The present invention relates to a method for protein purification and suitable kits and buffer systems.
For the purification of proteins by means of immobilized metal affinity chromatography (subsequently referred to as: IMAC) under denaturing conditions usually guadinium-hydrochloride-containing buffers (see Hochuli et al. 1988) or highly concentrated urea-containing buffer solutions are used. Urea-containing buffer solutions have the advantage over guadinium-hydrochloride-containing buffers that the proteins purified with urea-containing buffers can be directly analyzed on SOS-gels. The optimal binding of the proteins to the matrix, the stringency of the washing steps as well as the efficient elution of the protein of interest critically depend on the pH value of the individual buffer solutions used.
The urea-containing buffer solutions known in the prior art however lose their buffer capacity over time, in particular due to a rise of their pH value. Thereby the stringency of the washing steps and thus the selectivity of the protein purification are reduced. Due to the increased value proteins are non-specifically bound to the matrix and can no longer be efficiently washed away. The elution efficiency also decreases. For the purification of recombinant His-tagged proteins via IMAC under denaturing conditions the urea-containing buffer solutions have to be freshly prepared prior to each use or their pH value has to be corrected, i.e. readjusted. This is time consuming and correspondingly disadvantageous.
It is thus the object of the present invention to provide an improved method for protein purification.
The solution to the above problem is provided by the methods, kits and buffer systems specified in claims 1 to 16.
According to one embodiment of the invention, a method for preparing an application buffer for the purification of proteins by means of IMAC under denaturing conditions is provided, which is characterized in that a defined amount of a buffer concentrate having a defined pH value is mixed with a defined amount of a denaturing concentrate, preferably a urea concentrate, whereby an application buffer having a defined pH value is provided.
In the context of the present invention the terms “buffer concentrate” and “application buffer” are used. The term “buffer concentrate” relates to buffer solutions, which are not directly used for purification, but are first mixed with urea to yield the actual application buffer. Preferably, the buffer concentrates do not contain any urea. Initially, urea is present in non-interfering amounts
The term “application buffer” is used for buffer solutions which are already mixed with urea and can be directly used for protein purification, for example as binding, wash or elution buffer.
The essence of the present invention is the separate provision of the components necessary for protein purification, which react with each other and thereby can result in a pH value increase. According to the invention at least one buffer concentrate having a defined and appropriately preadjusted pH value is provided separately from the urea concentrate. A defined amount of the urea concentrate is mixed just prior to use with a defined amount of puffer concentrate, providing an application buffer having a defined composition and a defined and desired pH value. The advantage of providing separate concentrates is that the single components (buffer concentrate and urea concentrate) are stable during storage and that the pH value of the separately stored components is stable over long periods of time (see
The method according to the invention is in particular used in the purification of His-tagged proteins by means of Ni2+-NTA (nickel-nitrilo triacetic acid)-chromatography.
According to one embodiment of the method according to the invention three buffer concentrates are provided, each having a different and already preadjusted pH value. The composition of the buffer concentrates can be identical or different. By mixing these concentrates with a defined amount of urea, at least three application buffers each having a different pH value are obtained. The three basic steps of the method, binding to the matrix, washing the matrix and the subsequent elution of the protein of interest from the matrix each require a buffer having specially adapted, i.e. adjusted pH values (see above). By providing at least three buffer concentrates of different pH values at least three application buffers are provided by mixing with a defined amount of urea concentrate, which not only have a defined composition but also have defined pH values appropriate for the corresponding step. Said application buffers can be directly used, i.e. without further modification, by the user or within an automated method.
According to one embodiment of the method according to the invention, the buffer concentrate used for producing the application buffer for binding has an alkaline pH value, preferably a pH value of from 7.0 to 9.0, particularly preferably a pH value of about 7.5. By mixing of said buffer concentrate with a defined amount of urea concentrate, an application buffer having the same or a higher pH value is produced. According to one embodiment the application buffer for binding has an alkaline pH value, preferably a pH value of from 7.0 to 9.0, particularly preferably a pH value of about 8. The binding buffer can also be used as a lysis buffer und vice versa.
According to this embodiment, the buffer concentrate used for producing the application buffer for washing of the matrix has a slightly acidic pH value, preferably a pH value of from 5.0 to 7.0, particularly preferably a pH value of about 5.6. By mixing this buffer concentrate with a defined amount of urea concentrate, an application buffer having a higher pH value is produced. According to one embodiment the application buffer for washing of the matrix and for releasing non-specifically bound proteins has a slightly acidic to neutral pH value, preferably a pH value of from 5.5 to 7, particularly preferably a pH value of from 6 to 6.5.
The buffer concentrate used for providing the application buffer for elution of the protein according to one embodiment has an acidic pH value, preferably a pH value below 4, particularly preferably a pH value of below 3.5. By mixing of said buffer concentrate with a defined amount of urea concentrate, an application buffer having a higher pH value is produced. According to one embodiment the application buffer for elution of the protein to be purified from the matrix has an acidic pH value, preferably a pH value of below 5.5, particularly preferably a pH value of below 5, e.g. of about 4.5.
The pH values of said buffer concentrates are stable over long periods of time, as can be seen from
The buffer concentrates preferably feature a biological buffer. Biological buffers are used in diverse forms in the area of biology and molecular biology. In contrast to classical, inorganic buffering substances they do not have a negative impact on the system to be examined. Biological buffers often contain zwitter ions. An overview of biological buffers can for example be found on the homepage of Sigma-Aldrich (www.sigmaaldrich.com).
According to one embodiment the buffer concentrate for the preparation of the binding application buffer features a buffer having a buffer capacity in the alkaline range, preferably in a range of about 7.0 to 9.0. HEPES (2-(4-(2-hydroxyethyl)-1-piperazinyl)-ethane sulfonic acid), MES (2-(N-morpholino)ethane sulfonic acid), sodium phosphate, citrate, succinate or acetate buffers are to be mentioned as possible buffers, which are usable according to the invention. Amine-containing buffers are preferably used. A preferred example for a biological, amine-containing buffer is a Tris buffer.
According to one embodiment the buffer concentrates for the preparation of the washing and elution application buffer feature a buffer having a buffering capacity in the neutral to acidic range, preferably in a range of about 4.0 to 7.5. Citrate, succinate or acetate buffers are suitable according to the invention. An especially suited example for a biological buffer is Bis-Tris.
The buffer concentrates for preparing the washing buffer and the elution buffer may have the same composition, wherein said buffers however do have a different pH value. The pH value of the wash concentrate is higher than that of the elution concentrate.
According to one embodiment the buffer concentrates in addition feature salts, for example, NaCl, KCl or KH2PO4, preferably NaH2PO4 and/or non-ionic surfactants, for example Triton X-100, Triton X-114. NP-40, CHAPS, DDM, b-OG, NG, Brij35 or digitonin or preferably Tween. According to one embodiment the buffers additionally contain a preservative, preferably NaN3.
According to one embodiment of the method according to the invention the buffer concentrate used for the preparation of the application buffer contains 25-500 mM, preferably 50-300 mM, particularly preferred 100-250 mM Tris(hydroxymethyl)-aminomethane (in particular for preparing the binding buffer) or BisTris(Bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane (in particular for preparing the washing or elution buffer), as well as additionally 125-750 mM, preferably 250 to 500 mM, particularly preferred 300-450 mM NaH2PO4 and/or 0.025 to 0.5% (v/v) preferably 0.05-0.3% (v/v), particularly preferred 0.1 to 0.25% (v/v) non-ionic surfactants and/or 0.0025 to 0.05%, preferably 0.005-0.03%, particularly preferred 0.01 to 0.025% NaN3. Preferably used are Tris(hydroxymethyl)-aminornethane or BisTris(Bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane in the form of Tris(hydroxymethyl)-aminornethane chloride or BisTris(Bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane chloride.
According to one embodiment of the method according to the invention the urea concentrate separately provided for the preparation of the application buffer is an aqueous solution of 8 to 10 M urea; according to a preferred embodiment the urea concentrate is an aqueous solution of 9.3 to 9.8 M urea, preferably 9.6 M urea.
According to one embodiment one part of the buffer concentrate is mixed with 3.7 parts of the urea concentrate to obtain an application buffer according to the invention. According to one embodiment this mixing ratio is used for the preparation of all application buffers.
The invention further relates to the use of a urea concentrate for the preparation of an application buffer having a defined pH value, wherein a defined amount of a urea concentrate is Mixed with a defined amount of a buffer concentrate. By separately providing the urea concentrate and its mixing with the buffer concentrate just prior to use, application buffers are obtained that not only have a defined composition but also have a defined, pre-determined pH value. This contributes to improved conditions for protein purification which above all may be standardized. Details of the advantages, the composition of the urea and buffer concentrates have been discussed in detail above. We refer to the above disclosure, which applies also with respect to the use.
According to a particular embodiment a kit for the purification of proteins by IMAC under denaturing conditions is provided, which has at least a buffer concentrate having a defined pH value and a urea concentrate for the preparation of at least one application buffer having a defined pH value.
According to one embodiment the kit has at least three buffer concentrates each having a different and defined pH value, which by mixing with a defined amount of urea concentrate respectively result in at least three different application buffers having a defined composition and a defined pH value.
The kit according to the invention is stable due to the separately provided concentrates and thus advantageously suited for storage. Through the small number of components that can be directly used the kit is well-arranged and is thus safely and quickly usable for the user. It is not necessary for the user to adjust the buffer conditions, whereby reproducible and qualitatively constant results are achieved. The kit can also be used by personnel less well trained as it is less error prone. It is thus especially suited for a high throughput of samples. Additionally, the kit can be used in combination with an automated method.
The kit can also be a buffer system for the purification of proteins by IMAC under denaturing conditions, which has at least a buffer concentrate having a defined pH value and a urea concentrate, Which by mixing With the buffer concentrate yields an application buffer having a defined pH value.
Details with respect to the buffer concentrates, the urea concentrate as well as to the application buffers prepared therefrom are provided above. We refer to the above statements, which also apply in the context of the kit and are part of the respective disclosure.
According to one embodiment of the kit according to the invention the buffer concentrate used for the preparation of the application buffers contains 25-500 mM, preferably 50-300 mM, especially preferred 100-250 mM Tris(hydroxymethyl)aminomethane (in particular for the preparation of the binding buffer) or BisTris(Bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane (in particular for the preparation of the washing or elution buffer), as well as additionally 125-750 mM, preferably 250 to 500 mM, particularly preferred 300-450 mM NaH2PO4 and/or 0.025 to 0.5% (v/v), preferably 0.05-0.3% (v/v), particularly preferred 0.1 to 0.25% (v/v) non-ionic surfactants and/or 0.0025 to 0.05%, preferably 0.005-0.03%, particularly preferred 0.01 to 0.025% NaN3. Preferably used is Tris(hydroxymethyl)-aminomethane or BisTris(Bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane in the form of Tris(hydroxymethyl)-aminomethane chloride or BisTris(Bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane chloride.
According to one embodiment of the kit according to the invention the urea concentrate is an aqueous solution of 8 to 10 M urea; according to a preferred embodiment the urea concentrate is an aqueous solution of 9.3 to 9.8 M urea, preferably 9.6 M urea.
According to one embodiment the kit components (buffer concentrate(s), urea concentrate) change their pH value by no more than +/−0.5, preferably by +/−0.3 or +/−0.1. They are therefore suitable for storage and can be used as a closed kit concept.
The kit components suited for storage preferably yield application buffers of a defined pH value +/−0.5 upon mixing the buffer concentrates with the urea concentrate after a storage period of at least 100, preferably 150 days.
The kit can further feature a MAC matrix, preferably a Ni2+-NTA matrix. Said matrix can also be provided in form of beads, in particular magnetic beads.
100 mM NaH2PO4, 10 mM Tris, 8 M urea and 0.05% Tween 20. The pH value of the binding buffer (buffer B-T) was adjusted to pH 8.0, that of the washing buffer (buffer C-T) to pH 6.3 and that of the elution buffer (buffer E-T) to pH 4.5. As shown in
a) depicts the pH value change of a urea-containing binding buffer solution “buffer B-T” for binding of the protein to the matrix. As clearly evidenced in the graph, the pH value of the buffer solution which was adjusted to 8.0 starts to increase linearly after a few days and reaches a pH value of 8.4 after about two months.
b) displays the changes of the pH value for a urea-containing application buffer “buffer C-T” for washing and removing non-specifically bound proteins from the matrix. As clearly evident from the graph the pH value, which was initially adjusted to 6.3, already rises linearly after a few days and reaches a neutral pH value after about 2 months already. Washing the matrix is no longer efficient under these conditions; the pH value has to be re-adjusted.
c) depicts the pH value change in a urea-containing application buffer “buffer E-T” for elution of the proteins of interest from the matrix. As clearly evident from the graph the pH value, which was initially adjusted to 4.5, already rises linearly after a few days and reaches a pH value above 6.5 after about two months already. In this case an efficient elution of the protein is no longer possible, the pH value has to be re-adjusted.
Due to the pH rise binding of the protein to the matrix is no longer optimal; furthermore the stringency of the washing steps is impaired and the elution efficiency is reduced. The use of these buffers over an extended period of time would require regular pH re-adjustments.
The binding buffer concentrate preadjusted to pH 7.5 (here: NTT-7.5) remained at its pH value without fluctuations even after more than 100 days. The wash buffer concentrate preadjusted to pH 5.6 (here NTT-5.6) also remained at its pH value without fluctuations or appreciable changes of the pH value even after more than 100 days. The binding buffer concentrate preadjusted to pH 3.0 (here: NTT-3.0) also remained at its pH value even after more than 100 days without appreciable fluctuations. This experiment demonstrates the pH stability of the concentrates used according to the invention, whereby they may be used within closed kit systems due to their storage stability.
The application buffer for binding (pH 8.0) is made by mixing a defined amount of binding buffer concentrate of pH 7.5 (see above) with the urea concentrate. The application buffer for washing (pH 6.3) is made by mixing the wash buffer concentrate (see above) with the urea concentrate. Each time the application buffers were mixed prior to the measurement from the stored concentrates (buffer concentrate and urea concentrate). The application buffers for binding and for washing made from the concentrates did not show any appreciable pH value changes up to day 150. The same applies to the elution buffer.
The application buffer for elution (pH 4.5) is made by mixing a defined amount of buffer concentrate having pH 3.0 (see above) with the urea concentrate. Over a period of measurement of more than 250 days the elution buffer concentrate shows only a minor, tolerable pH value increase from 4.5 to about 4.9. This demonstrates that even after extended storage, application buffers having a defined composition and a defined, desired pH value are obtained from the individual concentrates by simple mixing. The advantages were described in detail above.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 030 142.6 | Jun 2008 | DE | national |
This application is a continuation of Ser. No. 13/000,259, filed Mar. 22, 2011, which is a §371 National Stage Application of PCT/EP2009/004632, filed Jun. 26, 2009, which claims priority to German Application 102008030142.6 filed Jun. 27, 2008, the contents of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | 13000259 | Mar 2011 | US |
Child | 15089838 | US |