An exemplary embodiment is clarified in the following with reference to the figure:
As mentioned,
In step 10, a surface of the gas turbine component is abrasively blasted using an abrasive material, a portion of this abrasive material remaining on or in this surface of the component. In this context, an abrasive material is used which, in comparison to the material or base material of the gas turbine component, absorbs or reflects electromagnetic radiation in defined spectral regions in a different manner or at a different intensity.
In step 12, abrasive material is detected which has remained on or in the surface of the gas turbine component. For this purpose, the particular or previously abrasively blasted surface or surface section of the gas turbine component is irradiated with electromagnetic radiation, either abrasive material particles, which have remained on or in the surface of the gas turbine part, being individually detected at a geometrically high resolution, and the surface-area proportion being determined, or the integral change in the reflectivity and/or emissivity being recorded.
In step 14, a coating is applied to the surface of the gas turbine component, in particular to the surface of the gas turbine component previously abrasively blasted using the abrasive material. The coating is applied in a thermal spray-coating process.
It may be provided, however, for this coating process to only be carried out in step 14 when it has been previously verified and determined whether, respectively, that the abrasive material on or in the surface of the gas turbine component, respectively its (surface-area) proportion relative to this surface is smaller than a predefined limit.
As clarified, in particular, by the exemplary embodiment, the present invention provides the basis for a multiplicity of advantages, some of which are named in the following, it being noted that not all of the exemplary embodiments which come under the present invention need feature the or all of these advantages. By employing (the design approach in accordance with the exemplary embodiment of) the method according to the present invention, abrasive media residues are quantitatively determined. In contrast to previously known designs, it is possible to inspect the component to be coated, respectively the gas turbine component. In addition, a rapid, contactless measurement of the abrasive media residues (also described here as abrasive material residues) is made possible. The need for ground specimens is eliminated; the quality is known immediately following the abrasive blasting
Number | Date | Country | Kind |
---|---|---|---|
DE102006045666.1 | Sep 2006 | DE | national |