Method for providing a nanoscale, high electron mobility transistor (HEMT) on insulator

Information

  • Patent Grant
  • 8173526
  • Patent Number
    8,173,526
  • Date Filed
    Monday, June 22, 2009
    15 years ago
  • Date Issued
    Tuesday, May 8, 2012
    12 years ago
Abstract
Various embodiments include forming a silicon-germanium layer over a substrate of a device; forming a layer in the silicon-germanium layer, the layer including at least one of boron and carbon; and forming a silicon layer over the silicon-germanium layer. Additional embodiments are described.
Description
TECHNICAL FIELD

Embodiments of the invention relate generally to methods of fabrication of integrated circuits (ICs), including a method of fabricating high electron mobility transistors on semiconductor-on-insulator substrates.


BACKGROUND ART

Several material systems have emerged as key facilitators to extend Moore's law well into the next decade. These key facilitators include (1) silicon-on-insulator (SOI), (2) silicon-germanium (SiGe), and (3) strained silicon. With reference to SOI and related technologies, there are numerous advantages associated with an insulating substrate. These advantages include reduced parasitic capacitances, improved electrical isolation, and reduced short-channel-effects. Advantages of SOI can be combined with energy bandgap and carrier mobility improvements offered by Si1-xGex and strained silicon devices.


SOI substrates generally include a thin layer of silicon on top of an insulator. Integrated circuit components are formed in and on the thin layer of silicon. The insulator can comprise insulators such as silicon dioxide (SiO2), sapphire, or various other insulative materials.


Currently, several techniques are available to fabricate SOI substrates. One technique for fabricating SOI substrates is separation by implantation of oxygen (SIMOX). In a SIMOX process, oxygen is implanted below a surface of a silicon wafer. A subsequent anneal step produces a buried silicon dioxide layer with a silicon overlayer. However, the time required for an implantation in a SIMOX process can be extensive and, consequently, cost prohibitive. Moreover, an SOI substrate formed by SIMOX may be exposed to high surface damage and contamination.


Another technique is bond-and-etch-back SOI (BESOI) where an oxidized wafer is first diffusion-bonded to a non-oxidized water. With reference to FIG. 1A, a silicon device wafer 100 and a silicon handle wafer 150 comprise major components for forming a BESOI wafer. The silicon device wafer 100 includes a first silicon layer 101, which will serve as a device layer, an etch-stop layer 103, and a second silicon layer 105. The etch-stop layer 103 frequently comprises carbon. The silicon handle wafer 150 includes a lower silicon dioxide layer 107A, a silicon substrate layer 109, and an upper silicon dioxide layer 107B. The lower 107A and upper 107B silicon dioxide layers are frequently thermally grown oxides formed concurrently.


In FIG. 1B, the silicon device wafer 100 and the silicon handle wafer 150 are brought into physical contact and bonded, one to the other. The initial bonding process is followed by a thermal anneal, thus strengthening the bond. The silicon device wafer 100 in the bonded pair is thinned. Initially, most of the second silicon layer 105 is removed by mechanical grinding and polishing until only a few tens of micrometers (i.e. “microns” or μm) remain. A high-selectivity wet or dry chemical etch removes remaining portions of the second silicon layer 105, stopping on the etch-stop layer 103. (Selectivity is discussed in detail, below.) An end-result of the second silicon layer 105 etch process is depicted in FIG. 1C.


During the etching process the silicon handle wafer 150 is protected by a coated mask layer (not shown). In FIG. 1D, the etch-stop layer 103 has been removed using another high-selectivity etchant. As a result of these processes, the first silicon layer 101, serving as a device layer, is transferred to the silicon handle wafer 150. A backside of the silicon substrate layer 109 is ground, polished, and etched to achieve a desired overall thickness.


To ensure BESOI substrates are thin enough for subsequent fabrication steps as well as meeting contemporary demands for ever-decreasing physical size and weight constraints, BESOI requires the presence of the etch-stop layer 103 during the layer transfer process. Currently, two main layer transfer technologies exist: 1) splitting of a hydrogen-implanted layer from a device layer (a hydrogen implantation and separation process), and 2) selective chemical etching. Both technologies have demonstrated they meet requirements of advanced semiconductor processing.


In the hydrogen implantation and separation process, hydrogen (H2) is implanted into silicon having a thermally grown silicon dioxide layer. The implanted H2 produces embrittlement of the silicon substrate underlying the silicon dioxide layer. The H2 implanted wafer may be bonded with a second silicon wafer having a silicon dioxide overlayer. The bonded wafer may be cut across the wafer at a peak location of the hydrogen implant by appropriate annealing.


The BESOI process described is relatively free from ion implant damage inherent in the SIMOX process. However, the BESOI process requires a time consuming sequence of grinding, polishing, and chemical etching.


Contemporary Etch-Stops


As described above, the BESOI process is a manufacturing-oriented technique to build silicon on insulator substrates and is partially dependent upon chemical retching.


Etch-stop performance is described by a mean etch selectivity, S, which defines an etch rate ratio of silicon to the etch-stop layer






S
=


R
Si


R
es







where RSi is an etch rate of silicon and Res is an etch rate of the etch-stop. Therefore, a selectivity value where S=1 relates to a case of no etch selectivity.


One method to evaluate etch-stop efficiency is to measure a maximum etch step height across etch-stop and non-etch-stop boundaries. In FIG. 2A, an etch-stop 203A is formed by ion implantation into a portion of a silicon substrate 201A. The etch-stop 203A has a thickness d1 at time t=0 (i.e., prior to application of any etchant). At time t=t1 (FIG. 2B), a partially etched silicon substrate 201B is etched to a depth h1. The etch-stop 203A is now a, partially etched etch-stop 2038. The partially etched etch-stop 203B is etched to a thickness of d2. At time t=t2 (FIG. 2C), the partially etched etch-stop 203B (see FIGS. 2A and 2B) has been completely etched and a fully etched silicon substrate 201C achieves a maximum etch step height of h2. An etch rate of the etch-stop 203A (FIG. 2A) is partially dependent upon both a dopant material implanted as well as an implant profile of the dopant employed. From a practical point of view, the maximum etch step is a critical quantity since it determines an acceptable thickness variation of the device wafer after grinding and polishing prior to etch back, in the BESOI process.


For example, if a maximum etch step is 3 units, the allowable thickness non-uniformity of the device wafer after the usual mechanical thinning procedure should be less than 1.5 units. The mean etch selectivity, S, can be derived from the effective etch-stop layer thickness d1 and the maximum etch step h2 as






S
=






d
1

+

h
2


t



d
1

t











S

=

1
+


h
2


d
1









where t is the etch time required to reach the maximum etch step height h2. In the prior example, t2 is the etch time required to reach the maximum etch step height h2.


In addition to problems created by reduced selectivity, other problems may arise with using carbon or boron as an etch-stop. A skilled artisan recognizes that carbon diffuses readily in a pure silicon and thus the etch-stop layer readily increases in thickness. Boron also diffuses readily in silicon and grows in thickness after subsequent anneal steps. Carbon and boron etch-stop layers of the prior art are frequently hundreds of nanometers in width (at full-width half-maximum (FWHM)). Therefore, what is needed is an extremely thin and robust etch-stop layer having a high etchant selectivity in comparison with silicon.


SUMMARY

One embodiment includes a high electron mobility transistor comprising a substrate with a relaxed silicon-germanium layer formed over the substrate. The silicon-germanium layer has an etch-stop layer comprising less than about 70% germanium and contains dopant elements of carbon and/or boron. A strained silicon layer is formed over the relaxed silicon-germanium layer and configured to act as quantum well device.


Another embodiment includes a high electron mobility transistor comprising a substrate and a relaxed silicon-germanium layer formed over the substrate. A dopant layer is formed within the relaxed silicon-germanium layer. The dopant layer contains carbon and/or boron and has a full-width half-maximum (FWHM) thickness value of less than approximately 70 nanometers. A strained silicon layer is formed over the relaxed silicon-germanium layer and is configured to act as quantum well device.


Another embodiment includes a method to fabricate a high electron so mobility transistor. The method includes flowing a carrier gas over a substrate in a deposition chamber, flowing a silicon precursor gas over the substrate in the deposition chamber, flowing a germanium precursor gas over the substrate, and forming a relaxed silicon-germanium layer such that the silicon-germanium layer contains less than about 70% germanium. A dopant precursor gas containing carbon and/or boron is flowed over the substrate in the deposition chamber and forms a dopant layer to act as at least a portion of an etch-stop layer. A strained silicon layer is formed over the relaxed silicon-germanium layer to act as a quantum well region. The substrate is annealed to a temperature of 900° C. or greater. A thickness of the dopant layer is maintained to less than 70 nanometers when measured as a full-width half-maximum (FWHM) value.


Another embodiment includes a high electron mobility transistor comprising a substrate, a relaxed silicon-germanium layer formed over the substrate, and a boron layer formed within the relaxed silicon-germanium layer. The boron layer has a full-width half-maximum (FWHM) thickness value of less than approximately 70 nanometers. A strained silicon layer is formed over the relaxed silicon-germanium layer and is configured to act as quantum well device.


Another embodiment includes a high electron mobility transistor comprising a substrate, a relaxed silicon-germanium layer formed over the substrate, and a carbon layer formed within the relaxed silicon-germanium layer. The carbon layer has a full-width half-maximum (FWHM) thickness value of less than approximately 70 nanometers. A strained silicon layer is formed over the relaxed silicon-germanium layer and is configured to act as quantum well device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1D are cross-sectional views of a prior art bond and etch back silicon on insulator (BESOI) fabrication technique.



FIGS. 2A-2C are cross-sectional views of an etch-stop formed on a silicon substrate, indicating a method to determine etch-stop efficiency.



FIG. 3 is a graph indicating germanium diffusion at various anneal temperatures.



FIG. 4 is a graph indicating a full-width half-maximum (FWHM) depth of a boron profile produced in accordance with the embodiments of the present invention and measured after thermal annealing steps.



FIG. 5 is a graph indicating carbon diffusion depth in strained SiGe:C:B at various anneal temperatures.



FIG. 6 is a graph indicating boron diffusion depth in SiGe with carbon at various anneal temperatures.



FIGS. 7A-7B are cross-sectional views of high electron mobility transistor (HEMT) device layers.



FIG. 8 is a cross-sectional view of a quantum well HEMT device.



FIG. 9 is a graph indicating electron mobility enhancement for a Si/SiGe MOS transistor device.





DETAILED DESCRIPTION

Disclosed herein are a fabrication method and a structure resulting therefrom for a high electron mobility transistor (HEMT) formed on, for example silicon-on-insulator (SOI) containing a silicon (Si), germanium (Ge), and/or silicon-germanium (SiGe) nanoscale etch-stop. Various dopant types, such as boron (B), carbon (C), and germanium are considered for fabricating the nanoscale etch-stop. The nanoscale etch-stop described herein has particular applications in BESOI processing. However, the disclosed etch-stop is not limited only to BESOI applications.


Boron-Doped Silicon


Silicon etch rates of all aqueous alkaline etchants are reduced significantly if silicon is doped with boron in concentrations exceeding 2×1019 cm−3. However, widths of boron in ion implanted profiles can be greater than 200 nm to 300 nm depending on chosen quantities of ion implant energy and dosage. Typically, high dosage requirements also lead to a great deal of concentration-dependent outdiffusion. Therefore, the transferred silicon device layer thickness can exhibit a very wide thickness range since the etch process itself will have a wide profile range over which to stop on the boron-doped layer. The wide layer range poses significant process integration problems. By adding carbon and/or germanium, the boron diffusion can be effectively mitigated at temperatures of approximately 1000° C. for 10 seconds or longer.


A device or substrate designer may prefer boron over carbon and/or Ge as a etch-stop depending on device requirements. For example, a design decision may be driven by a preferred majority carrier type and concentration, or a minority carrier type and concentration. One skilled in the art will recognize that adding carbon to a boron-doped layer will diminish carrier mobility. Consequently, more boron is required to compensate for the diminished carrier effect. A skilled artisan will further recognize that the addition of Ge to form a strained lattice in elemental or compound semiconductors enhances in-plane majority carrier hole mobility but diminishes in-plane majority carrier electron mobility. Therefore, if boron is added to a carbon and/or germanium-doped lattice, the fabrication process must be completely characterized. The process will be a function of gas flows, temperatures, and pressures.


Boron may be doped into either a silicon substrate or film, or a compound semiconductor substrate or film. The compound semiconductor film may be chosen from a Group III-V semiconductor compound such as SiGe, GaAs, or InGaAs. Alternatively, a Group II-VI semiconductor compound may be chosen such as ZnSe, CdSe, or CdTe.


Carbon-Doped and/or Germanium Doped Silicon


Traditional germanium implantation and subsequent thermal anneals result in a germanium profile frequently hundreds of nanometers in depth. This profile range is especially true when subsequent anneal temperatures are over 1000° C. An approximation of an “as-implanted” profile width, measured at FWHM, can be determined as






width


dose

peak





concentration







An Si1-x-y-zGexCyBz Etch-Stop


Using a combined SiGe:C:B approach limits both carbon and boron diffusion in silicon when particular combinations of the elements are used. In an exemplary embodiment, composition ranges for the Si1-x-y-zGexCyBz layers are:

    • x (Ge): 0% up to about 70% (3.5×1022 cm−3)
    • y (C): 0 cm−3 up to about 5×1021 cm−3
    • z (B): 0 cm−3 up to about 5×1021 cm−3


Secondary-ion mass spectrometry (SIMS) data are displayed, in FIGS. 3-6, for boron, germanium, and carbon diffusion in silicon for various anneal temperatures (or bonding temperatures in the case of BESOI) from 900° C. to 1200° C. for 10 seconds. In particular, FIG. 3 indicates germanium diffusion in silicon at various temperatures. Even at a 1200° C. anneal temperature, a FWHM value of germanium diffusion of approximately 70 nm (i.e., a range of about 30 nm to 100 nm) is achieved. At temperatures of less than 1050° C., a FWHM value of germanium diffusion of less than 40 nm is indicated.


With reference to FIG. 4, a SIMS profile graph 400 represents data from a diffusion profile of boron in carbon and Ge-doped silicon (SiGe:C:B). A location of the Ge dopant is illustrated by a lower 401 and an upper 403 vertical line positioned at 50 nm and 85 nm depths, respectively. The boron remains relatively fixed up to temperatures of 1000° C., then diffuses rapidly at higher temperatures (anneal times are 10 seconds at each temperature). However, the presence of both carbon and Ge, as introduced under embodiments of the present invention, reduces boron outdiffusion. Depending on concentrations and temperatures involved, the presence of carbon and Ge reduces overall boron diffusion by a factor of ten or more. In a specific exemplary embodiment, the particular alloy of SiGe:C:B is Si0.975Ge0.02C0.002B0.003. Thus, a ratio Of Si to Ge is approximately 50:1 and a ratio of B to C is approximately 1.5:1.



FIG. 5 indicates, in another embodiment, a significantly lower ratio Si to Ge SIMS profile. Carbon diffusion levels in strained SiGe:C:B are indicated as grown and at subsequent anneal temperatures of 900° C. to 1200° C. The data show carbon diffusion primarily from undoped spacer regions (not shown) in which the spacer regions have no B doping. However, a center region of the SIMS profile (i.e., at a depth of roughly 60 nm to 80 nm) indicates that carbon diffusion is significantly mitigated due to the presence of B in the SiGe film. In this exemplary embodiment, the SiGe:C:B film is 79.5% Si, 20% Ge, 0.2% C, and 0.3% boron, prior to thermal anneal (SiO0.795Ge0.2C0.002B0.003). Thus a ratio of Si to Ge is approximately 4:1 and a ratio of B to C is approximately 1.5:1.



FIG. 6 is a SIMS profile 600 indicating boron diffusion depth in SiGe with carbon at various anneal temperatures. The SiGe film employed in this embodiment is also Si0.795Ge0.2C0.002B0.003, similar to the film used in producing the graph of FIG. 5. Note the SIMS profile 600 indicates that, following a 1200° C. anneal for 10 seconds, germanium has diffused from a peak of 20% (i.e., approximately 1.0×1022 atoms/cm3) to a peak concentration of 7.7% (i.e., approximately 3.85×1021 atoms/cm3). Boron has diffused from a peak of 1.5×1020 atoms/cm3 to a peak of 1.0×1019 atoms/cm3. Additionally, carbon has diffused but the diffusion mechanism involved is due primarily to the SiGe spacers (the outside edges that contained only Ge and C during the initial growth). The carbon peak has diffused from 1.0×1020 atoms/cm3 down to 7.0×1019 atoms/cm3 (indicating roughly a 30% peak reduction). The final diffused profile of the carbon is narrower than the as-grown profile. As a result, the final diffused carbon profile, even after a 1200° C. anneal is less than 20 nm wide at FWHM.


Fabrication Process for the Etch-Stop Layer


Overall, process conditions can vary widely depending upon particular devices fabricated, specific equipment types employed, and various combinations of starting materials. However, in a specific exemplary embodiment, the process conditions generally entail the following process conditions, generally at pressures from less than 1 Torr to about 100 Torr and temperatures from 450° C. to 950° C.














Precursor Gas or




Carrier Gas
Flow Rate
Notes







GeH4
0 sccm to 500 sccm
0 sccm for Si, not Ge


SiH4
5 sccm to 500 sccm
0 sccm for Ge, not Si


B2H6
0 sccm to 500 sccm
0 sccm = no B in Si or SiGe


CH3SiH3
0 sccm to 500 sccm
0 sccm = no C in Si or SiGe


He
0 sccm to 500 sccm
Optional - used for low




temperature growth




(e.g., <500° C.)


H2
1 slpm to 50 slpm









In addition to germanium tetrahydride (GeH4), another germanium precursor gas may be employed. Additionally, disilane (Si2H6) or another silicon precursor gas may be used in place of silane (SiH4). Disilane deposits silicon at a faster rate and lower temperature than silane.


Additionally, boron trichloride (BCl3) or any other boron precursor gas may be used in place of diborane (B2H6). A carbon precursor gas other than methyl silane (CH3SiH3) may be employed as the carbon precursor. Inert gases such as nitrogen (N2), argon (Ar), helium (He), xenon (Xe), and fluorine (F2) are all suitable carrier gases to substitute for H2 as well.


All gas flow rates may be process, equipment, and/or device dependent. Therefore, gas flow rates outside of the exemplary ranges given may be fully acceptable. Also, a skilled artisan will recognize that the Si1-x-y-zGexCyBz layer may be deposited in various profiles as well depending upon electrical characteristics desired.


Amorphization Enhanced Etch-Stop


As noted in FIG. 3, an implanted. Ge profile is more resilient to outdiffusion than a CVD Ge profile. Therefore, additional process steps may be added. For example, following the CVD deposition of a SiGe:C:B nano-scale filmstack, an amorphization implant may be performed. The implant results in a reduction in film strain along a Si/SiGe heterojunction (contrary to contemporary literature findings). Therefore, by amorphizing the pseudomorphic SiGe:C:B layer the selectivity will be further enhanced. Species which have been found to be acceptable for this step include, among others, boron, germanium, silicon, argon, nitrogen, oxygen (monotonic), carbon, and Group III-V and Group II-VI semiconductors.


Fabrication of an HEMT Device



FIGS. 7A and 7B describe exemplary formation of an HEMT device, which may be transferred as a BESOI device layer. FIG. 7A includes a substrate with device layer 701 and a relaxed semiconductor layer 703 which serves both as an etch-stop layer and also contains the HEMT channel region (not shown). In a specific exemplary embodiment, the substrate with device layer 701 may comprise silicon. The relaxed semiconductor layer 703 may comprise SiGeC, SiGeB, and/or SiGe:C:B and formed in accordance with methods and elemental ratios described above.


With reference to FIG. 7B, a tensile-strained semiconductor cap layer 705 is formed over the relaxed semiconductor layer 703. In a specific exemplary embodiment, the tensile-strained cap layer comprises silicon. Semiconductors in tension have several advantageous properties. For example, placing silicon in tension increases the mobility of electrons moving parallel to a surface of the substrate 701, thus increasing a frequency of operation of the device. Also, a band offset between the relaxed SiGe and the tensile Si confines electrons in the Si layer. Therefore, in an electron channel device (n-channel), the channel can be removed from the surface or buried.


In an exemplary method of fabrication, the relaxed semiconductor layer 703 is formed by providing a hydrofluoric cleaning of surfaces of the substrate 701, followed by an isopropyl alcohol drying step. The substrate 701 is pre-baked at 950° C. for 60 seconds to remove adsorbed moisture and strip any weak oxides. A seed layer of silicon is grown to a thickness of approximately 300 Å by flowing H2 at 30 slpm and SiH4 at 50 sccm at a temperature of 900° C. The SiH4 flow is maintained at 50 sccm while the temperature is reduced to 600° C. GeH4 is introduced initially at a flow rate of 50 sccm and ramped up to 400 sccm to form a 2500 Å thick SiGe layer. A resultant profile from the flow rate ramping is, for example, trapezoidal in shape from a 5% concentration to a 25% concentration. Thus, a critical thickness is exceeded and the film will relax to its natural lattice dimension. Immediately prior to the final 2500 Å thickness being achieved, the etch-stop layer is produced by introducing either B and/or C via, for example, B2H6 and CH3SiH3. A flow rate of each gas is typically in a range of 200 sccm to 500 sccm. The strained cap layer 705 is then formed by discontinuing the GeH4 flow while maintaining the SiH4 at 50 sccm. An overall thickness of the cap layer 705 is determined by design requirements but will, generally be in a range of 50 Å to 200 Å for contemporary devices. As would be understood by a skilled artisan, all times, temperatures, flow rates, and concentrations are exemplary only and may be varied depending upon exact device and equipment choices.



FIG. 8 is a basic structure of an exemplary quantum well film stack 800. As described with reference to FIG. 7B above, strained Si (e.g., Si in tension) becomes a quantum well region. Hence, a greater propensity exists that electrons will flow in the quantum well region. The exemplary quantum well stack 800 includes a silicon substrate 801, a graded SiGe layer 803, a relaxed SiGe layer 805, and a strained silicon quantum well 807. Additionally, the relaxed SiGe layer 805 contains the etch-stop layer as described above. The nanoscale-level etch-stop layer provides a much tighter film uniformity than is possible with other contemporary SOI fabrication techniques, thus resulting in both reduced ion implant straggle and excessive diffusion of implanted species. Consequently, an electronic device fabricated as described herein has a concomitant increase in performance. For example, an overall effect of electron mobility due to the strained silicon quantum well 807 is quantified in FIG. 9.



FIG. 9 is an electron mobility enhancement graph indicating a mobility enhancement factor as a function of a germanium fraction in the underlying relaxed SiGe layer 805 (FIG. 8). The electron mobility enhancement graph further compares simulated data with experimental results. As the germanium fraction in the substrate (here, the relaxed SiGe layer 805) increases, a resultant larger SiGe lattice parameter occurs. The larger lattice parameter couples into a tensile strain in the silicon quantum well 807. The tensile silicon strain results in a reduction in phonon scattering and also a reduction in effective electron mass further improving device performance. As indicated, a mobility enhancement factor exceeding a factor of 1.8 has been achieved using techniques and methods described herein.


In the foregoing specification, embodiments of the present invention have been described with reference to specific embodiments thereof. It will, however, be evident to a skilled artisan that various modifications and changes can be made thereto without departing from the broader spirit and scope of the embodiments of the invention as set forth in the appended claims. For example, although process steps and techniques are shown and described in detail, a skilled artisan will recognize that other techniques and methods may be utilized which are still included within a scope of the appended claims. For example, there are frequently several techniques used for depositing a film layer (e.g., chemical vapor deposition, plasma-enhanced vapor deposition, epitaxy, atomic layer deposition, etc.). Although not all techniques are amenable to all film types described herein, one skilled in the art will recognize that multiple methods for depositing a given layer and/or film type may be used.


Additionally, many industries allied with the semiconductor industry could make use of the HEMT device disclosed herein. For example, a thin-film head (TFH) process in the data storage industry or an active matrix liquid crystal display (AMLCD) in the flat panel display industry could readily make use of the processes and techniques described herein. The term “semiconductor” should be recognized as including the aforementioned and related industries. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A method comprising: forming a relaxed silicon-germanium layer over a substrate of a device;forming an etch-stop layer in the silicon-germanium layer, the etch-stop layer including at least one of boron and carbon;forming a tensile-strained silicon layer over the silicon-germanium layer; andperforming an amorphization implant in the etch-stop layer to reduce film strain along a heterojunction of the etch-stop layer and the tensile-strained silicon layer.
  • 2. The method of claim 1, wherein forming the relaxed silicon-germanium layer is performed such that the relaxed silicon-germanium layer includes less than about 70% germanium.
  • 3. The method of claim 1, wherein performing the amorphization implant comprises: forming the amorphization implant using a species selected from a group including boron, germanium, silicon, argon, nitrogen, oxygen, and carbon.
  • 4. The method of claim 1, wherein performing the amorphization implant comprises: forming the amorphization implant using a species selected from a group including Group III-V and Group II-VI semiconductor materials.
  • 5. The method of claim 2, wherein forming the tensile-strained silicon layer includes forming the tensile-strained silicon layer to act as a well region of the device.
  • 6. The method of claim 5, wherein forming the relaxed silicon-germanium layer is performed such that the relaxed silicon-germanium layer has a thickness of less than about 70 nanometers when measured as a full-width half-maximum (FWHM) value.
  • 7. A method comprising: forming a silicon-germanium layer over a substrate of a device such that the silicon-germanium layer including less than about 70% germanium;forming an etch-stop layer in the silicon-germanium layer;forming a silicon layer over the silicon-germanium layer such that the silicon layer acts as a well region of the device; andperforming an amorphization implant in the etch-stop layer to reduce film strain along a heterojunction of the etch-stop layer and the silicon layer.
  • 8. The method of claim 7, wherein the etch-stop layer is formed from at least boron.
  • 9. The method of claim 7, wherein the etch-stop layer is formed from at least carbon.
  • 10. The method of claim 7, wherein the etch-stop layer is formed to about less than 20 nanometers measured as a full-width half-maximum (FWHM) thickness value.
  • 11. The method of claim 7, wherein performing the amorphization implant comprises: forming the amorphization implant using a species selected from a group including consisting of boron, germanium, silicon, argon, nitrogen, oxygen, and carbon.
  • 12. The method of claim 7, wherein performing the amorphization implant comprises: forming the amorphization implant using a species selected from a group including Group III and Group V semiconductor materials.
  • 13. The method of claim 7, wherein performing the amorphization implant comprises: forming the amorphization implant using a species selected from a group including Group II and Group VI semiconductor materials.
  • 14. A method comprising: introducing a carrier gas over a substrate of a device in a chamber;introducing a silicon precursor gas into the chamber;introducing a germanium precursor gas into the chamber;forming a silicon-germanium layer such that the silicon-germanium layer contains less than about 70% germanium;introducing an additional precursor gas into the chamber;forming a silicon layer over the silicon-germanium layer such that the silicon layer acts as a well region of the device; andperforming an amorphization implant in the silicon-germanium layer to reduce film strain along a heterojunction of the silicon-germanium layer and the silicon layer.
  • 15. The method of claim 14, wherein introducing the additional precursor gas includes flowing boron into the chamber.
  • 16. The method of claim 14, wherein introducing the additional precursor gas includes flowing carbon into the chamber.
  • 17. The method of claim 14 further comprising: annealing the substrate to a temperature of at least 900 degree. C.
  • 18. The method of claim 14, wherein performing the amorphization implant comprises: adding the amorphization implant into the chamber, the amorphization implant being selected from a group including boron, germanium, silicon, argon, nitrogen, oxygen, and carbon.
  • 19. The method of claim 14, wherein performing the amorphization implant comprises: adding the amorphization implant into the chamber, the amorphization implant being selected from a group including Group III and Group V semiconductor materials.
  • 20. The method of claim 14, wherein performing the amorphization implant comprises: adding the amorphization implant into the chamber, the amorphization implant being selected from a group including Group II and Group VI semiconductor materials.
  • 21. The method of claim 16, wherein introducing the additional precursor gas is to form at least a portion of an etch-stop layer in the silicon-germanium layer.
  • 22. The method of claim 16 wherein introducing the additional precursor gas is to form at least a portion of a dopant layer in the silicon-germanium layer such that the dopant layer has a thickness of less than about 70 nanometers when measured as a full-width half-maximum (FWHM) thickness value.
RELATED APPLICATIONS

This application is a Divisional of U.S. patent application Ser. No. 11/554,796, filed on Oct. 31, 2006, which is incorporated herein by reference in its entirety.

US Referenced Citations (130)
Number Name Date Kind
4459739 Shepard et al. Jul 1984 A
4652183 Veltri et al. Mar 1987 A
4701423 Szluk Oct 1987 A
4908325 Berenz Mar 1990 A
5137838 Ramde et al. Aug 1992 A
5155571 Wang et al. Oct 1992 A
5241214 Herbots Aug 1993 A
5331659 Ohata et al. Jul 1994 A
5378901 Nii Jan 1995 A
5466949 Okuno Nov 1995 A
5569538 Cho Oct 1996 A
5620907 Jalali-Farahani et al. Apr 1997 A
5661059 Liu et al. Aug 1997 A
5686350 Lee et al. Nov 1997 A
5804834 Shimoyama et al. Sep 1998 A
5856685 Nakayama Jan 1999 A
5906708 Robinson et al. May 1999 A
5906951 Chu et al. May 1999 A
5965931 Wang et al. Oct 1999 A
6059895 Chu et al. May 2000 A
6064081 Robinson et al. May 2000 A
6087683 King et al. Jul 2000 A
6107647 Matsumoto et al. Aug 2000 A
6165891 Chooi et al. Dec 2000 A
6323108 Kub et al. Nov 2001 B1
6399970 Kubo et al. Jun 2002 B2
6512252 Takagi et al. Jan 2003 B1
6521041 Wu et al. Feb 2003 B2
6531369 Ozkan et al. Mar 2003 B1
6552375 Swanson et al. Apr 2003 B2
6586297 U'Ren et al. Jul 2003 B1
6593625 Christiansen et al. Jul 2003 B2
6656809 Greenberg et al. Dec 2003 B2
6667489 Suzumura et al. Dec 2003 B2
6670542 Sakata et al. Dec 2003 B2
6670654 Lanzerotti et al. Dec 2003 B2
6680494 Gutierrez-Aitken et al. Jan 2004 B2
6709903 Christiansen et al. Mar 2004 B2
6744079 Jagannathan et al. Jun 2004 B2
6746902 Maa et al. Jun 2004 B2
6750484 Lippert et al. Jun 2004 B2
6759694 Hsu et al. Jul 2004 B1
6780796 Maa et al. Aug 2004 B2
6781214 U'Ren et al. Aug 2004 B1
6787822 Nuyen Sep 2004 B1
6841457 Bedell et al. Jan 2005 B2
6855649 Christiansen et al. Feb 2005 B2
6855963 Chu et al. Feb 2005 B1
6858541 Horning Feb 2005 B2
6876010 Fitzgerald Apr 2005 B1
6900115 Todd May 2005 B2
6906400 Delhougne et al. Jun 2005 B2
6927140 Soman et al. Aug 2005 B2
6936910 Ellis-Monaghan et al. Aug 2005 B2
6963089 Shi et al. Nov 2005 B2
6992004 Besser et al. Jan 2006 B1
6995430 Langdo et al. Feb 2006 B2
7074623 Lochtefeld et al. Jul 2006 B2
7091114 Ito et al. Aug 2006 B2
7227176 Wu et al. Jun 2007 B2
7273799 Todd Sep 2007 B2
7495250 Enicks Feb 2009 B2
7550758 Enicks Jun 2009 B2
7569913 Enicks et al. Aug 2009 B2
20020081861 Robinson et al. Jun 2002 A1
20020105015 Kubo et al. Aug 2002 A1
20020185686 Christiansen et al. Dec 2002 A1
20030040130 Mayur et al. Feb 2003 A1
20030080394 Babcock et al. May 2003 A1
20030082882 Babcock et al. May 2003 A1
20030098465 Suzumura et al. May 2003 A1
20030129802 Lanzerotti et al. Jul 2003 A1
20030132453 Greenberg et al. Jul 2003 A1
20030140844 Maa et al. Jul 2003 A1
20030143783 Maa et al. Jul 2003 A1
20030146448 U'Ren et al. Aug 2003 A1
20030159644 Yonehara et al. Aug 2003 A1
20030201468 Christiansen et al. Oct 2003 A1
20030218189 Christiansen et al. Nov 2003 A1
20040009649 Kub et al. Jan 2004 A1
20040031979 Lochtefeld et al. Feb 2004 A1
20040048447 Kondo Mar 2004 A1
20040063293 Greenberg et al. Apr 2004 A1
20040079989 Kaneko et al. Apr 2004 A1
20040087097 Lai et al. May 2004 A1
20040087119 Maa et al. May 2004 A1
20040164336 Weimer et al. Aug 2004 A1
20040222486 Ellis-Monaghan et al. Nov 2004 A1
20040227158 Delhougne et al. Nov 2004 A1
20040251458 Mizushima et al. Dec 2004 A1
20040253776 Hoffmann et al. Dec 2004 A1
20050045905 Chu et al. Mar 2005 A1
20050045962 Iwata et al. Mar 2005 A1
20050048745 Todd Mar 2005 A1
20050051798 Lanzerotti et al. Mar 2005 A1
20050051861 Shi et al. Mar 2005 A1
20050092235 Brabant et al. May 2005 A1
20050112857 Gluschenkov et al. May 2005 A1
20050127392 Chu et al. Jun 2005 A1
20050181555 Haukka et al. Aug 2005 A1
20050191911 Greenberg et al. Sep 2005 A1
20050230705 Taylor Oct 2005 A1
20050233534 Lanzerotti et al. Oct 2005 A1
20050250289 Babcock et al. Nov 2005 A1
20050280103 Langdo et al. Dec 2005 A1
20060011906 Bedell et al. Jan 2006 A1
20060030093 Zhang et al. Feb 2006 A1
20060068557 Ochimizu et al. Mar 2006 A1
20060121692 Shiota et al. Jun 2006 A1
20060151787 Chen et al. Jul 2006 A1
20060157733 Lucovsky et al. Jul 2006 A1
20060186510 Lochtefeld et al. Aug 2006 A1
20060231862 Otsuka et al. Oct 2006 A1
20060273392 Ito et al. Dec 2006 A1
20060284165 Berger et al. Dec 2006 A1
20060292809 Enicks et al. Dec 2006 A1
20070048992 Hosokawa et al. Mar 2007 A1
20070054460 Enicks Mar 2007 A1
20070087507 Liu et al. Apr 2007 A1
20070096142 Tachibana et al. May 2007 A1
20070102834 Enicks et al. May 2007 A1
20070105335 Fitzgerald May 2007 A1
20070148890 Enicks et al. Jun 2007 A1
20070262295 Enicks Nov 2007 A1
20070290193 Tucker Dec 2007 A1
20080050883 Enicks Feb 2008 A1
20080099754 Enicks May 2008 A1
20080099840 Enicks May 2008 A1
20080099882 Enicks May 2008 A1
20080237716 Enicks et al. Oct 2008 A1
Foreign Referenced Citations (13)
Number Date Country
WO-2007001672 Jan 2007 WO
WO-2007001672 Jan 2007 WO
WO-2007056708 May 2007 WO
WO-2007079372 Jul 2007 WO
WO-2007133949 Nov 2007 WO
WO-2008024587 Feb 2008 WO
WO-2008024587 Feb 2008 WO
WO-2008054957 May 2008 WO
WO-2008054967 May 2008 WO
WO-2008054967 May 2008 WO
WO-2008057692 May 2008 WO
WO-2008057692 May 2008 WO
WO-2008057695 May 2008 WO
Related Publications (1)
Number Date Country
20090258478 A1 Oct 2009 US
Divisions (1)
Number Date Country
Parent 11554796 Oct 2006 US
Child 12489353 US