society, 155 (3), 2008, pp. A239-A245, “Storage Characteristics of LiNi0.8Co0.1+×Mn0.1-×O2 (×=0, 0.03, and 0.06) Cathode Materials for Lithium Ion Batteries”, EOM, et al.
Final Rejection mailed Sep. 18, 2014 in co-pending U.S. Appl. No. 13/508,887.
Office Action mailed Sep. 18, 2014 in co-pending U.S. Appl. No. 13/856,514.
Office Action mailed Sep. 9, 2014 in co-pending U.S. Appl. No. 13/514,080.
Office Action mailed Oct. 2, 2014 in co-pending U.S. Appl. No. 13/582,089.
Office Action mailed Oct. 3, 2014 in co-pending U.S. Appl. No. 13/581,730.
European communication dated Oct. 27, 2014 in co-pending European patent application No. EP 10839166.5.
European communication dated Nov. 5, 2014 in co-pending European patent application No. EP 11856183.6.
European communication dated Oct. 20, 2014 in co-pending European patent application No. EP 12763420.2.
Office Action mailed Nov. 5, 2014 in co-pending U.S. Appl. No. 13/582,087.
Office Action mailed Nov. 14, 2014 in co-pending U.S. Appl. No. 13/582,096.
Japanese communication mailed Apr. 7, 2015 in co-pending Japanese patent application No. 2012-503258.
International Preliminary Report on Patentability mailed Mar. 19, 2015 in co-pending PCT application No. PCT/JP2013/064941.
International Preliminary Report on Patentability mailed Apr. 2, 2015 in co-pending PCT application No. PCT/JP2013/076598.
Wikipedia, Karl Fischer Titration article, Waybackmachine.com snapshot dtd., Sep. 12, 2010, 2 pages.
Office Action mailed Mar. 25, 2015 in co-pending U.S. Appl. No. 13/581,423.
Office Action mailed Mar. 18, 2015 in co-pending U.S. Appl. No. 13/816,822.
Office Action mailed Apr. 3, 2015 in co-pending U.S. Appl. No. 13/822,447.
Office Action mailed Apr. 23, 2015 in co-pending U.S. Appl. No. 14/364,795.
Office Action mailed Apr. 3, 2015 in co-pending U.S. Appl. No. 14/364,809.
Office Action mailed Apr. 3, 2015 in co-pending U.S. Appl. No. 14/364,830.
Office Action mailed Feb. 25, 2015 in co-pending U.S. Appl. No. 13/508,880.
Final Rejection mailed Feb. 27, 2015 in co-pending U.S. Appl. No. 13/581,730.
Office Action mailed Feb. 26, 2015 in co-pending U.S. Appl. No. 13/582,101.
Office Action mailed Feb. 26, 2015 in co-pending U.S. Appl. No. 13/582,113.
Office Action mailed May 14, 2015 in co-pending U.S. Appl. No. 13/984,947.
European Communication dated Jan. 5, 2015 in corresponding European patent application No. 11842456.3.
European Communication dated Dec. 9, 2014 in co-pending European patent application No. 11750768.1.
European Communication dated Dec. 9, 2014 in co-pending European patent application No. 11750762.4.
European Communication dated Feb. 17, 2015 in co-pending European patent application No. 11865511.7.
Chinese Communication dated Jan. 12, 2015 in co-pending Chinese patent application No. 201280004477.6.
International Search Report mailed Jan. 7, 2014 in co-pending PCT application No. PCT/JP2013/076598.
Journal of the The Electrochemical Society, vol. 151, No. 10, Sep. 2004, pp. A1707-A1711, “Comparison of Overcharge Behavior of AIPO4-Coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 Cathode Materials in Li-Ion Cells”, Cho, et al.
Journal of Power Sources, vol. 146, 2005, pp. 39-44, “Performance of LiNiCoO2 materials for advanced lithium-ion batteries”, Itou, et al.
Ceramics International, vol. 35, No. 4, May 2009, pp. 1633-1639, “Fine-sized LiNi0.8Co0.15Mn0.05O2 cathode particles prepared by spray pyrolysis from the polymeric precursor solutions”, Ju, et al.
Journal of Alloys and Compounds, vol. 469, No. 1-2, Feb. 2009, pp. 304-309, “Effects of the ratio of manganese and nickel components on the characteristics of Lix(MnyNi1-y)Oz cathode powders prepared by spray pyrolysis”, Ju, et al.
Journal of Power Sources, vol. 153, No. 2, Feb. 2006, pp. 345-349, “Improvement of 12V overcharge behavior of LiCoO2 cathode material by LiNi0.8Co0.1Mn0.1O2 addition in a Li-ion cell”, Kim, et al.
Journal of Applied Electrochemistry, vol. 38, No. 5, Jan. 2008, pp. 613-617, “Comparative study of the preparation and electrochemical performance of LiNi1/2Mn1/2O2 electrode material for rechargeable lithium batteries”, Lian, et al.
Notice of Allowance mailed Jan. 15, 2015 in co-pending U.S. Appl. No. 13/514,080.
Final Rejection mailed Jan. 23, 2015 in co-pending U.S. Appl. No. 13/576,548.
Final Rejection mailed Jan. 28, 2015 in co-pending U.S. Appl. No. 13/576,753.
Office Action—Restriction—mailed Jan. 26, 2015 in co-pending U.S. Appl. No. 13/581,423.
Final Rejection mailed Feb. 12, 2015 in co-pending U.S. Appl. No. 13/582,089.
Final Rejection mailed Feb. 13, 2015 in co-pending U.S. Appl. No. 13/582,087.
Final Rejection mailed Jul. 29, 2015 in co-pending U.S. Appl. No. 13/508,880.
Notice of Allowance mailed Jun. 30, 2015 in co-pending U.S. Appl. No. 13/576,548.
Notice of Allowance mailed May 20, 2015 in co-pending U.S. Appl. No. 13/582,087.
Final Rejection mailed Jun. 23, 2015 in co-pending U.S. Appl. No. 13/582,096.
Final Rejection mailed Jul. 1, 2015 in co-pending U.S. Appl. No. 13/582,101.
Final Rejection mailed Jun. 30, 2015 in co-pending U.S. Appl. No. 13/582,113.
Final Rejection mailed Jun. 24, 2015 in co-pending U.S. Appl. No. 13/816,822.
Notice of Allowance mailed Sep. 10, 2015 in co-pending U.S. Appl. No. 13/582,096.
Notice of Allowance mailed Sep. 22, 2015 in co-pending U.S. Appl. No. 13/582,096.
Notice of Allowance mailed Oct. 22, 2015 in co-pending U.S. Appl. No. 13/582,101.
Notice of Allowance mailed Oct. 22, 2015 in co-pending U.S. Appl. No. 13/582,113.
Notice of Allowance mailed Oct. 21, 2015 in co-pending U.S. Appl. No. 13/984,947.
Notice of Allowance mailed Sep. 8, 2015 in co-pending U.S. Appl. No. 14/364,795.
Notice of Allowance mailed Sep. 10, 2015 in co-pending U.S. Appl. No. 14/364,809.
Related Publications (1)
Number Date Country
20130043428 A1 Feb 2013 US