This application is related to U.S. Ser. No. 11/413,962, filed Apr. 27, 2006 entitled “Method For Programming a Reference Cell”, and U.S. Pat. No. 6,128,226, issued Oct. 3, 2000 entitled “Method and Apparatus for Operating with a Close to Ground Signal,” to U.S. Pat. No. 6,134,156, issued Oct. 17, 2000 entitled “Method for Initiating a Retrieval Procedure in Virtual Ground Arrays,’ to U.S. Pat. No. 6,535,434, issued Mar. 18, 2003 entitled “Architecture And Scheme For A Non-Strobed Read Sequence,” and U.S. Pat. No. 6,490,204, issued Dec. 3, 2002, entitled “Programming and Erasing Methods For A Reference Cell Of An NROM Array,” the foregoing patents and patent applications being incorporated by reference in their entireties as if set forth herein.
The present invention relates to sensing schemes for read operations on semiconductor devices, and, more particularly, to a method for programming a reference cell for use in a read operation.
Memory devices, such as random access memory (RAM), read-only memory (ROM), non-volatile memory (NVM) and like, are known in the art. These devices provide an indication of the data which is stored therein by providing an output electrical signal. A device called a sense amplifier is used for detecting the signal and determining the logical content thereof. U.S. Pat. No. 4,916,671 to Ichiguchi describes one such sense amplifier.
In general, prior art sense amplifiers determine the logical value stored in a cell by comparing the output of the cell with a fixed reference voltage level. The aforementioned U.S. Pat. Nos. 6,134,156 and, 6,128,226 describe an alternative circuit architecture in which a reference cell is used to generate a reference signal in lieu of a fixed reference voltage value.
When a memory cell is programmed or erased, the signal it generates differs from the reference signal by some margin. Since reading the cell's state should always result the same (i.e., either programmed or erased depending on the cell's state), introducing such margin is necessary to overcome imperfections in the reading process and to compensate for drifts in the cell's threshold voltage (e.g., caused by retention loss or disturbs). A reduction in the original margin due to imperfections in the reading process (e.g., due to operation at different operational conditions) is referred to as “margin loss.”
It is well understood that the placement of a reference signal to which an array cell signal can be compared during sensing can be achieved in a number of ways. When close to ground signals are sensed as in the aforementioned U.S. Pat. Nos. 6,134,156 and 6,128,226 patents, the reference cell signal develops at an intermediate rate between that of a programmed cell and an erased cell. When set this way, the array cells' signals on one side of the reference signal are determined to be programmed cells, while signals on the other side of the reference signal are determined to be erased cells. For example, array cells generating signals smaller than the reference signal are considered to be programmed and array cells generating signals larger than the reference signal are considered to be erased. Conventionally, such placement is achieved by using a reference cell whose current is between the erased and programmed cells' current levels. The reference cell's current level can be controlled by the reference cell's size, its programming level, or its gate voltage level. Furthermore, if voltage signals are used to detect the cells' contents, then the reference signal placement can be controlled by providing a different load capacitance on the reference cell compared to that of the array cells. However, if the array and the reference cells differ in their sizes, in their operating gate voltages, or in their loads then some margin loss will be introduced to the sensing scheme. On the other hand, placing the reference cells' signals by properly programming the reference cells (while operating the array and reference cells at identical conditions) minimizes the sensing scheme sensitivity to operating conditions, process parameters and environmental conditions variations, thereby minimizing the margin loss, if any, that is introduced to the sensing system.
When reference cell placement is by programming, it must be programmed a precise amount in order to achieve its intended purpose. There are difficulties attendant with reliable programming of a reference cell so as to minimize operating margin loss, as well as accurate placement of a programmed reference cell relative to the memory array cells. The present invention provides a method for programming reference cells to minimize margin loss and maximize cycling performance.
The present invention provides a method for programming one or more reference cells, with the programming being performed relative to a prescribed cell on the same die as the reference cell (e.g., a memory cell or a golden bit cell).
According to one aspect of the invention, a method for programming a reference cell for use in an integrated circuit memory having an array of memory cells each exhibiting a native threshold voltage value is described. That method comprising the steps of first locating an address for the memory cell in the array that has the highest native threshold voltage value (VTNH). A reference cell is programmed a predetermined amount and its program state is sensed relative to the VTNH memory cell. The programming and sensing steps are repeated until the sensing step indicates that the reference cell has been programmed an amount sufficient to fail a first preselected read operation.
In a more particular methodology in accordance with this aspect of the invention, the locating step can include the steps of iteratively increasing a gate voltage applied to the memory cells and performing the first preselected read operation at each such applied gate voltage until a final gate voltage is identified at which all the memory cells in the array pass the first preselected read operation. Further, the first preselected read operation can exclude memory cells that have already passed the first preselected read operation at a previously applied gate voltage.
According to another aspect of the invention, a method for programming a reference cell for use in an integrated circuit memory having a plurality of memory cells each exhibiting a native threshold voltage value is described. That method locates an address for the VTNH cell by applying a first gate voltage value at which at least one memory cell fails a first preselected read operation and increasing the applied gate voltage until a final gate voltage value is reached at which each of the memory cells can just pass the first preselected read operation. The reference cell is programmed a predetermined amount and the program state of the reference cell relative to the VTNH memory cell is sensed by performing a second preselected read operation on the reference cell. Tile programming and sensing steps are repeated until the sensing step indicates that the reference cell has been programmed an amount sufficient to fail the second preselected read operation.
According to still another aspect of the invention, a method for programming a set of reference cells for use in performing respective read operations on an integrated circuit memory having a plurality of memory cells is described. That method locates the VTNH cell, determines a placement for a reference voltage read signal relative to the VTNH cell, places a reference voltage erase verify signal relative to the reference voltage read signal, and places a reference voltage program verify signal relative to the reference voltage read signal.
The foregoing methods can have their sensing steps performed relative to the VTNH memory cell and also relative to a native cell (a golden bit cell) on-board the same die.
The inventive method can be utilized to program a reference cell used with a memory array, a sliced array having one or more columns of memory cells, and redundant or auxiliary arrays.
These and other more specific aspects and features of the present invention can be appreciated from the accompanying Drawing Figures and Detailed Description of Certain Preferred Embodiments.
The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the drawings in which:
By way of overview and introduction, the present invention is described in connection with a methodology for programming a reference cell to enable sensing of the contents of a memory cell from close to ground level. Such a memory array is described in the aforementioned U.S. Pat. No. 6,134,156 and U.S. application Ser. No. to be assigned, attorney docket No. 2671/01010, filed on even date herewith, entitled “Architecture And Scheme For A Non-Strobed Read Sequence.” By using a reference cell instead of a fixed threshold for comparison, a low voltage signal can be reliably processed irrespective of any changes in temperature or power supply level. The present invention has applicability to other sensing schemes, including A.C. and D.C. sensing techniques, and with read operations from either the source or drain side of a transistor, as can be appreciated by those of skill in the art.
Reference is made to
The methods of the present invention enable precision programming of reference cells relative to a memory cell oil the die, for example, relative to an array cell, another reference cell, or to a golden bit. Each of these techniques defines a related but different method described herein with reference to a flow diagram of a preferred embodiment for each such technique. These techniques are performed after manufacturing the devices, prior to placing the memory array into service. Generally, there are a number of target threshold voltage values that are set in a corresponding number of reference cells as a result of the reference cell programming process of the invention. That is to say, different types of read operations can be performed on the memory cell such as program verify, erase verify and operations in which temporary states of a cell in the progress of an erase or a program operation should be detected. The basic difference presented by these in-progress read cycles is the placement of the reference cell signal. Since the reference cell's state is not changed according to the type of the read operation, different reference cells should be used for each of these types of operations.
As illustrated in
VT—RD—REF_actual−VTNH>=CM+EM
VT—RD—REF_actual−VT—EV—REF_actual>=EM
VT—RV—REF_actual−VT—RD—REF_actual>=XM
VT—PV—REF_actual−VT—RV—REF_actual>=FM
where VT_RD_REF_actual is the threshold voltage value of a reference cell programmed to implement a cell-contents read operation, VT_EV_REF_actual is the threshold voltage value of a reference cell programmed to implement an erase verify operation concerning the contents of a cell, VT_RV_REF_actual is the threshold voltage value of a reference cell programmed to implement a refresh verify operation concerning the contents of a cell, and VT_PV_REF_actual is the threshold voltage value of a reference cell programmed to implement a program verify operation concerning the contents of a cell.
Next, another reference cell is programmed to be the erase verify cell by programming that cell to have a margin EM below the actual threshold voltage of the RD_REF cell, as can be appreciated from
When put into service, it is desirable to drive both the array cells' and the reference cells' gates with the same voltage supply VCCR during all standard read operations. However, during reference programming, a trimmable external voltage supply (EXT_VCCR) driving the array cells' gates can be used to facilitate the reference cell programming procedure. The effect of trimming the external supply is illustrated in
In
A read operation or “sensing” of a cell can be performed as described in the aforementioned, co-pending U.S. Pat. No. 6,535,434, issued Mar. 18, 2003, entitled “Architecture And Scheme For A Non-Strobed Read Sequence,” which describes the steps taken to sense a close to ground signal and other sensing methods (e.g., DC current sensing).
With reference now to
At a prescribed moment after applying these gate voltages, for example, as described in the aforementioned patent application entitled “Architecture And Scheme For A Non-Strobed Read Sequence,” a read operation is performed on consecutive memory cells in the array against the reference cell (see step 456) until a fail-to-read-1 condition is detected. Assuming that EXT_VCCR has been initially set to a low enough value (e.g., 2 Volts), then the first read operation is expected to fail a read ‘1’ operation, as tested at step 458, since both cells are native and are expected to have similar characteristics. If the read does not fail “read ‘1’” (i.e., it passes), then if the entire array has not already been parsed, as tested at step 460, then the next array cell is selected at step 462 and the process is repeated, starting again at step 456, until a fail read ‘1’ is detected. The address of the array cell that failed the test is stored as well as the EXT_VCCR level, at step 464. The voltage EXT_VCCR is increased at step 466, preferably by a fixed small increment J (typically smaller than 100 mV), and, if the array has not been completely parsed, as tested at step 468, this read operation is repeated starting from the next array cell address at step 470 until the fail read ‘1’ is detected (at step 458). On the other hand, if the array has been completely parsed yet the present address has failed to read ‘1,’ then the die is considered as a bad die, and the operator is advised of this at step 469. A bad die can also be detected if the level of EXT_VCCR has been incremented beyond a prescribed maximum, as shown at step 471. The maximum level for EXT_VCCR can be established based on empirical data for processing similar devices.
After an array cell address is stored at step 464 and a valid next address is obtained at step 470, further addresses are examined to determine whether EXT_VCCR must be incremented and to store a new array cell address. As additional array cells, if any, fail the read ‘1’ test at step 458, the already stored address and EXT_VCCR level can be replaced by the present address and EXT_VCCR level for the presently read array cell, and the EXT_VCCR level can be increased again, with the process continuing from the next array cell address, assuming there are more addresses to parse (as tested at step 468).
As described above, if the read operation repeats starting at the last stored cell address and continues to pass the read ‘1’ operation at step 458 then the last address of the array will eventually be reached, as tested at step 460. Once the entire array has already parsed, the flow proceeds to step 480 at which point a test is made to ensure that the die is not defective by examining the current setting for EXT_VCCR. If EXT_VCCR is above an established minimum setting, then the last stored address is the VTNH memory cell address because it was the last cell that failed to be read as a ‘1’. Also, the last stored level for EXT_VCCR is the V_VTNH level. These values are preserved for use in reference cell programming, as indicated at step 482. On the other hand, if EXT_VCCR is not above an established minimum level, the operator is advised that the die is defective, as indicated at step 484.
This process enables each cell to be read only once, in other words, a single parse of the array locates the VTNH memory cell address, as indicated at step 462. This is a preferred method although other flows for parsing the array can be used although they will probably result in a longer process due to the larger number of read operations (e.g., for each EXT_VCCR level start the read operations at a specific first address and parse the array till a fail read ‘1’ is detected).
The increment step of the EXT_VCCR supply in this process determines the accuracy of the VTNH cell identification. Accuracy of identification means that there is no cell in the array whose threshold voltage is larger than VTNH plus the EXT_VCCR increment step level, where VTNH is the threshold voltage of the cell identified as the VTNH cell. Assume for example that a 100 mV increment step is used. At the end of the process, the stored address indicates the cell that failed read ‘1’ at the stored EXT_VCCR level. The remaining cells that were read in the next loop of read cycles, applying to their gates the stored EXT_VCCR level plus the 100 mV increment step, pass the read ‘1’ test (otherwise the address of the first failing one would have been stored). However, if a smaller increment step was used, for example 50 mV, then one of those remaining cells could have failed the read ‘1’ test. Thus, if a more accurate identification of the VTNH cell is required, then either one of the following two options can be adopted:
A separate aspect of this procedure is that a final voltage value for EXT_VCCR which is arrived at once the array has been parsed provides an indication as to whether the threshold voltage of the reference cell or an array cell is outside of a standard distribution of values. This value is therefore useful in determining the quality of the memory array. If at the end of the process the final EXT_VCCR level is the starting level (EXT_VCCR_min) then this indicates that the reference cell threshold voltage is significantly larger than the array cells' threshold voltages. As well, by setting a maximum level for the EXT_VCCR supply (EXT_VCCR_max), if this level is reached then it indicates that the reference cell threshold voltage is significantly lower than at least one of the array cells' threshold voltages. Any indication of such non-standard distribution of threshold voltages can be used as a quality check and as a basis for a decision such as to reject the part (steps 469 and 484 in
Moreover, while the foregoing steps are operative to locate the VTNH memory cell, they also can serve as a blank test for the memory array, in which all cells are read once, and so the locating process does not increase the sort time during manufacturing.
Optionally, the final value of EXT_VCCR is stored, and, if desired, the value of EXT_VCCR at each cell at which a read ‘1’ operation fails can be stored.
With reference now to
EXT—VCCR=VCCR−M
where M is a prescribed margin suitable for the selected reference cell. For purposes of illustration, assume that the reference cell REF1 is the read reference cell RD_REF shown in
M=CM+EM.
Meanwhile, as indicated at step 520, the reference cell REF1 is driven with a standard supply voltage having a supply voltage value of VCCR. As should be appreciated, the trimmable voltage source EXT_VCCR permits the VTNH array cell signal to be temporarily placed at the target location of the reference cell REF1 signal, by applying a reduced gate voltage during this reference cell programming phase test as compared to the VCCR voltage ordinarily applied to the VTNH (and other array cells) when the memory cell is put into service.
At step 530, a program pulse is applied to the reference cell REF1. A test is then made at step 540 to determine whether the result of a read operation of the VTNH cell (driven by the trimmed gate voltage EXT_VCCR ) against the reference cell REF1 (driven by the standard gate voltage at read, VCCR) is PASS read ‘1’ or FAIL. This test is performed by sensing the program state of the reference cell relative to the VTNH cell (driven by the trimmed gate voltage EXT_VCCR) preferably using the standard sensing scheme that is used when the device is put into service. If it does not pass “read ‘1’”, then the reference cell has not been programmed to the location at which the VTNH cell signal has been temporarily placed (by the trimmed gate voltage EXT_VCCR), and further programming pulses are required. The process loops back to step 530 so that an additional program pulse can be applied, and then a read test as at step 540 is again performed. The program pulses can be applied in a fixed increment (i.e., a predetermined amount), or an algorithm can be employed to enhance the process. For one suitable algorithm, see U.S. application Ser. No. to be assigned (Attorney/Docket No. P-2448-US2, filed on even date herewith, entitled “Programming and Erasing Methods for A Reference Cell of An NROM Array,” which application is a continuation-in-part application of U.S. application Ser. No. 09/730,586, filed Dec. 7, 2000, which is a continuation-in-part application of U.S. Ser. No. 09/563,923, filed May 4, 2000. The process flow ends when the test at step 540 indicates that the reference cell REF1 has been placed at the target location, that is, when it has been programmed an amount sufficient to pass the read ‘1’ test.
The incremental programming of the reference cell REF1 is illustrated in
The process flow of
At step 610, the VTNH cell is driven with EXT_VCCR, that is with the voltage value that was applied at step 510 described above. Namely,
EXT—VCCR=VCCR−M
Meanwhile, at step 620, the reference cell REF1 is driven with a standard gate voltage VCCR. At step 630, a counter N is set to zero for use in flow of
At step 640, the voltage value of EXT_VCCR is decreased by a prescribed amount K, which amount is preferably 50 mV or less, and at step 650 the counter N is incremented. At step 660 the VTNH array cell is read against the reference cell REF1 and a test is made to determine whether the result is PASS read ‘1’. It is expected that in the first loop that the VTNH cell will pass this test, with the process flow looping to step 640 to again decrease the voltage value of EXT_VCCR and then increase the counter N (at step 650). Ultimately, however, EXT_VCCR will be reduced such that the VTNH cell no longer passes the read ‘1’ test, and, at that point, the actual VT of the reference cell REF1 is determined at step 670 to be:
VT—REF1_actual=VTNH+VCCR−EXT—VCCR (1)
Expressed another way, the actual VT of the reference cell REF1 is:
VT_REF1_actual=VTNH+M+N*K,
where N is the number of loops in which the voltage value emanating from the EXT_VCCR source was decreased by the constant amount K.
A further process flow can be used in like manner to increment EXT_VCCR from its new-found value to a higher value by selecting a new voltage interval E, where E<K (e.g., E is 25 mV or less). Yet a further process flow can again decrement EXT_VCCR, and so on, to more accurately place the threshold voltage of the reference cell REF1.
With reference now to the flow diagram of
The threshold voltage for the reference cell REF2 is to be placed at:
VT—REF2=VT—REF1_actual+M2, (2)
where M2 is the margin between REF1 and REF2. M2 can be positive or negative. If the threshold voltage of the reference cell REF2 is lower than that of the reference cell REF1, then M2 is a positive voltage value; otherwise, M2 is a negative voltage value. For example, if REF1 is the RD_REF cell and REF2 is the RV_REF cell, then the margin M2 is XM, as shown in
EXT—VCCR=VCCR−VT_REF1_actual+VTNH−M2
EXT—VCCR=VCCR−M1−N*K−M2
Where, M1 is the original target margin of the REF1 reference cell, N*K is the amount of over programming introduced to the REF1 cell past the original target, and M2 is a positive or negative target margin between the REF1 and REF2 threshold voltages.
For example, if REF2 to be programmed relative to REF1 is the EV_REF cell shown in
Thus, to place REF2 relative to REF1, the gate of the VTNH cell is driven by EXT_VCCR while the gate of REF2 is driven by the standard voltage VCCR, as indicated at steps 710 and 720, respectively. At step 730, a program pulse of a predetermined amount is applied to the reference cell REF2 to move it from its native state and place it at its target programmed state relative to REF1. The cell REF2 is being placed relative to REF1 by sensing its value relative to the VTNH cell, while the VTNH cell is driven by a gate voltage which places the VTNH signal taking into account the actual placement of REF1 and the required margin between the respective VTs of REF1 and REF2. At step 740, the partially programmed reference cell REF2 is tested to see if it still passes a read ‘1’ test, in which case it has not been sufficiently programmed to place it M2 from the reference cell REF1. If the cell fails the read ‘1’ test, as is initially expected since both cells are essentially native, then a further program pulse is applied at step 730 and the test at step 740 is repeated until the reference cell REF2 fails the read ‘1’ test. At that point, the target placement for REF2 has been achieved.
As described above in connection with the target programming of the reference cell REF1, a more accurate location of the actual placement of the reference cell REF2 can be achieved using a process flow as in
VT—REF2=VTNH+M1+N1*K+M2+N2*K.
This refinement may be necessary if the reference cell REF2 is to be used for placing yet a further reference cell, or for other purposes, such as accurate monitoring of the reference cell retention loss after bake.
Further programming of reference cells will follow one of the flows described above, depending if they are programmed relative to the VTNH cell or relative to another, already programmed, reference cell.
It is know in the art that, after manufacturing, memory devices are tested to detect malfunctioning or marginal devices. As part of these tests the array cells may be programmed and then the device is introduced to a relatively high temperature cycle. After this high temperature cycle, the threshold voltage of the array cells may drop by some amount. This threshold voltage drop is known as the “retention loss.” Since the reference cells are also programmed, their threshold voltage may also drop by some amount (which may be different than that of the array cells due to differences in the programming levels of the array cells and the reference cells). Since the threshold voltages of all the programmed memory cells are affected, whether a reference cell or an array cell (including the VTNH cell), there is no relative way to determine the cell's state. A non-relative way to determine the cells threshold voltage state, such as by an external measurement of the cells currents, is very expensive in terms of test time. Thus, an internal relative measurement of the array cells and the reference cells threshold voltages is desired.
A native cell which has never been programmed and which is on-board the same die is utilized to provide an internal relative measurement, in accordance with another aspect of the present invention. This native cell, referred to herein as a “golden cell” or “golden bit,” permits the internal read mechanism to be used not only for the reference cells' programming flow as described above in connection with
The golden bit is a memory cell having the same size, the same environment, similar loads and matched or similar access paths as an array memory cell. However, the golden bit is usually not among the memory cells in the memory array, but rather is typically included in an auxiliary array. Referring back to
DVTNH-GB=V—VTNH−V—GB
can be used to program the reference cells and to now determine the actual threshold voltages of the programmed reference cells relative to the golden bit instead of the VTNH cell. As shown in
VT—REF1=VTNH+M1.
The method consists of placing the golden bit signal at the target place of the programmed reference cell, applying a programming pulse to the reference cell, and reading the contents of the cell to determine its contents. These steps are repeated until a PASS read ‘1’ is detected, as described above in connection with
EXT—VCCR=VCCR−M1−DVTNH-GB.
Preferably, the reference cells are contained in a reference unit which includes a selector that can select which of several reference cells to use for a given operation, wherein each reference cell is programmed as described above to a prescribed level. Further details concerning the use of a selector and multiple reference cells can be found in the aforementioned U.S. patent application Ser. No. to be assigned, attorney docket No. 2671/01148, filed on even date herewith, entitled “Method For Selecting a Reference Cell.”
If the reference cells are NROM cells, they can be used as either single or two bit cells. When used as single bit cells one of the two bits in the cell is programmed as explained above while the other bit can be maintained native, programmed or erased. On the other hand, if the two bits of the NROM reference cell are used as references, then each of them is programmed as explained above.
Persons skilled in the art will appreciate that the present invention is not limited to what has been particularly shown and described hereinabove. Rather the scope of the present invention is defined only by the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
3881180 | Gosney, Jr. | Apr 1975 | A |
3895360 | Cricchi et al. | Jul 1975 | A |
3952325 | Beale et al. | Apr 1976 | A |
4016588 | Ohya et al. | Apr 1977 | A |
4017888 | Christie et al. | Apr 1977 | A |
4145703 | Blanchard et al. | Mar 1979 | A |
4151021 | McElroy | Apr 1979 | A |
4173766 | Hayes | Nov 1979 | A |
4173791 | Bell | Nov 1979 | A |
4247861 | Hsu et al. | Jan 1981 | A |
4257832 | Schwabe et al. | Mar 1981 | A |
4281397 | Neal et al. | Jul 1981 | A |
4306353 | Jacobs et al. | Dec 1981 | A |
4342102 | Puar | Jul 1982 | A |
4342149 | Jacobs et al. | Aug 1982 | A |
4360900 | Bate | Nov 1982 | A |
4373248 | McElroy | Feb 1983 | A |
4380057 | Kotecha et al. | Apr 1983 | A |
4386417 | Collins et al. | May 1983 | A |
4388705 | Sheppard | Jun 1983 | A |
4389705 | Sheppard | Jun 1983 | A |
4404747 | Collins | Sep 1983 | A |
4435786 | Tickle | Mar 1984 | A |
4448400 | Harari | May 1984 | A |
4471373 | Shimizu et al. | Sep 1984 | A |
4494016 | Ransom et al. | Jan 1985 | A |
4507673 | Aoyama | Mar 1985 | A |
4521796 | Rajkanan et al. | Jun 1985 | A |
4527257 | Cricchi | Jul 1985 | A |
4586163 | Koike | Apr 1986 | A |
4613956 | Paterson et al. | Sep 1986 | A |
4630085 | Koyama | Dec 1986 | A |
4663645 | Komori et al. | May 1987 | A |
4665426 | Allen et al. | May 1987 | A |
4667217 | Janning | May 1987 | A |
4672409 | Takei et al. | Jun 1987 | A |
4725984 | Ip et al. | Feb 1988 | A |
4733105 | Shin et al. | Mar 1988 | A |
4742491 | Liang et al. | May 1988 | A |
4758869 | Eitan et al. | Jul 1988 | A |
4760555 | Gelsomini et al. | Jul 1988 | A |
4761764 | Watanabe | Aug 1988 | A |
4769340 | Chang et al. | Sep 1988 | A |
4780424 | Holler et al. | Oct 1988 | A |
4839705 | Tigelaar et al. | Jun 1989 | A |
4847808 | Kobatake | Jul 1989 | A |
4857770 | Partovi et al. | Aug 1989 | A |
4870470 | Bass, Jr. et al. | Sep 1989 | A |
4888735 | Lee et al. | Dec 1989 | A |
4916671 | Ichiguchi | Apr 1990 | A |
4941028 | Chen et al. | Jul 1990 | A |
4961010 | Davis | Oct 1990 | A |
4992391 | Wang | Feb 1991 | A |
5021999 | Kohda et al. | Jun 1991 | A |
5027321 | Park | Jun 1991 | A |
5029063 | Lingstaedt et al. | Jul 1991 | A |
5042009 | Kazerounian et al. | Aug 1991 | A |
5075245 | Woo et al. | Dec 1991 | A |
5081371 | Wong | Jan 1992 | A |
5086325 | Schumann et al. | Feb 1992 | A |
5094968 | Schumann et al. | Mar 1992 | A |
5104819 | Freiberger et al. | Apr 1992 | A |
5117389 | Yiu | May 1992 | A |
5120672 | Mitchell et al. | Jun 1992 | A |
5142495 | Canepa | Aug 1992 | A |
5142496 | Van Buskirk | Aug 1992 | A |
5159570 | Mitchell et al. | Oct 1992 | A |
5168334 | Mitchell et al. | Dec 1992 | A |
5172338 | Mehrotra et al. | Dec 1992 | A |
5175120 | Lee | Dec 1992 | A |
5204835 | Eitan | Apr 1993 | A |
5214303 | Aoki | May 1993 | A |
5237213 | Tanoi | Aug 1993 | A |
5241497 | Komarek | Aug 1993 | A |
5260593 | Lee | Nov 1993 | A |
5268861 | Hotta | Dec 1993 | A |
5276646 | Kim et al. | Jan 1994 | A |
5280420 | Rapp | Jan 1994 | A |
5289412 | Frary et al. | Feb 1994 | A |
5293563 | Ohta | Mar 1994 | A |
5295092 | Hotta | Mar 1994 | A |
5295108 | Higa | Mar 1994 | A |
5305262 | Yoneda | Apr 1994 | A |
5311049 | Tsuruta | May 1994 | A |
5315541 | Harari et al. | May 1994 | A |
5324675 | Hayabuchi | Jun 1994 | A |
5334555 | Sugiyama et al. | Aug 1994 | A |
5335198 | Van Buskirk et al. | Aug 1994 | A |
5338954 | Shimoji | Aug 1994 | A |
5345425 | Shikatani | Sep 1994 | A |
5349221 | Shimoji | Sep 1994 | A |
5350710 | Hong et al. | Sep 1994 | A |
5352620 | Komori et al. | Oct 1994 | A |
5357134 | Shimoji | Oct 1994 | A |
5359554 | Odake et al. | Oct 1994 | A |
5361343 | Kosonocky et al. | Nov 1994 | A |
5366915 | Kodama | Nov 1994 | A |
5375094 | Naruke | Dec 1994 | A |
5381374 | Shiraishi et al. | Jan 1995 | A |
5393701 | Ko et al. | Feb 1995 | A |
5394355 | Uramoto et al. | Feb 1995 | A |
5399891 | Yiu et al. | Mar 1995 | A |
5400286 | Chu et al. | Mar 1995 | A |
5402374 | Tsuruta et al. | Mar 1995 | A |
5412601 | Sawada et al. | May 1995 | A |
5414693 | Ma et al. | May 1995 | A |
5418176 | Yang et al. | May 1995 | A |
5418743 | Tomioka et al. | May 1995 | A |
5422844 | Wolstenholme et al. | Jun 1995 | A |
5424567 | Chen | Jun 1995 | A |
5424978 | Wada et al. | Jun 1995 | A |
5426605 | Van Berkel et al. | Jun 1995 | A |
5428621 | Mehrotra et al. | Jun 1995 | A |
5434825 | Harari | Jul 1995 | A |
5436478 | Bergemont et al. | Jul 1995 | A |
5436481 | Egawa et al. | Jul 1995 | A |
5440505 | Fazio et al. | Aug 1995 | A |
5450341 | Sawada et al. | Sep 1995 | A |
5450354 | Sawada et al. | Sep 1995 | A |
5455793 | Amin et al. | Oct 1995 | A |
5467308 | Chang et al. | Nov 1995 | A |
5477499 | Van Buskirk et al. | Dec 1995 | A |
5493533 | Lambrache | Feb 1996 | A |
5495440 | Asakura | Feb 1996 | A |
5496753 | Sakurai et al. | Mar 1996 | A |
5508968 | Collins et al. | Apr 1996 | A |
5518942 | Shrivastava | May 1996 | A |
5521870 | Ishikawa | May 1996 | A |
5523251 | Hong | Jun 1996 | A |
5523972 | Rashid et al. | Jun 1996 | A |
5530803 | Chang et al. | Jun 1996 | A |
5534804 | Woo | Jul 1996 | A |
5537358 | Fong | Jul 1996 | A |
5544116 | Chao et al. | Aug 1996 | A |
5553018 | Wang et al. | Sep 1996 | A |
5553030 | Tedrow et al. | Sep 1996 | A |
5557221 | Taguchi et al. | Sep 1996 | A |
5557570 | Iwahashi | Sep 1996 | A |
5559687 | Nicollini et al. | Sep 1996 | A |
5563823 | Yiu et al. | Oct 1996 | A |
5566125 | Fazio et al. | Oct 1996 | A |
5568085 | Eitan et al. | Oct 1996 | A |
5568419 | Atsumi et al. | Oct 1996 | A |
5579199 | Kawamura et al. | Nov 1996 | A |
5581252 | Thomas | Dec 1996 | A |
5583808 | Brahmbhatt | Dec 1996 | A |
5590068 | Bergemont | Dec 1996 | A |
5590074 | Akaogi et al. | Dec 1996 | A |
5592417 | Mirabel | Jan 1997 | A |
5596527 | Tomioka et al. | Jan 1997 | A |
5599727 | Hakozaki et al. | Feb 1997 | A |
5600586 | Lee | Feb 1997 | A |
5604804 | Micali | Feb 1997 | A |
5606523 | Mirabel | Feb 1997 | A |
5608679 | Mi et al. | Mar 1997 | A |
5612642 | McClinyock | Mar 1997 | A |
5617357 | Haddad et al. | Apr 1997 | A |
5623438 | Guritz et al. | Apr 1997 | A |
5627790 | Golla et al. | May 1997 | A |
5633603 | Lee | May 1997 | A |
5636288 | Bonneville et al. | Jun 1997 | A |
5638320 | Wong et al. | Jun 1997 | A |
5644531 | Kuo et al. | Jul 1997 | A |
5650959 | Hayashi et al. | Jul 1997 | A |
5654568 | Nakao | Aug 1997 | A |
5656513 | Wang et al. | Aug 1997 | A |
5657332 | Auclair et al. | Aug 1997 | A |
5661060 | Gill et al. | Aug 1997 | A |
5663907 | Frayer et al. | Sep 1997 | A |
5666365 | Kostreski | Sep 1997 | A |
5672959 | Der | Sep 1997 | A |
5675280 | Nomura | Oct 1997 | A |
5675537 | Bill et al. | Oct 1997 | A |
5677867 | Hazani | Oct 1997 | A |
5677869 | Fazio et al. | Oct 1997 | A |
5683925 | Irani et al. | Nov 1997 | A |
5689459 | Chang et al. | Nov 1997 | A |
5694356 | Wong et al. | Dec 1997 | A |
5696929 | Hasbun et al. | Dec 1997 | A |
5708608 | Park et al. | Jan 1998 | A |
5712814 | Fratin et al. | Jan 1998 | A |
5712815 | Bill et al. | Jan 1998 | A |
5715193 | Norman | Feb 1998 | A |
5717581 | Canclini | Feb 1998 | A |
5717632 | Richart et al. | Feb 1998 | A |
5717635 | Akatsu | Feb 1998 | A |
5721781 | Deo et al. | Feb 1998 | A |
5726946 | Yamagata et al. | Mar 1998 | A |
5748534 | Dunlap et al. | May 1998 | A |
5751037 | Aozasa et al. | May 1998 | A |
5751637 | Chen et al. | May 1998 | A |
5754475 | Bill et al. | May 1998 | A |
5760445 | Diaz | Jun 1998 | A |
5760634 | Fu | Jun 1998 | A |
5768184 | Hayashi et al. | Jun 1998 | A |
5768192 | Eitan | Jun 1998 | A |
5768193 | Lee et al. | Jun 1998 | A |
5771197 | Kim | Jun 1998 | A |
5774395 | Richart et al. | Jun 1998 | A |
5777919 | Chi-Yung et al. | Jul 1998 | A |
5781476 | Seki et al. | Jul 1998 | A |
5781478 | Takeuchi et al. | Jul 1998 | A |
5783934 | Tran | Jul 1998 | A |
5784314 | Sali et al. | Jul 1998 | A |
5787036 | Okazawa | Jul 1998 | A |
5793079 | Georgescu et al. | Aug 1998 | A |
5801076 | Ghneim et al. | Sep 1998 | A |
5805500 | Campardo et al. | Sep 1998 | A |
5808506 | Tran | Sep 1998 | A |
5812449 | Song | Sep 1998 | A |
5812456 | Hull et al. | Sep 1998 | A |
5812457 | Arase | Sep 1998 | A |
5815435 | Van Tran | Sep 1998 | A |
5822256 | Bauer et al. | Oct 1998 | A |
5825683 | Chang | Oct 1998 | A |
5825686 | Schmitt-Landsiedel et al. | Oct 1998 | A |
5828601 | Hollmer et al. | Oct 1998 | A |
5834851 | Ikeda et al. | Nov 1998 | A |
5835935 | Estakhri et al. | Nov 1998 | A |
5836772 | Chang et al. | Nov 1998 | A |
5841700 | Chang | Nov 1998 | A |
5847441 | Cutter et al. | Dec 1998 | A |
5861771 | Matsuda et al. | Jan 1999 | A |
5862076 | Eitan | Jan 1999 | A |
5864164 | Wen | Jan 1999 | A |
5867429 | Chen et al. | Feb 1999 | A |
5870334 | Hemink et al. | Feb 1999 | A |
5870335 | Khan et al. | Feb 1999 | A |
5872848 | Romney et al. | Feb 1999 | A |
5875128 | Ishizuka et al. | Feb 1999 | A |
5877537 | Aoki | Mar 1999 | A |
5880620 | Gitlin et al. | Mar 1999 | A |
5886927 | Takeuchi | Mar 1999 | A |
RE36179 | Shimoda | Apr 1999 | E |
5892710 | Fazio et al. | Apr 1999 | A |
5903031 | Yamada et al. | May 1999 | A |
5910924 | Tanaka et al. | Jun 1999 | A |
5920503 | Lee et al. | Jul 1999 | A |
5920507 | Takeuchi et al. | Jul 1999 | A |
5926409 | Engh et al. | Jul 1999 | A |
5930195 | Komatsu et al. | Jul 1999 | A |
5933366 | Yoshikawa | Aug 1999 | A |
5933367 | Matsuo et al. | Aug 1999 | A |
5936888 | Sugawara | Aug 1999 | A |
5940332 | Artieri | Aug 1999 | A |
5946258 | Evertt et al. | Aug 1999 | A |
5946558 | Hsu | Aug 1999 | A |
5949714 | Hemink et al. | Sep 1999 | A |
5949728 | Liu et al. | Sep 1999 | A |
5959311 | Shih et al. | Sep 1999 | A |
5963412 | En | Oct 1999 | A |
5963465 | Eitan | Oct 1999 | A |
5966603 | Eitan | Oct 1999 | A |
5969989 | Iwahashi | Oct 1999 | A |
5969993 | Takeshima | Oct 1999 | A |
5973373 | Krautschneider et al. | Oct 1999 | A |
5982666 | Campardo | Nov 1999 | A |
5986940 | Atsumi et al. | Nov 1999 | A |
5990526 | Bez et al. | Nov 1999 | A |
5991202 | Derhacobian et al. | Nov 1999 | A |
5991517 | Harari et al. | Nov 1999 | A |
5999444 | Fujiwara et al. | Dec 1999 | A |
5999494 | Holzrichter | Dec 1999 | A |
6000006 | Bruce et al. | Dec 1999 | A |
6002614 | Banks | Dec 1999 | A |
6005423 | Schultz | Dec 1999 | A |
6005805 | Takeuchi | Dec 1999 | A |
6011725 | Eitan | Jan 2000 | A |
6018186 | Hsu | Jan 2000 | A |
6020241 | You et al. | Feb 2000 | A |
6028324 | Su et al. | Feb 2000 | A |
6030871 | Eitan | Feb 2000 | A |
6034403 | Wu | Mar 2000 | A |
6034896 | Ranaweera et al. | Mar 2000 | A |
6037627 | Kitamura et al. | Mar 2000 | A |
6040610 | Noguchi et al. | Mar 2000 | A |
6044019 | Cernea et al. | Mar 2000 | A |
6044022 | Nachumovsky | Mar 2000 | A |
6063666 | Chang et al. | May 2000 | A |
6064226 | Earl | May 2000 | A |
6064251 | Park | May 2000 | A |
6064591 | Takeuchi et al. | May 2000 | A |
6074916 | Cappelletti | Jun 2000 | A |
6075402 | Ghilardelli et al. | Jun 2000 | A |
6075724 | Li et al. | Jun 2000 | A |
6078518 | Chevallier | Jun 2000 | A |
6081456 | Dadashev | Jun 2000 | A |
6084794 | Lu et al. | Jul 2000 | A |
6091640 | Kawahara et al. | Jul 2000 | A |
6094095 | Murray et al. | Jul 2000 | A |
6097639 | Choi et al. | Aug 2000 | A |
6107862 | Mukainakano et al. | Aug 2000 | A |
6108240 | Lavi et al. | Aug 2000 | A |
6108241 | Chevallier | Aug 2000 | A |
6117714 | Beatty | Sep 2000 | A |
6118207 | Ormerod et al. | Sep 2000 | A |
6118692 | Banks | Sep 2000 | A |
6122198 | Haddad et al. | Sep 2000 | A |
6128226 | Eitan et al. | Oct 2000 | A |
6128227 | Kim | Oct 2000 | A |
6130452 | Lu et al. | Oct 2000 | A |
6130572 | Ghilardelli et al. | Oct 2000 | A |
6130574 | Bloch et al. | Oct 2000 | A |
6133095 | Eitan et al. | Oct 2000 | A |
6134156 | Eitan | Oct 2000 | A |
6137718 | Reisinger | Oct 2000 | A |
6147904 | Liron | Nov 2000 | A |
6147906 | Bill et al. | Nov 2000 | A |
6150800 | Kinoshita et al. | Nov 2000 | A |
6154081 | Pakkala et al. | Nov 2000 | A |
6156149 | Cheung et al. | Dec 2000 | A |
6157242 | Fukui | Dec 2000 | A |
6157570 | Nachumovsky | Dec 2000 | A |
6163048 | Hirose et al. | Dec 2000 | A |
6163484 | Uekubo | Dec 2000 | A |
6169691 | Pasotti et al. | Jan 2001 | B1 |
6175519 | Lu et al. | Jan 2001 | B1 |
6175523 | Yang et al. | Jan 2001 | B1 |
6181597 | Nachumovsky | Jan 2001 | B1 |
6181602 | Campardo et al. | Jan 2001 | B1 |
6181605 | Hollmer et al. | Jan 2001 | B1 |
6185143 | Perner et al. | Feb 2001 | B1 |
6188211 | Rincon-Mora et al. | Feb 2001 | B1 |
6190966 | Ngo et al. | Feb 2001 | B1 |
6192445 | Rezvani | Feb 2001 | B1 |
6195196 | Kimura et al. | Feb 2001 | B1 |
6198342 | Kawai | Mar 2001 | B1 |
6201282 | Eitan | Mar 2001 | B1 |
6201737 | Hollmer et al. | Mar 2001 | B1 |
6205055 | Parker | Mar 2001 | B1 |
6205056 | Pan et al. | Mar 2001 | B1 |
6205059 | Gutala et al. | Mar 2001 | B1 |
6208200 | Arakawa | Mar 2001 | B1 |
6208557 | Bergemont et al. | Mar 2001 | B1 |
6214666 | Mehta | Apr 2001 | B1 |
6215148 | Eitan | Apr 2001 | B1 |
6215697 | Lu et al. | Apr 2001 | B1 |
6215702 | Derhacobian et al. | Apr 2001 | B1 |
6218695 | Nachumovsky | Apr 2001 | B1 |
6219277 | Devin et al. | Apr 2001 | B1 |
6219290 | Chang et al. | Apr 2001 | B1 |
6222762 | Guterman et al. | Apr 2001 | B1 |
6222768 | Hollmer et al. | Apr 2001 | B1 |
6229734 | Watanabe | May 2001 | B1 |
6233180 | Eitan et al. | May 2001 | B1 |
6240032 | Fukumoto | May 2001 | B1 |
6240040 | Akaogi et al. | May 2001 | B1 |
6246555 | Tham | Jun 2001 | B1 |
6252442 | Malherbe | Jun 2001 | B1 |
6252799 | Liu et al. | Jun 2001 | B1 |
6256231 | Lavi et al. | Jul 2001 | B1 |
6261904 | Pham et al. | Jul 2001 | B1 |
6265268 | Halliyal et al. | Jul 2001 | B1 |
6266281 | Derhacobian et al. | Jul 2001 | B1 |
6272047 | Mihnea et al. | Aug 2001 | B1 |
6275414 | Randolph et al. | Aug 2001 | B1 |
6281545 | Liang et al. | Aug 2001 | B1 |
6282133 | Nakagawa et al. | Aug 2001 | B1 |
6282145 | Tran et al. | Aug 2001 | B1 |
6285246 | Basu | Sep 2001 | B1 |
6285574 | Eitan | Sep 2001 | B1 |
6285589 | Kajitani | Sep 2001 | B1 |
6285614 | Mulatti et al. | Sep 2001 | B1 |
6292394 | Cohen et al. | Sep 2001 | B1 |
6297096 | Boaz | Oct 2001 | B1 |
6297974 | Ganesan et al. | Oct 2001 | B1 |
6304485 | Harari et al. | Oct 2001 | B1 |
6307784 | Hamilton et al. | Oct 2001 | B1 |
6307807 | Sakui et al. | Oct 2001 | B1 |
6320786 | Chang et al. | Nov 2001 | B1 |
6324094 | Chevallier | Nov 2001 | B1 |
6326265 | Liu et al. | Dec 2001 | B1 |
6330192 | Ohba et al. | Dec 2001 | B1 |
6331950 | Kuo et al. | Dec 2001 | B1 |
6335874 | Eitan | Jan 2002 | B1 |
6335990 | Chen et al. | Jan 2002 | B1 |
6337502 | Eitan et al. | Jan 2002 | B1 |
6339556 | Watanabe | Jan 2002 | B1 |
6343033 | Parker | Jan 2002 | B1 |
6344959 | Milazzo | Feb 2002 | B1 |
6346442 | Aloni et al. | Feb 2002 | B1 |
6348381 | Jong et al. | Feb 2002 | B1 |
6348711 | Eitan | Feb 2002 | B1 |
6351415 | Kushnarenko | Feb 2002 | B1 |
6353356 | Liu | Mar 2002 | B1 |
6353554 | Banks | Mar 2002 | B1 |
6353555 | Jeong | Mar 2002 | B1 |
6356062 | Elmhurst et al. | Mar 2002 | B1 |
6356469 | Roohparvar et al. | Mar 2002 | B1 |
6359501 | Lin et al. | Mar 2002 | B2 |
6374337 | Estakhri | Apr 2002 | B1 |
6385086 | Mihara et al. | May 2002 | B1 |
6396741 | Bloom et al. | May 2002 | B1 |
6400209 | Matsuyama et al. | Jun 2002 | B1 |
6400607 | Pasotti et al. | Jun 2002 | B1 |
6407537 | Antheunis | Jun 2002 | B2 |
6410388 | Kluth et al. | Jun 2002 | B1 |
6417081 | Thurgate | Jul 2002 | B1 |
6418506 | Pashley et al. | Jul 2002 | B1 |
6421277 | Tsunesada | Jul 2002 | B2 |
6426898 | Mihnea et al. | Jul 2002 | B1 |
6429063 | Eitan | Aug 2002 | B1 |
6433624 | Grossnikle et al. | Aug 2002 | B1 |
6436766 | Rangarajan et al. | Aug 2002 | B1 |
6436768 | Yang et al. | Aug 2002 | B1 |
6438031 | Fastow | Aug 2002 | B1 |
6438035 | Yamamoto et al. | Aug 2002 | B2 |
6440797 | Wu et al. | Aug 2002 | B1 |
6442074 | Hamilton et al. | Aug 2002 | B1 |
6445030 | Wu et al. | Sep 2002 | B1 |
6448750 | Shor et al. | Sep 2002 | B1 |
6449188 | Fastow | Sep 2002 | B1 |
6449190 | Bill | Sep 2002 | B1 |
6452438 | Li | Sep 2002 | B1 |
6455896 | Chou et al. | Sep 2002 | B1 |
6456528 | Chen | Sep 2002 | B1 |
6456533 | Hamilton et al. | Sep 2002 | B1 |
6456539 | Nguyen et al. | Sep 2002 | B1 |
6458656 | Park et al. | Oct 2002 | B1 |
6458677 | Hopper et al. | Oct 2002 | B1 |
6469929 | Kushnarenko et al. | Oct 2002 | B1 |
6469935 | Hayashi | Oct 2002 | B2 |
6472706 | Widdershoven et al. | Oct 2002 | B2 |
6477084 | Eitan | Nov 2002 | B1 |
6477085 | Kuo | Nov 2002 | B1 |
6490204 | Bloom et al. | Dec 2002 | B2 |
6493266 | Yachareni et al. | Dec 2002 | B1 |
6496414 | Kasa et al. | Dec 2002 | B2 |
6504756 | Gonzalez et al. | Jan 2003 | B2 |
6510082 | Le et al. | Jan 2003 | B1 |
6512701 | Hamilton et al. | Jan 2003 | B1 |
6519180 | Tran et al. | Feb 2003 | B2 |
6519182 | Derhacobian et al. | Feb 2003 | B1 |
6522585 | Pasternak | Feb 2003 | B2 |
6525969 | Kurihara et al. | Feb 2003 | B1 |
6528390 | Komori et al. | Mar 2003 | B2 |
6529412 | Chen et al. | Mar 2003 | B1 |
6532173 | Lioka et al. | Mar 2003 | B2 |
6535020 | Yin | Mar 2003 | B1 |
6535434 | Maayan et al. | Mar 2003 | B2 |
6537881 | Rangarajan et al. | Mar 2003 | B1 |
6538270 | Randolph et al. | Mar 2003 | B1 |
6541816 | Ramsbey et al. | Apr 2003 | B2 |
6552387 | Eitan | Apr 2003 | B1 |
6555436 | Ramsbey et al. | Apr 2003 | B2 |
6559500 | Torii | May 2003 | B2 |
6562683 | Wang et al. | May 2003 | B1 |
6566194 | Ramsbey et al. | May 2003 | B1 |
6566699 | Eitan | May 2003 | B2 |
6567303 | Hamilton et al. | May 2003 | B1 |
6567312 | Torii et al. | May 2003 | B1 |
6570211 | He et al. | May 2003 | B1 |
6574139 | Kurihara | Jun 2003 | B2 |
6577514 | Shor et al. | Jun 2003 | B2 |
6577532 | Chevallier | Jun 2003 | B1 |
6577547 | Ukon | Jun 2003 | B2 |
6583005 | Hashimoto et al. | Jun 2003 | B2 |
6583007 | Eitan | Jun 2003 | B1 |
6583479 | Fastow et al. | Jun 2003 | B1 |
6584017 | Maayan et al. | Jun 2003 | B2 |
6590811 | Hamilton et al. | Jul 2003 | B1 |
6593606 | Randolph et al. | Jul 2003 | B1 |
6594181 | Yamada | Jul 2003 | B1 |
6608526 | Sauer | Aug 2003 | B1 |
6608905 | Muza et al. | Aug 2003 | B1 |
6614052 | Zhang | Sep 2003 | B1 |
6614295 | Tsuchi | Sep 2003 | B2 |
6614686 | Kawamura | Sep 2003 | B1 |
6614692 | Maayan et al. | Sep 2003 | B2 |
6617179 | Kim | Sep 2003 | B1 |
6617215 | Halliyal et al. | Sep 2003 | B1 |
6618290 | Wang et al. | Sep 2003 | B1 |
6624672 | Confaloneri et al. | Sep 2003 | B2 |
6627555 | Eitan et al. | Sep 2003 | B2 |
6630384 | Sun et al. | Oct 2003 | B1 |
6633496 | Maayan et al. | Oct 2003 | B2 |
6633499 | Eitan et al. | Oct 2003 | B1 |
6633956 | Mitani | Oct 2003 | B1 |
6636440 | Maayan et al. | Oct 2003 | B2 |
6639271 | Zheng et al. | Oct 2003 | B1 |
6639837 | Takano et al. | Oct 2003 | B2 |
6639844 | Liu et al. | Oct 2003 | B1 |
6639849 | Takahashi et al. | Oct 2003 | B2 |
6642148 | Ghandehari et al. | Nov 2003 | B1 |
6642573 | Halliyal et al. | Nov 2003 | B1 |
6642586 | Takahashi | Nov 2003 | B2 |
6643170 | Huang et al. | Nov 2003 | B2 |
6643177 | Le et al. | Nov 2003 | B1 |
6643178 | Kurihara | Nov 2003 | B2 |
6643181 | Sofer et al. | Nov 2003 | B2 |
6645801 | Ramsbey et al. | Nov 2003 | B1 |
6649972 | Eitan | Nov 2003 | B2 |
6650568 | Iijima | Nov 2003 | B2 |
6653190 | Yang et al. | Nov 2003 | B1 |
6653191 | Yang et al. | Nov 2003 | B1 |
6654296 | Jang et al. | Nov 2003 | B2 |
6664588 | Eitan | Dec 2003 | B2 |
6665769 | Cohen et al. | Dec 2003 | B2 |
6670241 | Kamal et al. | Dec 2003 | B1 |
6670669 | Kawamura | Dec 2003 | B1 |
6674138 | Halliyal et al. | Jan 2004 | B1 |
6677805 | Shor et al. | Jan 2004 | B2 |
6680509 | Wu et al. | Jan 2004 | B1 |
6686242 | Willer et al. | Feb 2004 | B2 |
6690602 | Le et al. | Feb 2004 | B1 |
6693483 | Deml et al. | Feb 2004 | B2 |
6700818 | Shappir et al. | Mar 2004 | B2 |
6717207 | Kato | Apr 2004 | B2 |
6723518 | Papsidero et al. | Apr 2004 | B2 |
6731542 | Le et al. | May 2004 | B1 |
6738289 | Gongwer et al. | May 2004 | B2 |
6744692 | Shiota et al. | Jun 2004 | B2 |
6765259 | Kim | Jul 2004 | B2 |
6768165 | Eitan | Jul 2004 | B1 |
6781876 | Forbes et al. | Aug 2004 | B2 |
6788579 | Gregori et al. | Sep 2004 | B2 |
6791396 | Shor et al. | Sep 2004 | B2 |
6794249 | Palm et al. | Sep 2004 | B2 |
6794280 | Chang | Sep 2004 | B2 |
6818956 | Kuo et al. | Nov 2004 | B2 |
6829172 | Bloom et al. | Dec 2004 | B2 |
6831872 | Matsuoka | Dec 2004 | B2 |
6836431 | Chang | Dec 2004 | B2 |
6859028 | Toner | Feb 2005 | B2 |
6870772 | Nitta et al. | Mar 2005 | B1 |
6871258 | Micheloni et al. | Mar 2005 | B2 |
6885585 | Maayan et al. | Apr 2005 | B2 |
6885590 | Zheng et al. | Apr 2005 | B1 |
6906357 | Vashchenko et al. | Jun 2005 | B1 |
6912160 | Yamada | Jun 2005 | B2 |
6917541 | Shimbayashi et al. | Jul 2005 | B2 |
6917544 | Maayan et al. | Jul 2005 | B2 |
6928001 | Avni et al. | Aug 2005 | B2 |
6930928 | Liu et al. | Aug 2005 | B2 |
6937523 | Eshel | Aug 2005 | B2 |
6954393 | Lusky et al. | Oct 2005 | B2 |
6967872 | Quader et al. | Nov 2005 | B2 |
6967896 | Eisen et al. | Nov 2005 | B2 |
6996692 | Kouno | Feb 2006 | B2 |
7043672 | Merritt | May 2006 | B2 |
7064983 | Maayan et al. | Jun 2006 | B2 |
7079420 | Shappir et al. | Jul 2006 | B2 |
7116577 | Eitan | Oct 2006 | B2 |
7123532 | Lusky et al. | Oct 2006 | B2 |
7184348 | Crippa et al. | Feb 2007 | B2 |
7352627 | Cohen | Apr 2008 | B2 |
20010006477 | Banks | Jul 2001 | A1 |
20020004878 | Norman | Jan 2002 | A1 |
20020004921 | Muranaka et al. | Jan 2002 | A1 |
20020064911 | Eitan | May 2002 | A1 |
20020132436 | Eliyahu et al. | Sep 2002 | A1 |
20020140109 | Keshavarzi et al. | Oct 2002 | A1 |
20020145465 | Shor et al. | Oct 2002 | A1 |
20020145911 | Maayan et al. | Oct 2002 | A1 |
20020191465 | Maayan et al. | Dec 2002 | A1 |
20020199065 | Subramoney et al. | Dec 2002 | A1 |
20030001213 | Lai | Jan 2003 | A1 |
20030002348 | Chen et al. | Jan 2003 | A1 |
20030021155 | Yachareni et al. | Jan 2003 | A1 |
20030072192 | Bloom et al. | Apr 2003 | A1 |
20030076710 | Sofer et al. | Apr 2003 | A1 |
20030117841 | Yamashita | Jun 2003 | A1 |
20030131186 | Buhr | Jul 2003 | A1 |
20030134476 | Roizin et al. | Jul 2003 | A1 |
20030142544 | Maayan et al. | Jul 2003 | A1 |
20030145176 | Dvir et al. | Jul 2003 | A1 |
20030145188 | Cohen et al. | Jul 2003 | A1 |
20030155659 | Verma et al. | Aug 2003 | A1 |
20030190786 | Ramsbey et al. | Oct 2003 | A1 |
20030197221 | Shinozaki et al. | Oct 2003 | A1 |
20030202411 | Yamada | Oct 2003 | A1 |
20030206435 | Takahashi | Nov 2003 | A1 |
20030208663 | Van Buskirk et al. | Nov 2003 | A1 |
20030209767 | Takahashi et al. | Nov 2003 | A1 |
20030214844 | Iijima | Nov 2003 | A1 |
20030214852 | Chang | Nov 2003 | A1 |
20030218207 | Hashimoto et al. | Nov 2003 | A1 |
20030218913 | Le et al. | Nov 2003 | A1 |
20030222303 | Fukuda et al. | Dec 2003 | A1 |
20030227796 | Miki et al. | Dec 2003 | A1 |
20040007730 | Chou et al. | Jan 2004 | A1 |
20040012993 | Kurihara | Jan 2004 | A1 |
20040013000 | Torii | Jan 2004 | A1 |
20040014280 | Willer et al. | Jan 2004 | A1 |
20040014290 | Yang et al. | Jan 2004 | A1 |
20040017717 | Morishima | Jan 2004 | A1 |
20040021172 | Zheng et al. | Feb 2004 | A1 |
20040027858 | Takahashi et al. | Feb 2004 | A1 |
20040047198 | Lusky et al. | Mar 2004 | A1 |
20040117395 | Gong et al. | Jun 2004 | A1 |
20040136236 | Cohen | Jul 2004 | A1 |
20040151034 | Shor et al. | Aug 2004 | A1 |
20040153621 | Polansky et al. | Aug 2004 | A1 |
20040157393 | Hwang | Aug 2004 | A1 |
20040222437 | Avni et al. | Nov 2004 | A1 |
20050058005 | Shappir et al. | Mar 2005 | A1 |
20050078026 | Cai | Apr 2005 | A1 |
20050117395 | Maayan et al. | Jun 2005 | A1 |
20050117601 | Anderson et al. | Jun 2005 | A1 |
20050140405 | Do et al. | Jun 2005 | A1 |
20050213593 | Anderson et al. | Sep 2005 | A1 |
20050232024 | Atir et al. | Oct 2005 | A1 |
20060084219 | Lusky et al. | Apr 2006 | A1 |
20060126382 | Maayan et al. | Jun 2006 | A1 |
20060126383 | Shappir et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
0 656 628 | Jun 1995 | EP |
0751560 | Jun 1995 | EP |
WO 0184552 | Jun 1995 | EP |
0693781 | Jan 1996 | EP |
0 822 557 | Feb 1998 | EP |
0 843 398 | May 1998 | EP |
0580467 | Sep 1998 | EP |
0461764 | Jul 2000 | EP |
1 071 096 | Jan 2001 | EP |
1073120 | Jan 2001 | EP |
1 091 418 | Apr 2001 | EP |
1126468 | Aug 2001 | EP |
0740307 | Dec 2001 | EP |
1164597 | Dec 2001 | EP |
1 207 552 | May 2002 | EP |
1 223 586 | Jul 2002 | EP |
1 365 452 | Nov 2003 | EP |
001217744 | Mar 2004 | EP |
1297899 | Nov 1972 | GB |
2157489 | Mar 1985 | GB |
54-053929 | Apr 1979 | JP |
60-200566 | Oct 1985 | JP |
60201594 | Oct 1985 | JP |
63-249375 | Oct 1988 | JP |
3-285358 | Dec 1991 | JP |
04-226071 | Aug 1992 | JP |
04-291962 | Oct 1992 | JP |
05021758 | Jan 1993 | JP |
05-326893 | Dec 1993 | JP |
06151833 | May 1994 | JP |
06-232416 | Aug 1994 | JP |
07193151 | Jul 1995 | JP |
08-106791 | Apr 1996 | JP |
08-297988 | Nov 1996 | JP |
09-017981 | Jan 1997 | JP |
09162314 | Jun 1997 | JP |
10-106276 | Apr 1998 | JP |
10 334676 | Dec 1998 | JP |
11-162182 | Jun 1999 | JP |
11-354758 | Dec 1999 | JP |
2001-085646 | Mar 2001 | JP |
2001-118392 | Apr 2001 | JP |
2001-156189 | Jun 2001 | JP |
2002-216488 | Aug 2002 | JP |
3358663 | Nov 2002 | JP |
WO 8100790 | Mar 1981 | WO |
WO 9615553 | May 1996 | WO |
WO 9625741 | Aug 1996 | WO |
WO 9803977 | Jan 1998 | WO |
WO 9931670 | Jun 1999 | WO |
WO 9957728 | Nov 1999 | WO |
WO 0046808 | Aug 2000 | WO |
WO 0165566 | Sep 2001 | WO |
WO 0165567 | Sep 2001 | WO |
WO 0243073 | May 2002 | WO |
WO 03032393 | Apr 2003 | WO |
WO 03036651 | May 2003 | WO |
WO 03054964 | Jul 2003 | WO |
WO 03063167 | Jul 2003 | WO |
WO 03063168 | Jul 2003 | WO |
WO 03079370 | Sep 2003 | WO |
WO 03079446 | Sep 2003 | WO |
WO 03083916 | Oct 2003 | WO |
WO 03088258 | Oct 2003 | WO |
WO 03088259 | Oct 2003 | WO |
WO 03088260 | Oct 2003 | WO |
WO 03088261 | Oct 2003 | WO |
WO 03088353 | Oct 2003 | WO |
WO 03100790 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070253248 A1 | Nov 2007 | US |