Method for producing zeolites

Information

  • Patent Grant
  • 5102644
  • Patent Number
    5,102,644
  • Date Filed
    Wednesday, February 13, 1985
    39 years ago
  • Date Issued
    Tuesday, April 7, 1992
    32 years ago
Abstract
A method of producing zeolites particularly ZSM-5 and ZSM-11 by strictly controlling the composition of the forming bath such that no organic is required. In a preferred embodiment the forming bath can contain seeds, lower aliphatic alcohols and/or ammonium hydroxide. The as-crystallized product has no organic in its pore structures and has a relatively low silica to alumina ratio.
Description

FIELD OF THE INVENTION
This invention is related to a novel process of making porous crystalline siliceous solids having the topology represented by x-ray diffraction patterns whose four (4) strongest lines are 11.1.+-.0.2, 10.0.+-.0.2, 3.85.+-.0.07 and 3.71.+-.0.05. It also is directed to the novel products of this process. Exemplary of porous crystalline siliceous solids which are within the scope of this invention are those zeolites which have been identified as ZSM-5 type as illustrated by ZSM-5 and ZSM-11.
PRIOR ART
Porous crystalline solids having topology represented by an x-ray diffraction pattern having the above identified four (4) strongest lines are well known. U.S. Pat. Nos. 3,702,886 and 3,709,979 fully disclose materials, named as ZSM-5 and ZSM-11 respectively, as well as described effective means of making materials of this topology. U.S. Pat. No. 3,702,886 exemplified the production of ZSM-5 structured solids through the use of an organic tetraalkyl ammonium compound, such as a C.sub.2 -C.sub.5 tetraalkyl ammonium compound, such as a C.sub.2 -C.sub.5 tetraalkyl ammonium hydroxide, and U.S. Pat. No. 3,709,979 exemplified the production of ZSM-11 structured solids through the use of organic phosphonium compounds. Both of the prior art patents are incorporated herein in their entirety.
In addition, U.S. Pat. No. 3,671,191 teaches a general seeding technique, as does an article by Zhdanov, "Molecular Sieve Zeolites-I" ACS, 1971, pages 36 and 37. German Patent No. 2,212,810 discloses the use of a mixture of ethyl alcohol, ammonium hydroxide and triethylamine to make a porous crystalline material designated ZSM-8 and of a mixture of ammonia, propyl alcohol and tripropylamine to make ZSM-5.
SUMMARY OF THE INVENTION
This invention provides a novel process for producing synthetic porous siliceous crystals having a topology corresponding to an x-ray diffraction pattern having as its four (4) strongest lines 11.1.+-.0.2, 10.0.+-.0.2, 3.85.+-.0.07, and 3.71.+-.0.05. In its most generic form, this process is distinct from the prior art in not requiring the presence of organic nitrogen or organic phosphorus compounds in the crystallization both during the production of crystals as described herein.
DESCRIPTION OF SPECIFIC EMBODIMENTS
According to this invention, the presence of organic nitrogen or phosphorus, respectively, compounds is not required to produce crystals of ZSM-5 type topology. One method of avoiding these organic materials is to use seeds of the crystal structure desired together with an otherwise appropriately proportioned reaction mixture. Similarly, lower aliphatic alcohol can be used in place of the organic nitrogen or phosphorus compound as can inorganic ammonium hydroxide. It should be understood that any of these three alternative subgenera can be used in combination with each other.
According to this invention, the necessity of providing nitrogen or phosphorus organic compounds in the crystallization mixture is avoided if the mixture composition is carefully controlled to provide the following ratios:
______________________________________ Broad Preferred______________________________________Na.sub.2 O/SiO.sub.2 0.05-0.7 0.05-0.4SiOl.sub.2 /Al.sub.2 O.sub.3 10-150 30-50H.sub.2 O/Na.sub.2 O 50-800 100-600______________________________________
Although not necessarily essential to the practice of this invention, the production of the described porous siliceous crystals from a crystallization mixture free from nitrogen or phosphorus containing organic compounds can be facilitated by carrying out the crystallization in the presence of a member selected from the group consisting of ZSM-5 seeds, ZSM-11 seeds, mixtures thereof and/or in combination with NH.sub.4 OH and/or alcohol and/or alcohol alone or in combination with ammonium hydroxide. It is to be understood that when seeds are used, ZSM-5 seeds produce ZSM-5 and ZSM-11 seeds produce ZSM-11. This is true whether they are used alone or in a mixture as set forth. It will also be understood that the preferred crystallization mixture ingredients included are: (1) ZSM-5 or ZSM-11 seeds; (2) ZSM-5 or ZSM-11 seeds plus alcohol; (3) ZSM-5 or ZSM-11 seeds plus NH.sub.4 OH; (4) ZSM-5 or ZSM-11 seeds plus alcohol plus NH.sub.4 OH; (5) alcohol; and (6) alcohol plus NH.sub.4 OH.
The aliphatic alcohol preferably is an alcohol containing 2 to 5 carbon atoms. Illustrative are ethanol, propanol, butanol and pentanol. It is contemplated that the alcohols may be straight or branch chain. It is preferred that the alcohol not include one having a quaternary carbon atom such as t-butanol.
ZSM-5 and ZSM-11 seeds may be from previously prepared batches of ZSM-5 and ZSM-11 made by previously described methods. Alternatively, seeds of ZSM-5 or ZSM-11 prepared by the process of this invention may be used. Furthermore, it has been discovered that when subsequent batches of ZSM-5 or ZSM-11 zeolites are made in the same equipment, the residual zeolite is in many cases sufficient to supply the requisite amount of seeds. It is believed that vessels in which ZSM-5 and/or ZSM-11, or other siliceous crystals, are made retain sufficient vestiges of the thus formed crystals to seed following made batches in the same vessel. It has been found that even such vessels which have been apparently rigorously cleaned still retain the ability to foster this crystallization from subsequent batches. In fact, if the crystallization mixture composition and conditions are carefully controlled as set forth herein, the crystallization takes place in the absence of phosphorus or nitrogenous organics even in new, previously unused vessels.
Only a small amount of seeds are needed for the practice of this invention. Generally, from about 0.01% by weight to about 10% by weight of final product is sufficient. It is preferred, however, to use from about 1% by weight to 6% by weight.
Siliceous crystals produced according to this invention are exemplified by the calcined product derived from the material having the x-ray diffraction pattern set forth in Table 1 of U.S. Pat. No. 3,702,886. Such crystals are known to be prepared by the procedure set forth in such patent, vis: preparing a solution containing water, tetrapropyl ammonium hydroxide and the elements of sodium oxide, an oxide of aluminum and an oxide of silica, and having a composition, in terms of mole ratios of oxides, falling within the following ranges:
TABLE A______________________________________ Particularly Broad Preferred Preferred______________________________________ ##STR1## 0.07-1.0 0.1-0.8 0.2-0.75 ##STR2## 0.2-0.95 0.3-0.9 0.4-0.9 ##STR3## 10-300 10-300 10-300 ##STR4## 5-100 10-60 10-40______________________________________
The solution is maintained at reaction conditions until the crystals are formed. Thereafter the crystals are separated from the liquid and recovered. Typical reaction conditions consist of a temperature of from about 75.degree. C. to 175.degree. C., for a period of about six hours to 60 days. A more preferred temperature range is from about 90.degree. to 150.degree. C., with the amount of time at a temperature in such range being from about 12 hours to 20 days.
Similarly, the crystals produced according to this invention are exemplified by the calcined product derived from the material having the x-ray diffraction pattern set forth in table 3 of U.S. Pat. No. 3,709,979. Such crystals are known to be prepared by the procedure set forth in such patent, vis: preparing a solution (R.sub.4 X).sub.2 O, sodium oxide, an oxide of aluminum or gallium, an oxide of silicon or germanium and water and having a composition, in terms of mole ratios of oxides, falling within the following ranges:
TABLE B______________________________________ Broad Preferred______________________________________ ##STR5## 10-150 20-90 ##STR6## 0.05-0.70 0.05-0.40 ##STR7## 0.02-0.20 0.02-0.15 ##STR8## 50-800 100-600______________________________________
wherein R.sub.4 X is a cation of a quarternary compound of an element of Group 5A of the Periodic Table, W is aluminum or gallium and Y is silicon or germanium maintaining the mixture until crystals of the zeolite are formed. Preferably, crystallization is performed under pressure in a stirred autoclave or static bomb reactor. The temperature ranges from 100.degree. C. to 200.degree. C. generally, but at lower temperatures, e.g., about 100.degree. C., crystallization time is longer. Thereafter the crystals are separated from the liquid and recovered. The new zeolite is preferably formed in an aluminosilicate form.
For complete details of the preparation of ZSM-11, U.S. Pat. No. 3,709,979 is incorporated herein by reference.
In their preferred form, the porous siliceous crystals of this invention have, as produced in the presence of aluminum in the crystallization mixture, silica to alumina ratios from about 10 to about 200 when no seeds are used, and up to about 350 when seeds are used.
Crystals of this invention having the topology of ZSM-5 are preferably formed as the aluminosilicate, and can be prepared utilizing materials which supply the elements of the appropriate oxide. Such materials include aluminum sulfate, a mineral acid such as sulfuric acid, sodium aluminate, alumina, sodium silicate, silica hydrosol, silica gel, silicic acid, sodium hydroxide, along with the reagents of the improved method of this invention. It will be understood that each oxide component utilized in the reaction mixture can be supplied by one or more initial reactants, and they can be mixed together in any order. For example, sodium oxide can be supplied by an aqueous solution of sodium silicate. To make the crystals of the present invention, a solution similar to that mentioned for Table A, but having a composition comprising materials having the following mole ratios of oxides may be used:
TABLE C-1______________________________________ Particularly Broad Preferred Preferred______________________________________ ##STR9## 0.07-1.0 0.1-0.8 0.2-0.75 ##STR10## 10-300 10-300 10-300 ##STR11## 5-100 10-60 10-40 ##STR12## 0-400 0-300 0-150 ##STR13## 0-250 0-150 0-100______________________________________
It should be noted that in Table C-1 the OH.sup.- in the NH.sub.4 OH is not included in the two ratios including that ion.
Stated on a different basis the values given in Table C-1 are the same as those set out in Table C-2 below:
TABLE C-2______________________________________ Particularly Broad Preferred Preferred______________________________________ ##STR14## 0.035-0.5 005-0.4 0.1-0.375 ##STR15## 20-600 20-600 20-600 ##STR16## 5-100 10-60 10-40 ##STR17## 0-400 0-300 0-150 ##STR18## 0-250 0-150 0-100______________________________________
The reaction mixture can be prepared in either a batchwise or continuous manner. Crystal size and crystallization time will vary with the nature of the reaction mixture employed.
The ZSM-5 product prepared in accordance with the present invention will exhibit an X-ray powder diffraction pattern conforming to Table C-3:
TABLE C-3______________________________________Interplanar Spacing d(A) Relative Intensity______________________________________11.1 .+-. 0.2 S10.1 .+-. 0.2 S 7.4 .+-. 0.15 W 7.1 .+-. 0.15 W 6.3 .+-. 0.1 W 6.04 .+-.0.1 W 5.97 5.56 .+-. 0.1 W 5.01 .+-. 0.1 W 4.60 .+-. 0.08 W 4.25 .+-. 0.08 W 3.85 .+-. 0.07 VS 3.71 .+-. 0.05 S 3.04 .+-. 0.03 S 2.99 .+-. 0.02 W 2.94 .+-. 0.02 W______________________________________
Crystals of this invention having the topology of ZSM-11 are preferably made as the aluminosilicate utilizing reactants which supply the needed oxides. Thus, the reaction mixture may comprise reactants to yield an alkali metal oxide, e.g., sodium oxide, alumina and silica. The reaction mixture, which also comprises water and the reagents of the present improved method, will have a composition, in terms of mole ratios of oxides, as follows:
TABLE D______________________________________ Broad Preferred______________________________________ ##STR19## 10-150 20-90 ##STR20## 0.05-0.70 005-0.40 ##STR21## 50-800 100-600 ##STR22## 0-400 0-300 ##STR23## 0-250 0-150______________________________________
The porous crystals of this invention are useful in the same manner as those crystals of the same topology produced by prior art techniques, such as cracking, hydrocracking, M-forming, dewaxing, etc. The utility of these crystals has been found to be enhanced by removal of their alkali metal, e.g., sodium content prior to use. Conventional and known techniques, such as ion exchange are known to accomplish this.
With prior made crystals, however, the nitrogen or phosphorus containing organics contained in the pore system upon crystallization impede metal ion exchange and thus must be removed by calcination prior to effective metal ion exchange. Typical replacing cations would include hydrogen, ammonium and metal cations, including mixtures of the same. Of the replacing cations, particular preference is given to cations of hydrogen, ammonium, rare earth, magnesium, zinc, calcium, nickel, and mixtures thereof, generally employed in the form of their salts, preferably the chlorides, nitrates or sulfates.
Representative, more detailed ion exchange techniques are disclosed in a wide variety of patents, including U.S. Pat. Nos. 3,140,249, 3,140,251, 3,140,253 and 3,702,866.
Following contact with the salt solution of the desired replacing cation, the porous crystals prepared in accordance with this invention may be washed with water and dried at a temperature ranging from 150.degree. F. to about 600.degree. F., and thereafter may be heated in air or other inert gas at temperatures ranging from about 500.degree. F. to 1500.degree. F. for periods of time ranging from 1 to 48 hours or more. The products thus produced and treated are also useful as catalysts, for example, in cracking, hydrocracking, M-forming and dewaxing operations.
It is also possible to treat the porous crystals with steam at elevated temperature ranging from 800.degree. F. to 1800.degree. F. and preferably 1000.degree. F. and 1500.degree. F., if such is desired. The treatment may be accomplished in atmospheres consisting partially or entirely of steam.
A similar treatment can be accomplished at lower temperatures and elevated pressures, e.g., 350.degree.-700.degree. F. at 10 to about 200 atmospheres.
The porous siliceous crystals produced in the method of this invention may be used in a porous matrix. The crystals can be combined, dispersed or otherwise intimately admixed with a porous matrix in such proportions that the resulting product contains from 1% to 95% by weight, and preferably from 1 to 70% by weight of the crystal in the final composite.
The term "porous matrix" includes inorganic compositions with which the crystals can be combined, dispersed or otherwise intimately admixed wherein the matrix may be active or inactive. It is to be understood that the porosity of the compositions employed as a matrix can either be inherent in the particular material or it can be introduced by mechanical or chemical means. Inorganic compositions, especially those of a siliceous nature, are preferred. Of these materials inorganic oxides such as clay, chemically treated clay, alumina, silica, silica-alumina, etc. are particularly preferred because of their superior porosity, attrition resistance, and stability. More preferably, alumina is the matrix, and it is preferably combined with the siliceous prior to calcination.
Techniques for incorporating the porous crystals in a matrix are conventional in the art and are set forth for example in U.S. Pat. No. 3,140,253.
The instant invention offers a significant improvement over prior crystallization techniques in that, since it does not include nitrogen or phosphorus containing organics in the crystallization mixture, they are not present in the crystal pores and the as-crystallized product can be directly ion exchanged to remove alkali metal, e.g., sodium, cation without intervening calcination. Thus the process for producing a catalyst-ready porous siliceous crystal is remarkably simplified and improved.





The following Examples serve to illustrate the invention by preparing ZSM-5 crystalline aluminosilicates containing very low levels of organic nitrogen made by various techniques. It will be understood that the examples are not intended in any way to place a limitation on the invention.
A typical preparation of ZSM-5 according to the invention is given hereinbelow. The details and results for the product produced are listed in Example 1 of Table 1. An acid alumina solution containing 12.3 gms of Al.sub.2 (SO.sub.4).sub.3.18H.sub.2 O, 30.0 gms 98% H.sub.2 SO.sub.4 and 600 gms of H.sub.2 O was added to a sodium silicate solution made by mixing 360 gms of Q-Brand sodium silicate (28.8% SiO.sub.2, 8.9% Na.sub.2 O, 62.4% H.sub.2 O) and 450 gms water. To the resultant gel was added 124 gms ethanol. The gel was mixed with the alcohol until homogeneous and crystallized at autogenous pressure in a stirred autoclave at 350.degree. F. for 24 hours. The resultant solid material was water washed and dried at 230.degree. F.
Examples 2-12 were made in a similar manner using the ingredients and conditions as shown in Tables 1-5.
Several of these examples were ion exchanged with ammonium salts without any prior calcination to show that sodium was easily replaced in such a procedure. Results were excellent as indicated in the appropriate tables.
TABLE 1______________________________________ EthanolExample 1 2______________________________________Mix Components, gmsA. Q Brand 360 360 H.sub.2 O 450 450B. Al.sub.2 (SO.sub.4).sub.3.18H.sub.2 O 12.3 12.3 H.sub.2 SO.sub.4 (98%) 30.0 30.0 H.sub.2 O 600 600C. Ethanol 124 124Mole Ratio of MixEthanol 146 146Na.sub.2 O 8.6 8.6Al.sub.2 O.sub.3 1.0 1.0SiO.sub.2 94 94H.sub.2 O 3870 3870Na.sub.2 SO.sub.4 19.0 19.0Crystallization Stirred StirredTemp., .degree.F. 350 350Time, hrs. 24 24ProductX-Ray Analysis ZSM-5 ZSM-5% Crystallinity 90 135Composition, wt. %N 0.03 <0.01Na 1.2 1.0Al.sub.2 O.sub.3 2.35 2.07SiO.sub.2 94.5 93.8Composition, mole RatioN.sub.2 O 0.05Na.sub.2 O 1.14 1.07Al.sub.2 O.sub.3 1.0 1.0SiO.sub.2 68.5 77.0Catalytic PropertiesM-Forming Screening Test (600.degree. F., 400 psig, 15 WHSV,3/1 H.sub.2 /HC) (1.5 g catalyst - charged 50/50 wtn-heptane/benzene)Type Catalyst H.sup.+ (1) H.sup.+N-Heptane Catalyst Conv. wt. % 65.4 68.2Benzene Conv. wt. % 24.6 27.1C.sub.7.sup.+ Aromatics Prod., wt. % 21.4 23.2Selectivity 0.28 0.28______________________________________ (1)Pre-calcination, 1000.degree. F. + NH.sub.4 Exchange
TABLE 2______________________________________Ethanol and SeedsExample 3 4______________________________________Starting Compositions gms.A. Q Brand 45.0 360 H.sub.2 O 56.3 450B. Al.sub.2 (SO.sub.4)3.18H.sub.2 O 1.54 12.3 H.sub.2 SO.sub.4 (98%) 3.75 30.0 H.sub.2 O 77.0 600C. Ethanol 15.5 94.0D. ZSM-5 Seeds 3.25 26.0 (19.3% Solids)Mix Ratio - MolesEthanol 111.0 111.0Na.sub.2 O 8.6 8.6Na.sub.2 SO.sub.4 19.0 19.0Al.sub.2 O.sub.3 1.0 1.0SiO.sub.2 94.0 94.0H.sub.2 O 3870 3870Crystallization, Temp. .degree.F. 350 350Time, hrs. 97 21ProductX-Ray Analysis ZSM-5 ZSM-5% Crystallinity 90 90Composition, wt. %N 0.024 0.037Na 1.50 1.20Al.sub.2 O.sub.3 2.21 4.15SiO.sub.2 97.7Composition, Molar RatioNa.sub.2 O 1.5 0.64Al.sub.2 O.sub.3 1.0 1.0SiO.sub.2 40.0______________________________________
TABLE 3______________________________________ Seeds OnlyExample 5 6______________________________________Starting Components, gmsA. Q Brand 45.0 450 H.sub.2 O 56.3 563B. Al.sub.2 (SO.sub.4).sub.3.18H.sub.2 O 1.54 15.4 H.sub.2 SO.sub.4 (98%) 3.75 37.5 H.sub.2 O 77.0 770C. ZSM-5 seeds 3.25 32.5 (19.3% Solids)Mixed Ratio - MolesNa.sub.2 O 8.6 8.6Na.sub.2 SO.sub.4 19.0 19.0Al.sub.2 O.sub.3 1.0 1.0SiO.sub.2 94 94H.sub.2 O 3870 3870ZSM-5, % Final Product 5.7 5.7Crystallization Static StirredTemp., .degree.F. 350 350Time, hrs. 96 24ProductX-Ray Analysis ZSM-5 ZSM-5% Crystallinity 90 105Composition, wt. %N 0.02 0.03Na 1.50(1) 1.79(1)Al.sub.2 O.sub.3 2.40 2.44SiO.sub.2 97.2Composition, Molar RatioNa.sub.2 O 1.38 1.63Al.sub.23 O.sub.3 1.0 1.0SiOl.sub.2 67.8Catalytic PropertiesM-Forming Screening Test (600.degree. F., 400 psig, 15 WHSV,3/1 H.sub.2 /HC, 1.5 gms. cat.)Type Catalyst H.sup.+ (2)n-heptane Conv., wt. % 89.6Benzene, Conv., wt. % 30.8C.sub.7.sup.+ Aromatics Prod., wt. % 29.2Selectivity 0.31______________________________________ (1)This value is reduced to 0.08% on Example 5 and (0.04% on Example 6 when exchanged with NH.sub.4 Cl without any precalcination. (2)Pre-calcination, 1000.degree. F. + NH.sub.4 exchange.
TABLE 4______________________________________ Ethanol + NH.sub.4 OHExample 7______________________________________Mix Components, gmsA. Q Brand 362 H.sub.2 O 478B. Al.sub.2 (SO.sub.4).sub.3.18H.sub.2 O 13.1 H.sub.2 SO.sub.4 (98%) 31.9 H.sub.2 O 0.58C. Ethanol 131 NH.sub.4 OH, Conc., ml 148Mole Ratio of MixEthanol 146NH.sub.4 OH 114Na.sub.2 O 8.6Al.sub.2 O.sub.3 1.0SiO.sub.2 94.0H.sub.2 O 3870Na.sub.2 SO.sub.4 19.0Crystallization StirredTemp., .degree.F. 350Time, hrs. 21ProductX-Ray Analysis ZSM-5% Crystallinity 110Composition, wt. %N 0.044Na 0.94Al.sub.2 O.sub.3 2.41SiO.sub.2 96.1Composition, mole RatioN.sub.2 O 0.07Na.sub.2 O 0.87Al.sub.2 O.sub.3 100SiO.sub.2 67.8Catalytic PropertiesM-Forming Screening Test (600.degree. F., 400 psig, 15 WHSV,3/1 H.sub.2 /HC) (1.5 g catalyst - charged 50/50 wtn-heptane/benzene)Type Catalyst H.sup.30 (1)n-Heptane Conv., wt. % 76.6Benzene Conv., wt. % 26.4C.sub.7.sup.+ Aromatics Prod., wt. % 24.9Selectivity 0.31______________________________________ (1) NH.sub.4 Exch., 210.degree. F. without precalcination Na = 0.01%
TABLE 5__________________________________________________________________________ EthanolExample 8 9 10 11 12__________________________________________________________________________Mix Components, gmsA. Q Brand 360 45 45 255.2 45 H.sub.2 O 450 56.3 56.3 280 56.3 Ludox (29.5% SiO.sub.2) 450 56.3 56.3 280 56.3B. Al.sub.2 (SO.sub.4).sub.3.18H.sub.2 O 12.42 1.54 1.54 20.0 2.25 H.sub.2 O.sub.4 30.0 3.75 3.75 20.0 2.25 H.sub.2 O 616 77.0 77.0 480 77.0C. Ethanol 124 15.5 15.5 124 15.5 NH.sub.4 OH conc., ml. 140 17.5 17.5 140 17.5D. ZSM-5 seeds (19.3% solids) 26.0 3.25 3.25 21.0 3.25Mole Ratio of MixEthanol 73 73 146 90 336NH.sub.4 OH 115 115 115 69 28.5Na.sub.2 O 8.6 8.6 8.6 2.56 1.66Al.sub.2 O.sub.3 1.0 1.0 1.0 1.0 1.0SiO.sub.2 94.0 94.0 94.0 40.8 23.9H.sub.2 O 3870 2870 3870 1700 990Na.sub.2 SO.sub.4 19.0 19.0 19.0 9.7 5.4ZSM-5 Seeds, % Final Product 5.7 5.7 5.7 5.5 5.4Crystallization Stirred Static Static Stirred StaticTemp., .degree.F. 350 446 255 350 400Time, hrs. 17 22 334 120 96ProductX-Ray Analysis ZSM-5 ZSM-5 ZSM-5 ZSM-5 ZSM-5% Crystallinity 95 110 95 80 65Composition, wt. %N 0.053 0.13 0.19 0.011 0.016C 0.42Na 1.3(1) 0.98 1.7(1) 3.2Al.sub.2 O.sub.3 2.53 2.13 4.36 6.40SiO.sub.2 97.2 95.6 92.8 88.2Composition, mole RatioN.sub.2 O 0.08 0.24 0.01Na.sub.2 O 1.14 1.02 0.87Al.sub.2 O.sub.3 1.0 1.0 1.00 1.0SiO.sub.2 65.3 76.2 36.1 23.4Catalytic PropertiesM-Forming Screening Test (600.degree. F., 400 psig, 15 WHSV,3/1 H.sub.2 /HC) (1.5 g catalyst - charged 50/50 wtn-Heptane/Benzene)Type Catalyst H.sup.+ (2) H.sup.+ (2)n-Heptane Conv., wt. % 80.2 95.0Benzene Conv., Wt. % 32.0 27.8C.sub.7.sup.+ Aromatics Prod., wt. % 28.9 27.4Selectivity 0.32 0.28__________________________________________________________________________ (1)These values are reduced to 0.03% for Example 8 and 0.05% for Example 11. When uncalcined samples are exchanged with NH.sub.4 Cl. (2)Calcination 1000.degree. F. + NH.sub.4.sup.+ Exchange
The following Examples illustrate the practice of this invention to produce as-crystallized porous siliceous crystals having the described topology by carefully controlling the crystallization mixture proportions and in the the absence of organics, nitrogen compounds or phosphorus compounds:
______________________________________Solution ASodium aluminate (43.3% Al.sub.2 O.sub.3, 32.2% Na.sub.2 O, 15.3 g25.6% H.sub.2 O)50% NaOH solution 18.3 gH.sub.2 O 1122 gSolution B 391 gColloidal Silica Sol (30% SiO.sub.2, 70% H.sub.2 O)______________________________________
Solution A was added to Solution B with vigorous stirring and thoroughly mixed. The reaction mixture had the following composition in mole ratios:
______________________________________ SiO.sub.2 /Al.sub.2 O.sub.3 = 30.1 OH.sup.- /SiO.sub.2 = 0.20 H.sub.2 O/SiO.sub.2 = 39.8______________________________________
The mixture was crystallized in a stirred reactor at 175.degree. C. for 3 days. The product was water washed and dried at 120.degree. C. X-ray analysis of the product: ZSM-5, 65% crystallinity. Analysis of the product:
______________________________________Composition, wt. %______________________________________Na 2.5Al.sub.2 O.sub.3 5.7SiO.sub.2 82.2Ash 94.0SiO.sub.2 /Al.sub.2 O.sub.3 24.5Na.sub.2 O/Al.sub.2 O.sub.3 0.97______________________________________
A portion of the as synthesized material was calcined at 540.degree. C. and submitted for adsorption and surface area.
______________________________________M.sup.2 /gm 232Cyclohexane, wt. % 7.4n-Hexane 11.0H.sub.2 O 9.3______________________________________
EXAMPLE 14
Sodium aluminate, sodium hydroxide, colloidal silica (30%) and H.sub.2 O were combined to give a reaction mixture with the following composition in mole ratios:
______________________________________ SiO.sub.2 /Al.sub.2 O.sub.3 = 50.2 OH.sup.- /SiO.sub.2 = 0.2 H.sub.2 O/SiO.sub.2 = 40______________________________________
The mixture was crystallized in a stirred reactor at 175.degree. C. After 48 hours, the product was ZSM-5, 75% crystalline.
The product after washing and then drying at 120.degree. C. had the following composition:
______________________________________ Na, wt. % 1.8 Al.sub.2 O.sub.3 4.2 SiO.sub.2 84.7 Ash 95.0 SiO.sub.2 /Al.sub.2 O.sub.3 34.3 Na.sub.2 O/Al.sub.2 O.sub.3 0.95______________________________________
EXAMPLE 15
56 g of product of Example 13 (as synthesized) was contacted with 10% NH.sub.4 Cl solution (20 cc solution/gm product) at 85.degree. C. with stirring for 1 hour. This was repeated for a total of 5 contacts. The product was washed, dried and calcined at 500.degree. C. The alpha value was 849.
EXAMPLE 16
56 g of product of Example 14 was treated with NH.sub.4 Cl as per Example 3. The alpha value was 556.
Claims
  • 1. In the method of producing porous siliceous crystals having a topology which corresponds to an x-ray diffraction pattern having as its four (4) most significant lines 11.1.+-.0.02, 10.0.+-.0.02, 3.85.+-.0.07, and 3.71.+-.0.05, which process comprises forming an aqueous crystallization mixture having the composition: ##EQU1## and maintaining such aqueous mixture under crystallization conditions of elevated temperatures for a time sufficient to cause said crystals to form; the improvement, whereby producing such crystals having in their as crystallized, uncalcined state substantially no nitrogen or phosphorus containing organic compound in the pores, which comprises providing said aqueous crystallization mixture composition having:
  • ______________________________________ Na.sub.2 O/SiO.sub.2 = 0.05-0.7 SiO.sub.2 /Al.sub.2 O.sub.3 = 10-150 H.sub.2 O/Na.sub.2 O = 50-800______________________________________
  • and having no nitrogen or phosphorus containing organic compound added thereto; and recovering the crystals so produced.
  • 2. The improved process claimed in claim 1 wherein said crystallization mixture comprises:
  • ______________________________________Na.sub.2 O/SiO.sub.2 = 0.05-0.4SiO.sub.2 Al.sub.2 O.sub.3 = 30-50H.sub.2 O/Na.sub.2 O = 100-600______________________________________
  • 3. The improved process claimed in claim 1 wherein said crystallization mixture comprises:
  • ______________________________________ Na.sub.2 O/SiO.sub.2 = 0.09 SiO.sub.2 /Al.sub.2 O.sub.3 = 94 H.sub.2 O/Na.sub.2 O = 450______________________________________
  • 4. The uncalcined, as crystallized product produced by the process of claim 1.
Parent Case Info

This application is a continuation of application Ser. No. 357,956, filed Mar. 15, 1982, now abandoned and a continuation-in-part of application Ser. No. 317,735 filed Nov. 3, 1981, now U.S. Pat. No. 4,994,251. Application Ser. No. 357,956 is a continuation of application Ser. No. 023,117, filed Mar. 23, 1979 and now abandoned. Application Ser. No. 317,735 is a continuation-in-part of application Ser. No. 169,005, filed July 15, 1980, now U.S. Pat. No. 4,341,748 which application, in turn, was a division of application Ser. No. 023,117, filed Mar. 23, 1979, now abandoned. Application Ser. No. 023,117 was a continuation-in-part of application Ser. No. 841,622, filed Oct. 13, 1977, now U.S. Pat. No. 4,175,114 and, in turn, application Ser. No. 841,622 was a continuation-in-part of application Ser. No. 650,481, filed Jan. 19, 1976 and now abandoned and this application was, in turn, a continuation-in-part of application Ser. No. 424,481, filed Dec. 13, 1973, now abandoned.

US Referenced Citations (12)
Number Name Date Kind
3119659 Taggart et al. Jan 1964
3321272 Kerr May 1967
3516786 Maher et al. Jun 1970
3532459 McEvoy et al. Oct 1970
3671191 Maher et al. Jun 1972
3702886 Argauer et al. Nov 1972
3709979 Chu Jan 1973
4061724 Grose et al. Dec 1977
4175114 Plank et al. Nov 1979
4257885 Grose et al. Mar 1981
4269813 Klotz May 1981
4341748 Plank et al. Jul 1982
Foreign Referenced Citations (2)
Number Date Country
2704039 Jan 1977 DEX
1553209 Sep 1979 GBX
Divisions (1)
Number Date Country
Parent 23117 Mar 1979
Continuations (2)
Number Date Country
Parent 357956 Mar 1982
Parent 23117 Mar 1979
Continuation in Parts (4)
Number Date Country
Parent 169005 Jul 1980
Parent 841622 Oct 1977
Parent 650481 Jan 1976
Parent 424481 Dec 1973