This application claims priority to and the benefit of Korean Patent Application No. 2005-120300, filed Dec. 9, 2005, the disclosure of which is incorporated herein by reference in its entirety.
1. Field of the Invention
The present invention relates to a method for systemically propagating a maintenance signal to a multi-protocol label switching (MPLS) layer and an Ethernet layer as well as a physical layer in a virtual private wire service (VPWS) network that uses synchronous digital hierarchy (SDH)/synchronous optical network (SONET) as the physical layer.
2. Discussion of Related Art
In a VPWS system, an Ethernet signal is encapsulated in an MPLS signal and mapped to an MPLS signal, and the MPLS signal is mapped to an SDH signal.
In general, maintenance signal propagation methods have been applied to SDH/SONET, which is synchronous optical transmission equipment, and optical transport hierarchy (OTH). For example, when a physical defect, such as optical cable disconnection between repeaters or between terminal equipment and a repeater, occurs in an SDH/SONET comprising a terminal multiplexer and several repeaters, the repeater inserts “1” in all parts of a synchronous transport module level (STM-N) frame excluding regenerator section overhead (RSOH) so that a multiplex section-alarm indication signal (MS-AIS), an administration unit alarm indication signal (AU-AIS), and a virtual container alarm indication signal (VC-AIS) are automatically generated.
Upon receipt of the MS-AIS, AU-AIS, and VC-AIS, the optical termination equipment recognizes that defect has occurred in a server layer, i.e., a regenerator section other than a multiplexing section or a path section, and does not have to report an alarm indicating the multiplex section or the path section defect, but just regenerator section defect such as the LOS (loss of signal) or LOF (loss of frame) has to be reported to network management equipment.
However, in an MPLS using SDH/SONET as a physical layer, there is no maintenance signal propagation system between the physical layer and an MPLS layer. In case of physical layer failure, a label switched path (LSP) defect is detected at an egress node of an LSP, which makes it difficult to exactly recognize the causes and reasons of defect.
Likewise, in a VPWS transferring an Ethernet signal using a VPWS LSP as a transmission medium, when a defect occurs in an Ethernet flow due to LSP defect, it is difficult to recognize causes of the Ethernet flow defect.
Therefore, with conventional SDH/SONET operation, administration and maintenance (OAM) technology, MPLS OAM technology, and Ethernet OAM technology, it is difficult to recognize a cause and occurrence location of a defect and to prevent a layer-specific defect from occurring due to a physical defect in a network.
It is an object of the present invention to provide a method for propagating a maintenance signal, capable of notifying an Ethernet layer as well as a VPWS, which is a multi-protocol label switching (MPLS) layer, that a physical defect has occurred when the defect occurs in an apparatus accommodating a virtual private wire service (VPWS) signal in next generation-synchronous digital hierarchy (NG-SDH).
It is another object of the present invention to provide a method for propagating a layer-specific maintenance signal, allowing an appropriate action for each layer to be performed and allowing customer edge (CE) equipment as well as provider edge (PE) equipment provided by a network provider to perform end-to-end management.
One aspect of the present invention provides a method for propagating a maintenance signal in a VPWS network, comprising the steps of: when a physical defect signal is detected from a physical layer, generating physical layer maintenance signals including a physical layer alarm indication signal (AIS) and a physical layer remote defect indication (RDI) signal, and transmitting them to its peer node in the backward direction of traffic; when the physical layer AIS is detected, generating and transmitting, at an MPLS layer, an VPWS-BDI (backward defect indication) signal indicating a backward defect to an ingress node, and generating and transmitting, at an Ethernet layer, an Ethernet AIS to an Ethernet subscriber device connected to an egress node; and generating and transmitting, at the Ethernet subscriber device receiving the Ethernet AIS, an RDI signal indicating a backward Ethernet flow defect to an Ethernet subscriber device connected to the ingress node.
Preferably, the VPWS-BDI signal generated at the MPLS layer may have an MPLS-OAM packet structure, a backward defect or a forward defect may be set in a defect type field of the MPLS-OAM packet, and identification information of a node at which a first physical defect is detected may be recorded in a defect location field. The Ethernet maintenance signal generated at the Ethernet layer may have an Ethernet-OAM packet structure.
Preferably, when the physical defect signal is detected at the egress node, the physical layer RDI signal may be transmitted to a transit node, and when the physical defect signal is detected at the transit node, the physical layer RDI signal may be transmitted to the ingress node.
Preferably, when the physical defect signal is detected at the transit node, the MPLS layer may generate and transmit a VPWS-FDI signal indicating a forward defect to the egress node, and the Ethernet layer of the egress node receiving the VPWS-FDI signal may generate and transmit an Ethernet forward defect signal to the Ethernet subscriber device connected to the egress node.
Preferably, when the egress node receives the VPWS-FDI signal from the transit node or detect the physical layer AIS, the generation of an MPLS defect may be prevented, and when the Ethernet AIS is detected, the generation of an Ethernet defect may be prevented.
The above and other features and advantages of the present invention will become more apparent to those of ordinary skill in the art by describing in detail preferred exemplary embodiments thereof with reference to the attached drawings in which:
Hereinafter, exemplary embodiments of the present invention will be described in detail. However, the present invention is not limited to the exemplary embodiments disclosed below and can be implemented in various forms. Therefore, the present exemplary embodiments are provided for complete disclosure of the present invention and to fully inform the scope of the present invention to those of ordinary skill in the art.
In the present invention, in order to systemically propagate a maintenance signal from the physical layer to the Ethernet layer in the VPWS using SDH/SONET as the physical layer, the SDH-VC-MS 201 includes a VC-AIS and a VC-RDI signal, the VPWS-MS 202 includes a VPWS-FDI signal and a VPWS-backward defect indication (BDI) signal, and the ETH-MS 203 includes an ETH-AIS and an ETH-RDI signal.
In addition, in order to transmit the maintenance signal, a path overhead (POH) in an synchronous transport module level (STM-N) frame is used in the SDH-VC 210, which is the physical layer, an MPLS-operation, administration and maintenance (OAM) packet is used in the MPLS layer 220, and an Ethernet-OAM packet is used in the Ethernet layer 230.
However, when an MPLS label switched path (LSP) is established in a single direction, a “return path” is required for transferring a BDI signal.
The obtained VCGs are multiplexed into an STM-N signal by an STM-N unit 605, and the STM-N signal is transmitted to a counterpart's optical transmission device through an SDH network 606.
Subsequently, a receiver of the SDH optical transmission system extracts a VPWS 611 signal from an STM-N signal 607 transferred from the SDH network 606, through reverse processes 608 to 610 of the above-described transmission process. In this way, an Ethernet signal is mapped to a VPWS signal, and the VPWS signal is mapped to an SDH frame. Thus, a VPWS over SDH service can be provided.
When the VC-AIS signal is detected in the MPLS layer, the transit node 102 sets FDI in DT of the MPLS-OAM packet illustrated in
Upon receipt of the VPWS-FDI signal 703, the egress node 103 generates and transmits a VPWS-BDI signal 704 to the ingress node 101. The egress node 103 sets AIS in the OAM type field of the Ethernet OAM packet shown in
In this way, it is possible to propagate a maintenance signal to an MPLS layer and an Ethernet subscriber as well as the physical layer upon physical layer defect, and thus to monitor an Ethernet MAC flow for each subscriber.
Meanwhile, the ingress node 101 can recognize that a defect has occurred in the physical layer, the MPLS LSP layer, and the Ethernet layer, based on the received VC-RDI, VPWS-BDI, and ETH-RDI signals, and perform a layer-specific protection switching function or a protection/restoration function to protect traffic.
Simultaneously, with respect to an Ethernet MAC frame encapsulated in a VPWS packet, the egress node 103 sets AIS in the OAM type field of the Ethernet OAM packets shown in
In this way, it is possible to propagate a maintenance signal to an MPLS layer and an Ethernet layer as well as a physical layer upon physical layer defect, and thus to monitor defect in a flow for each Ethernet subscriber.
Meanwhile, the ingress node 101 can recognize that a defect has occurred in the physical layer, the MPLS LSP layer, and the Ethernet layer, based on the received VC-RDI, VPWS-BDI, and ETH-RDI signals, and perform a layer-specific protection switching function or a protection/restoration function to protect traffic.
Referring to
However, when a defect has occurred at a previous stage of the egress node 103, it is not required to insert an FDI signal into the MPLS layer because the MPLS layer terminates at the egress. Therefore, a VPWS defect is prevented using the LOS signal of the SDH layer (S20).
When an ETH-AIS is received, it is recognized in advance that a defect has occurred in an MPLS layer or an SDH layer, which is a server layer of an Ethernet. Therefore, when an ETH-AIS is received (S30), an Ethernet defect is prevented (S40).
As described above, the method for propagating a maintenance signal in a VPWS network using SDH/SONET according to the present invention has following effects.
First, maintenance signals for layers systemically interwork upon physical defect in accommodating Ethernet subscribers using an SDH as a physical layer of a VPWS. Accordingly, a network maintenance function, which could be performed only by a transmission device of layer 1 such as conventional SDH/SONET or optical transport hierarchy (OTH), can extend to an MPLS layer and Ethernet layer. Therefore, Ethernet lines can be managed by customer edge (CE) equipment as well as provider edge (PE) equipment managed by a network provider.
Second, when a defect occurs in a physical layer, it can be recognized that a defect has occurred in server layers of the upper layers, i.e., an MPLS layer and an Ethernet layer (an SDH layer in case of the MPLS layer, and the MPLS layer in case of the Ethernet layer). Thus, only the SDH layer at which a first defect has occurred is allowed to report the defect, thereby preventing too frequent generation of alarms in a control channel for network management.
While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2005-0120300 | Dec 2005 | KR | national |