The invention relates to nuclear technology and radiochemistry, namely, to the production and extraction of radioactive isotopes for medical purposes. More specifically, the invention relates to the production of radiostrontium isotopes 82Sr and 85Sr, the former being widely used in medicine to diagnose a number of diseases with the use of positron emission tomography.
A process is known in prior art to be used for the production of radiostrontium [see L. F. Mausner, T. Prach, S. C. Srivastava, J. Appl. Radioat. Isot., 1987, vol. 38, pp. 181-184], this process comprising the bombarding of targets made of rubidium chloride with beams of accelerated charged particles and the radiochemical extraction of radiostrontium therefrom. The limited productivity of this process is due to the low contents of the working body (rubidium) in the material and to the properties of the material to be irradiated: the low heat conductance of RbCl leads to high temperatures inside the target when it is bombarded with an intense beam of particles, inducing radiolysis of RbCl and corrosion of the target shell by nascent chlorine.
Another process is also known to produce radiostrontium [see B. L. Zhuikov, V. M. Kokhanyuk, V. N. Gluschenko, et al., Radiokhimiya, 1994, vol. 36, pp. 494-498; B. L. Zhuikov, V. M. Kokhanyuk, N. A. Konyakin, A. A. Razbash, J. Vincent, Proc. 6th Workshop on Targetry and Target Chemistry, Vancouver, Canada, 1995, TRIUMF, Vancouver, 1996, Ed. by J. M. Liuk, T. J. Ruth, p. 112; D. R. Philips; E. J. Peterson, W. A. Taylor, et al., J. Radiochim. Acta, vol. 88, pp. 149-155], this process comprising the bombarding of a target made of metallic rubidium having a weight of up to 50 g with a beam of accelerated particles and the radiochemical extraction of radiostrontium therefrom by means of dissolution of the metallic rubidium in an alcohol, conversion of the products to an aqueous solution of chlorides, and ion exchange. The high heat conductance of metallic rubidium makes it possible to bombard thick targets with intense beams of particles, rendering this process efficient for producing large amounts of 82Sr (in Ci units). The shortcoming of this process consists in the complexity, length, and hazard of the radiochemical extraction of radiostrontium. In the context of a feasibility of a large-scale radiostrontium production from far bulkier metallic rubidium targets in a broad high-intensity beam, this approach seems even unrealistic.
The most pertinent piece of prior art for the invention consists of the process for producing radiostrontium [see B. L. Zhuikov, V. M. Kokhanyuk, J. Vincent, patent RU 2102808 C1, 1998] comprising the bombarding of metallic rubidium targets with a beam of accelerated charged particles, melting of the irradiated rubidium, and the extraction of radiostrontium therefrom via sorption on the surface of various metals or oxides which are immersed into the molten metallic rubidium. The major drawback of this process consists in that a considerable part of the radiostrontium formed in this way is lost, being sorbed on the walls of the container to which radiated rubidium is transferred and on the inner surface of the target shell, specifically, when high-intensity beams are used for bombarding. For instance, for proton currents on the order of 0.5 to 1 μA, the inner surface of the target shell sorbs 10 to 30% of the resulting radiostrontium; when the current intensity increases, this percentage loss reaches 50 to 70%.
The problem to be solved by the invention is to separate radiostrontium from a great pool of liquid metallic rubidium via sorption directly on the inner shell of the target, or extract radiostrontium from circulating rubidium via sorption on a heated surface, or via filtration of liquid rubidium, thereby enhancing the efficiency of radiostrontium production and simplifying the technology. The technical result is reached as follows: in the process for the production of radiostrontium comprising the bombarding, by an accelerated particle beam, of a target containing metallic rubidium enclosed in a target shell, melting of the rubidium inside the target shell after bombarding, and extraction of radiostrontium therefrom via sorption on the surface of various materials contacting with the liquid rubidium, radiostrontium is extracted from the liquid metallic rubidium via sorption directly on the inner shell surface of the irradiated target by means of exposure of the hermetically sealed target at temperature of 275 to 350° C. Useful shell materials represent stainless steel, tantalum, niobium, tungsten, molybdenum, nickel, or noble metals. Further, the metallic rubidium is pumped from the target to leave 96±4% radiostrontium sorbed on the inner surface of the target shell. Then, the radiostrontium may be solubilized by pouring into the target various solvents, for example, organic alcohols, water, and/or aqueous solutions of mineral acids, and others. The simplest and most technological way to accomplish washing is first with water and then with mineral acids.
Another variation of the invention consists in that, as the working body, use is made of liquid rubidium which is circulating during irradiation through a closed loop equipped with a trap. There are two methods for extracting radiostrontium. One method consists of radiostrontium sorption on the surface of metallic rods heated to 220 to 350° C. and immersed into liquid rubidium, for example, on the surface of metallic rods in a trap, these rods being made of stainless steel, tantalum, niobium, titanium, zirconium, tungsten, molybdenum, nickel, or precious noble metals. The temperature of the rubidium circulating through the loop is maintained in the range of 10 to 220° C., and the content of oxygen in the rubidium does not exceed 3% by weight. The other method extracts radiostrontium sorbed on sol particles (a solid phase) contained in the liquid rubidium, by means of a filter, this filter being a porous membrane made of, for instance, a metal that is inert with respect to rubidium, the oxygen content of the circulating rubidium being maintained in the range of 0.1 to 4.0% by weight via adding oxygen or rubidium. The temperature is selected from the range of 10 to 38° C. so that a certain ratio of the solid and liquid phases to be maintained. Next, radiostrontium is washed from the surface of the rods or filter with organic alcohols, water, and/or aqueous solutions of mineral acids. This variation allows radiostrontium to be extracted from rubidium pools weighing kilograms with simultaneous bombarding thereof by a beam of accelerated high-intensity protons (of several hundreds of microamperes).
In oxygen-containing rubidium, oxygen can occur (depending on its concentration) in the form of either dissolved species or rubidium oxide colloidal particles. The radiostrontium generated by the bombarding occurs in rubidium in the form of a true solution or is sorbed on the surface of rubidium oxide colloidal particles. Depending on the oxygen percentage content, the colloidal particles will either dissolve in rubidium or coarsen and precipitate in response to rising temperature.
The process will be further illustrated with drawings and tables.
Table 1 shows the radiostrontium distribution in rubidium along the height of a vertically positioned container which represents a glass cylinder having an inner diameter of 25 mm to which irradiated rubidium was transferred from the target shell. The radiostrontium concentration is expressed as the Sr activity at the end of bombarding per unit weight of irradiated rubidium. One can see that most radiostrontium precipitates together with rubidium oxide particles. Some radiostrontium is concentrated near the liquid rubidium surface which is in contact with the gas where oxygen is contained in a greater amount. Thus, for a certain concentration and for a certain size of colloidal particles that is determined by apparatus parameters, strontium can be transported with liquid rubidium avoiding considerable precipitation on the inner surfaces of parts of the loop.
Table 2 displays the distribution of radiostrontium sorbed on the inner surface of the target shell shown in
Radiostrontium was sorbed on the inner target shell surface that was in contact with rubidium. From Table 2, it follows that most part of the radiostrontium was concentrated in the lower portion of the target on the surface of precipitated rubidium oxide particles, while the other part was distributed over the entire inner target shell surface.
Once sorption is over, liquid metallic rubidium is removed from the target and radiostrontium is washed with a solvent from the inner target shell surface. Table 3 shows the efficiency of radiostrontium washing with a solvent from the surface for targets of various volumes.
The process proposed for the production of radiostrontium makes it possible to organize continuous production.
A vertically positioned filter (a thin smooth metallic membrane 10) is also useful as a sorbing unit, as shown in
Further secondary refining of the extracted radiostrontium to free it from radionuclides and stable impurities is carried out by known radiochemical methods [see B. L. Zhuikov, V. M. Kokhanyuk, N. A. Konyakin, A. A. Razbash, J. Vincent, Proc. 6th Workshop on Targetry and Target Chemistry, Vancouver, Canada, 1995, TRIUMF, Vancouver, 1996, Ed. by J. M. Liuk, T. J. Ruth, p. 112; D. R. Philips, E. J. Peterson, W. A. Taylor, et al. // Radiochim. Acta, 2000, vol. 88, pp. 149-155].
For the better understanding of the claimed process for the production of radiostrontium, some specific examples are given hereinbelow.
A target containing 53 g of metallic rubidium was bombarded by a proton beam of 62 for 2 hours in the proton energy range of from 100 to 40 MeV. After two-week exposure, the target was heated at 275° C. for 5 hours and then cooled, after which irradiated rubidium was withdrawn from the shell at 46° C. 97.5% of the radiostrontium was found to remain on the inner surface of the shell. Then, radiostrontium was washed layer by layer from the inner surface of the shell, which is schematically shown in
83Rb
84Rb
86Rb
75Se
74As
A 50-g portion of metallic rubidium was placed in a target inside an air-tight shell made of stainless steel and bombarded with a proton beam of 0.5 μA for 1 hour in the proton energy range of from 100 to 40 MeV. After one-week exposure, the target was heated to 47±2° C., and then irradiated rubidium was withdrawn from the shell under a nitrogen atmosphere. 33% of the radiostrontium was found to remain on the inner surface of the shell. Another target containing 53 g of metallic rubidium was bombarded with a proton beam of 70 μA for 5 hours in the proton energy range of from 100 to 40 MeV. After one-week exposure, the target was heated to 46±2° C., then irradiated rubidium was withdrawn from the shell under a nitrogen atmosphere, and 64% of the radiostrontium was found to remain on the inner surface of the shell. This example shows that, at a relatively low temperature, radiostrontium sorption on the inner shell of the target is not so efficient compared to 275° C. as in Example 1.
A target containing 52 g of metallic rubidium was bombarded with a proton beam of 50 μA in the proton energy range of from 100 to 40 MeV. The overall proton charge amounted to 960 μA h. After three-week exposure, the target was placed in a furnace and heated at 320° C. for 3 hours. Then, the target was cooled to 80° C. The target was opened under an argon atmosphere, and metallic rubidium was pumped out therefrom. Radiostrontium sorbed on the inner surface of the target shell which was made of stainless steel, and was withdrawn by filling-in the target with a 0.5 M HCl solution and allowing it to stand for 1 hour. Then, the solution was pumped out from the target, and the step of washing radiostrontium from the inner target shell surface was repeated. Both portions were combined, and secondary refining of the radiostrontium was carried out. Radionuclide impurities and stable impurities, such as 75Se, 74As, iron, nickel, and chromium, were removed on Chelex-100, Dowex 1×8, and Dowex 50×8 ion-exchange resins. The total Sr yield was 98 to 99%; radionuclide purity >99.9%.
Rubidium withdrawn from an irradiated target and containing 3.5% of oxygen was analyzed for the content of colloidal particles via measuring radiostrontium along the height of a vertically positioned glass container (Table 1). Following this, liquid rubidium which contained radiostrontium sorbed on colloidal particles, was stirred (for leveling out colloidal particle concentrations over the volume) and passed through a porous filter made of an inorganic material of titania (porous granules having diameters of 0.2 to 0.4 mm) at 30° C. Practically complete (>98%) extraction of radiostrontium from liquid rubidium was reached.
Thus, use of the present invention enhances the efficiency of radiostrontium production and simplifies radiostrontium extraction technology on account of carrying out radiostrontium sorption from liquid metallic rubidium directly on the inner shell surface of an irradiated target. Irradiated metallic rubidium removed from the target may be reused in radiostrontium production. Where rubidium circulating in the loop is bombarded, the process as claimed allows radiostrontium to be extracted either on the surface of materials immersed into liquid rubidium or on a porous membrane filter.
Number | Date | Country | Kind |
---|---|---|---|
2008111555 | Mar 2008 | RU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/RU2009/000124 | 3/13/2009 | WO | 00 | 11/15/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/120110 | 10/1/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5875220 | Zhuikov et al. | Feb 1999 | A |
6456680 | Abalin et al. | Sep 2002 | B1 |
Number | Date | Country |
---|---|---|
0578050 | Jan 1994 | EP |
2080878 | Jun 1997 | RU |
2102808 | Jan 1998 | RU |
2155398 | Aug 2000 | RU |
Entry |
---|
Mausner, L. F., et al., “Production of 82Sr by Proton Irradiation of RbCl*”, J. Appl. Radiat. Isot., 1987, vol. 38, pp. 181-184. |
Zhuikov, B. L., et al., “Production of strontium-82 from rubidium metal target on a proton beam having the energy of MeV”, Radiojhimia, 1994, vol. 36, Issue 6, pp. 494-498. |
Zhuikov, B. L., et al., “Production of Strontium=82 in Russia”, Proc. 6th Workshop on Targetry and Target Chemistry, Aug. 17-19, 1995, Triumf, 3 pages. |
Phillips, D. R., et al., “Production of strontium-82 for the Cardiogen® PET generator: a project of the Department of Energy Virtual Isotope Center”, J. Radiochim, Acta, 2000, vol. 88, pp. 149-155. |
Zhuikov V.L. Poluchenie strontsiya-82 iz misheni metaliicheskogo rubidiya na puchke protonov s energiei 100 Mev Radiokhimiya, St.Peterburg, “Nauka”, 1994, vol. 36, issue 6, p. 496, paragraph 3-7, figure 3. |
Number | Date | Country | |
---|---|---|---|
20110051873 A1 | Mar 2011 | US |