The present invention is directed to methods of providing a film cooled article and more particularly to providing such an article having cooling holes with complex outlet shapes.
In a gas turbine engine, air is pressurized in a compressor and mixed with fuel in a combustor for generating hot combustion gases. Energy is extracted from the gases in a high pressure turbine which powers the compressor, and in a low pressure turbine which powers an external shaft for industrial and marine applications or which powers a fan in a turbofan aircraft engine application.
During operation of gas turbine engines, the temperatures of combustion gases may exceed 1650° C. (3000° F.), considerably higher than the melting temperatures of the metal parts of the engine which are in contact with these gases. Operation of these engines at gas temperatures that are above the metal part melting temperatures is a well established art, and depends in part on supplying a cooling air to the outer surfaces of the metal parts through various methods. Metal parts that are particularly subject to high temperatures include those forming combustors and parts located aft of the combustor.
Thin metal walls of high strength superalloy metals are typically used for enhanced durability while minimizing the need for cooling thereof. Various cooling circuits and features are tailored for these individual components in their corresponding environments in the engine, but all these components typically include rows of film cooling holes, which have become increasingly complex in design.
Metal temperatures can also be maintained below melting levels by using thermal barrier coatings. Although thermal barrier coatings are commonly used to protect the metallic substrate of an article, the presence of the thermal barrier coating can present particular difficulty with the maintenance and repair of such articles. The thermal barrier coating may gradually wear away over time and/or may be removed to re-expose the substrate during repair operations. When a thermal barrier coating is re-applied prior to returning the article to service, the thermal spray process can result in covering the cooling holes and in the case of complex-shaped cooling holes, also obscuring those complex shapes and rendering the features of those shapes ineffective.
A method to reveal underlying complex shaped cooling holes following application of a newly applied thermal barrier coating that maintains performance and also in a way that does not damage the article or the newly applied thermal barrier coating is desirable in the art.
A method of providing a film cooled article is disclosed that comprises providing a metallic article having a first wall surface and a second wall surface and having a cooling hole formed therein, the cooling hole comprising a metering hole extending from an inlet at the second wall surface to an outlet at the first wall surface; exposing the first wall surface of the metallic article; applying a thermal barrier coating overlying the first wall surface and at least partially covering the outlet formed therein; boring through an outer surface of the applied thermal barrier coating to expose the metering hole; removing the thermal barrier coating from a trough portion of the outlet formed in the metallic article; and forming a trough region in the thermal barrier coating that extends from the trough portion of the outlet formed in the metallic article to be flush with the outer surface of the thermal barrier coating.
According to one exemplary embodiment, the method comprises providing a gas turbine engine component having a first wall surface and a second wall surface and having a cooling hole formed therein, the cooling hole comprising a metering hole extending from an inlet at the second wall surface to a chevron shaped outlet at the first wall surface, the component previously having been in service; exposing the first wall surface of the component by stripping remnants of a previously applied first thermal barrier coating; applying a second thermal barrier coating overlying the first wall surface and the chevron shaped outlet formed therein; boring through an outer surface of the second thermal barrier coating to expose the metering hole; removing the second thermal barrier coating from a trough portion of the chevron shaped outlet; and forming a trough region in the second thermal barrier coating extending from the trough portion of the chevron shaped outlet until flush with the outer surface of the second thermal barrier coating, wherein each of the steps of boring, removing and forming are accomplished with a water jet or a laser.
One advantage of exemplary embodiments is that a process is provided by which parts having complex shape cooling holes can be refurbished, allowing for the repair and reuse of parts that might otherwise be scrapped in place of new-make parts.
Another advantage is that the cooling holes can be manufactured and operated at their intended design dimensions and do not need to be oversized to accommodate the possibility that thermal barrier coating overspray from a later repair operation might lead to smaller effective dimensions for the cooling hole. The use of oversized cooling holes can lead to reduced performance, which is avoided through the use of exemplary embodiments.
Yet another advantage is that the cooling holes do not need to be plugged prior to thermal barrier coating application to prevent overspray from lodging therein. The use of plugs can be time consuming and can result in damage to the thermal barrier coating when the plugs are subsequently removed.
Other features and advantages of the present invention will be apparent from the following more detailed description of exemplary embodiments, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
Exemplary embodiments are directed toward methods for providing a film cooled article that includes removing discrete regions of a thermal barrier coating applied overlying articles having cooling holes with a complex shape, and particularly for the repair and reconstruction of such film-cooled articles. By complex shape is meant the cooling hole has an outlet formed with one or more engineered features to direct cooling air to achieve a pre-determined pattern of film cooling and includes, without limitation, chevron, diffuser and trench style cooling holes.
A metallic article is provided having cooling holes on a first wall surface that forms the outer boundary of a suitable cooling circuit provided in the article to receive air bled from the compressor in any conventional manner. In cases where the article is a component of a gas turbine engine, such as a nozzle or a bucket, the article is typically constructed of a nickel-base, cobalt-base or other base superalloy, although any metallic material may be used.
A metallic surface of the article is exposed to which a thermal barrier coating will be applied. In most cases, the article will have previously been in service and exposing the metallic surface of the article will entail stripping remnants of a previously applied thermal barrier coating from the metallic surface in any suitable manner. After the previously applied thermal barrier coating is stripped and the metallic surface of the article substrate is exposed, the article can be inspected and may be the subject of one or more repairs.
Following inspection and any associated repairs, but prior to returning the article to surface, a thermal barrier coating is applied overlying the metallic surface of the article. The thermal barrier coating may be applied by any suitable process, and is usually accomplished by a thermal spray process, such as air plasma spray, for example.
Referring now to
As illustrated in
The two trough portions 126, as illustrated, are bridged by a ridge 127 that may be centered on the metering hole 122. It will be appreciated however, that particular features and their relative dimensions may vary without deviating from the overall chevron shape of the cooling hole outlet 124, nor are exemplary embodiments limited to use with cooling holes 120 having chevron shaped cooling hole outlets 124. Rather, exemplary embodiments can be used with any complex shape cooling hole arrangement.
The application of the thermal barrier coating 200 results in overspray that at least partially covers the cooling hole 120, including some of the thermal barrier coating material partially filling or even completely blocking the metering hole 122 that would reduce or prevent cooling area from reaching the cooling hole outlet 124. Application of the thermal barrier coating 200 also results in obscuring the complex features of the cooling hole outlet 124, including the trough portions 126 that slope away from the metering hole 122 toward the first wall surface 104. As
The thermal barrier coating 200 may be applied to any desired thickness, but typically is applied to a thickness in the range of about 125 microns to about 1525 microns (about 0.005 in. to about 0.060 in.). In some embodiments, the thermal barrier coating 200 may be two or more layers having differing compositions and in some cases may include a bond coat followed by a ceramic top coat. For example, a layer of MCrAlY (in which M is Fe, Co, Ni or a combination) or other material may be applied as a bond coat, followed by a ceramic top coat, such as yttria stabilized zirconia (YSZ). It will be appreciated that such compositions are exemplary only and that any compositions as are known to those of ordinary skill for use with thermal barrier coatings may also be employed.
Turning to
The interior dimensions (i.e. the diameter) of the metering hole 122 may depend upon the particular article 100 with which the cooling holes 120 are employed and the volume of air to be delivered from the inlet at the second wall surface 102 for film cooling of the article 100. As illustrated, however, overspray from the application of the thermal barrier coating 200 can result in the effective dimensions of the metering hole 122 being significantly less after a repair. However, because processes carried out in accordance with exemplary embodiments result in substantially clearing the metering hole 122 of overspray, the cooling holes 120 can be constructed in accordance with intended design dimensions without subsequent limitations on operation or the need to produce oversized cooling holes that can lead to reduced performance.
Re-establishing the cooling hole 120 includes boring through an outer surface of the thermal barrier coating 200 to expose the metering hole 122, revealing the obscured outlet features, including the trough portions 126, and forming a trough in the thermal barrier coating 200 itself to form part of the cooling hole outlet 124. Although exemplified in a particular order as shown in the sequential
Each of the steps to remove thermal barrier coating material and re-establish the cooling holes 120 can independently be accomplished through the use of a tool such as a water jet or laser. In some cases, a mechanical bit or other device may also be used as the removal tool. Particularly in cases in which a water jet or laser is used as the removal tool, it may be desirable to continue to use the same tool for each step. In some cases, the tool may be electronically controlled by a computer for greater precision in accomplishing the removal steps.
Turning to
Once the metering hole 122 has been re-opened, it can be used as a guide to remove thermal barrier coating overspray from other parts of the cooling hole outlet 124 based on the known dimensions of the cooling hole 120 and/or the orientation of the article 100. The tool can thus be used to reveal the trough portion 126 and other features of the complex shape cooling hole outlet 124 that had been obscured following application of the thermal barrier coating 200.
As seen in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.