Method for providing a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) device

Information

  • Patent Grant
  • 9881638
  • Patent Number
    9,881,638
  • Date Filed
    Wednesday, December 17, 2014
    10 years ago
  • Date Issued
    Tuesday, January 30, 2018
    6 years ago
Abstract
A method and system provides a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) transducer. The method and system include forming the disk of the NFT and forming the pin of the NFT. The disk is formed from a first material. The pin is formed from a second material different from the first material. The pin contacts the disk. At least a portion of the pin is between the disk and an air-bearing surface (ABS) location.
Description
BACKGROUND


FIG. 1 depicts a portion of a conventional heat assisted magnetic recording (HAMR) transducer 10. The conventional HAMR transducer 10 includes a conventional waveguide 12 having a conventional core 18 and cladding 14 and 16, a conventional near-field transducer (NFT) 30, and a write pole 40. The NFT 30 has a disk portion 34 and a pin portion 32. The pin portion 32 is between the disk portion 34 and the air-bearing surface (ABS). The NFT 30 is typically formed of gold or a gold alloy. The conventional HAMR transducer 10 is used in writing to a recording media and receives light, or energy, from a conventional laser (not shown).


In operation, light from a laser is coupled to the waveguide 12. Light is guided by the conventional waveguide 12 to the NFT 30 near the ABS. The NFT 30 utilizes local resonances in surface plasmons to focus the light to magnetic recording media (not shown), such as a disk. The surface plasmons used by the NFT 30 are electromagnetic waves that propagate along metal/dielectric interfaces. At resonance, the NFT 30 couples the optical energy of the surface plasmons efficiently into the recording medium layer with a confined optical spot which is much smaller than the optical diffraction limit. This optical spot can typically heat the recording medium layer above the Curie point in nano-seconds. High density bits can be written on a high coercivity medium with a pole 40 having modest magnetic field.



FIG. 2 depicts a conventional method 50 for providing the NFT 30 in the conventional HAMR transducer 10. Referring to FIGS. 1 and 2, a layer of conductive material is deposited for the NFT, via step 52. Typically the conductive material is gold. The conductive layer is masked, via step 54. The mask covers the portion of the conductive layer that will form the NFT 30. The exposed portion of the conductive layer is removed, via step 56. Step 56 typically includes performing an ion mill. The remaining portion of the conductive layer forms the NFT. Thus, the NFT 30 is formed. Fabrication of the conventional HAMR transducer 10 may then be completed.


Although the conventional method 10 may form the conventional NFT 30, there are drawbacks. In particular, the conventional NFT 30 not perform as desired. For example, due to heating during use, the pin portion 32 of the NFT 30 may undergo plastic deformation. The metals used in the NFT 30 may also undergo softening at elevated temperatures. As a result, the NFT 30 may fail during operation. Accordingly, what is needed is a system and method for improving performance of a HAMR transducer.





BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a flow chart depicting a conventional HAMR transducer.



FIG. 2 is a diagram depicting a plan and side views of a conventional NFT formed using a conventional method for fabricating an NFT.



FIG. 3 is a flow chart depicting an exemplary embodiment of a method for providing a composite NFT in a HAMR transducer.



FIG. 4 is a diagram depicting a side view of an exemplary embodiment of a disk drive including a composite NFT formed using an exemplary embodiment of the method.



FIG. 5 is a diagram depicting a plan view of an exemplary embodiment of a composite NFT.



FIG. 6 is a diagram depicting an exemplary embodiment of a HAMR head employing a composite NFT.



FIG. 7 is a flow chart depicting another exemplary embodiment of a method for providing a disk drive including a composite NFT.



FIG. 8 is a flow chart depicting another exemplary embodiment of a method for providing a composite NFT in a HAMR transducer.



FIGS. 9A and 9B-23A and 23B are diagrams depicting various portions of an exemplary embodiment of a magnetic recording transducer during fabrication.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 3 depicts one embodiment of a method 100 for fabricating a composite NFT for a HAMR transducer. For simplicity, some steps may be omitted, interleaved, and/or combined. The HAMR transducer being fabricated may be part of a merged head that also includes a read head and resides on a slider in a disk drive. The method 100 is also described in the context of providing a single HAMR transducer. However, the method 100 may be used to fabricate multiple transducers at substantially the same time. The method 100 is also described in the context of particular layers. However, in some embodiments, such layers may include multiple sub-layers. The method 100 also may commence after formation of other portions of the HAMR transducer. In one embodiment, the method 100 commences after formation of portions of the waveguide, such as a core. Thus, a flat surface for formation of subsequent structures may have been provided. Certain steps of the method 100 may be combined, omitted, performed in another order and/or interleaved.


The disk of the NFT is formed from first material(s), via step 102. In some embodiments, the first material(s) used for the NFT disk are metallic. For example, gold or a gold alloy may be used. However, in other embodiments, other materials including but not limited to other alloys and/or a combination of metals and insulators may be used. Although termed a disk herein, the disk of the NFT need not have a circular footprint. Other shapes, including shapes having apertures therein might be used. For example, a triangular, rectangular or ring-shaped NFT “disk” might be formed in step 102. The disk of the NFT is typically wider than the pin, discussed below, in the cross-track direction. However, the disk of the NFT need not be wider than the pin. The disk portion of the NFT is recessed from the air-bearing surface (ABS) location. The ABS location is the region which will become the ABS, for example after lapping of the slider.


In some embodiments, step 102 includes multiple substeps. For example, one or more metallic layers may be deposited at least in the region in which the NFT is to be formed. A mask having the desired shape and location of the disk may then be provided. The exposed portion of the metallic layer(s) may then be removed. Alternatively, a lift-off process might be used. Thus, a mask having an aperture with the shape and location of the disk may be provided. The first material(s) for the disk may be deposited and the mask removed. In other embodiments, other methods of forming the NFT disk may be used.


The NFT pin is formed from second material(s) different from the first material(s) used in the pin, via step 104. Further, step 104 is performed using a lift-off process. At least part of the pin formed is between the disk and the ABS location. In some embodiments, a portion of the pin occupies part of the ABS. However, in other embodiments, the pin may be recessed from the ABS location. The pin also contacts the disk. Thus, the NFT formed includes both the disk and the pin. In some embodiments, the pin is substantially rectangular in cross-section.


The material(s) used for the pin in step 104 are different from the material(s) used for the disk in step 102. Thus, the NFT formed is a composite NFT. The pin may be formed of a dielectric. For example, tantalum oxide (e.g. Ta2O5), titanium oxide, silicon and/or another dielectric might be used in forming the pin.


Step 104 may also include multiple substeps and involves a lift-off. For example, a mask having an aperture may be provided. At least part of the aperture has a shape and a location of the pin. A remaining portion of the aperture may be used to form all or part of an anchor structure. The second material(s) for the pin are deposited and the mask lifted-off. The pin is formed by at least part of the second material(s) remaining in the aperture's location after lift-off. As a result, the pin takes on the geometry of the aperture in the mask. In some embodiments, the track width of the pin is less than that of the disk. In other embodiments, however, the pin formed in step 104 may be wider in the track width direction than the disk. The pin may, for example, be at least fifty nanometers wide and not more than two hundred nanometers wide in some embodiments. After formation of the NFT pin, the region may be covered with a refill material. One or more planarizations may also be performed. For example, a resist planarization and/or a light chemical mechanical planarization (CMP) might be employed. A resist planarization may include depositing an endpoint detection layer between two refill layers. These refill layers may correspond to cladding for the waveguide. An ion mill planarizes the region around the NFT, terminating in response to detection of the endpoint detection layer. Thus, the NFT may be formed and protected.


Using the method 100 a composite NFT may be fabricated. For example, FIG. 4 depicts a disk drive 110 that includes an NFT 120 formed using the method 100. FIG. 5 depicts a plan view of an NFT 120 formed using the method 100 and that may reside in the disk drive 110. FIG. 6 depicts an embodiment of a head 150 utilizing the NFT 120 formed using the method 100. FIGS. 4-6 are not to scale. Referring to FIGS. 4-6, for simplicity, not all portions of the disk drive 110 and HAMR head 150 are shown. For example, electronics and a suspension that may be used with the disk drive 110 and HAMR head 150 are not shown. In addition, although the disk drive 110 and HAMR head 150 are depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments.


The disk drive 110 includes media 112, a HAMR head 150 residing on a slider 111 and a laser assembly 115. The media 112 may be a disk or other magnetic recording media configured for use in the disk drive 110. The laser assembly 115 includes a laser 114 and submount 115. Although not depicted in FIG. 4, the HAMR head 150 may include a read transducer 152 (shown in FIG. 6). The read transducer 152 includes shields 154 and 158 as well as read sensor 156. The read sensor 156 may be a tunneling magnetoresistance (TMR) sensor. Although being shown as disconnected from the shields 154 and 158, in some embodiments, the read sensor 156 is connected to the shields 154 and 158. In other embodiments, the read transducer 152 may be omitted.


The HAMR head 150 also includes a write transducer 160. The HAMR transducer 160 includes waveguide 170, write pole 168, return pole 166, coil(s) 164 and 165, and shield 162. The coil(s) 164 and 165 may be used to energize the write pole 140 during writing. In the embodiment shown, the shield 162 is depicted as separate from the return pole 166. However, in another embodiment, these components may be combined. The waveguide 170 includes cladding 172 and 176 as well as core 174. Further, the waveguide 170 is shown as residing between the pole 168 and return pole 166. In another embodiment, other configurations are possible. The coils 164 and 165 may form a single, helical coil or may be separate pancake coils. In addition, a grating (not shown in FIGS. 4-6) may be used to couple light from the laser 114 into the waveguide 170.


The HAMR transducer 150 also includes an NFT 120 and optional heat sink 180. The optional heat sink 180 is in thermal contact with the NFT 120. The heat sink 180 also has a top surface 182 in thermal contact with the pole 168. In the embodiment shown, the heat sink 180 is in direct physical contact with the NFT 120 and the pole 168. The top surface 182 of the heat sink 180 is sloped because the bottom surface of the pole 168 is sloped. In the embodiment shown, a portion of the bottom surface of the pole 168 proximate to the ABS is not parallel to the top surface of the NFT 100. In some embodiments, this portion of the bottom surface of the pole 168 may be configured to be parallel to the top surface of the NFT 120.


The NFT 122 includes a disk 124 and a pin 122. The pin 122 is between the disk 124 and the ABS. Thus, the disk 124 is recessed from the ABS. In the embodiment shown, the disk 124 extends further in the track width direction (perpendicular to the plane of the page in FIG. 6) than the pin 122. In other embodiments, another relationship between the widths is possible. In addition, although depicted as having a circular shape in the plan view of FIG. 5, the disk 124 may have another shape. The disk 124 is formed in step 102 of the method 100. Thus, the disk 124 may be metallic. In contrast, the pin 122 is formed in step 104 and may consist of a different material than the disk 124. A dielectric having a low loss, a high index of refraction and mechanical stability may be desired for the pin 122. For example, the pin 122 may be a Ta2O5 pin. In other embodiments, a silicon or other dielectric pin may be formed. The NFT 120 is, therefore, a composite NFT.


In operation the waveguide 170 directs energy from the laser to the ABS and more specifically to the NFT 120. The NFT 120 is optically coupled with the waveguide 170, receiving energy from the core 174. The NFT 120 is also proximate to the ABS. For example, the NFT 120 is shown as having a surface of the pin 122 occupying part of the ABS. The NFT 120 focuses energy from the waveguide 170 onto a region of the media 112. In particular, a surface plasmon resonance may developed across the disk 124 of the NFT 120. This resonance allows the NFT 120 to deliver optical energy to the media 112 in a small thermal spot. The write pole 168 is configured to write to the region of the media heated by the NFT 120. The heat sink 180 is thermally coupled near its bottom with the NFT 120 and at its top with the bottom surface of the pole 168. During operation, therefore, heat generated at the NFT 120 may be conducted by the heat sink 180 away from the NFT 120 and to the pole 168.


The HAMR transducer 160 and thus the HAMR head 150 may have improved performance and reliability. Because the NFT 120 is formed using the method 100, the NFT 120 may be a composite NFT 120. More specifically, the geometry of the pin 122 may be photolithographically defined. Thus, the pin may have the desired geometry yet be formed of different materials from the disk 124. For example, a dielectric having increased hardness may be used for the pin 122 while a metal is used for the disk 124. The pin 122 is, therefore, more robust and less likely to fail. Performance and reliability of the NFT 120 and HAMR head 150 may thus be improved.



FIG. 7 is a flow chart depicting a method 200 for providing a disk drive such as the disk drive 110 depicted in FIG. 4 and including the head 150. For simplicity, some steps may be omitted, interleaved, and/or combined. The method 200 is also described in the context of providing a single disk drive 110 including a single HAMR transducer. However, the method 200 may be used to fabricate multiple transducers at substantially the same time. The method 200 is also described in the context of particular layers. However, in some embodiments, such layers may include multiple sub-layers. Certain steps of the method 200 may be combined, omitted, performed in another order and/or interleaved. For simplicity, the method 200 is described in the context of the disk drive depicted in FIGS. 4-6.


Referring to FIGS. 4-7, the media 112 is provided, via step 202. The HAMR head 150 residing on a slider is provided, via step 204. Step 204 may thus fabricate or obtain the head 150 depicted in FIGS. 4-6. Also in step 204, the disk drive 110 may be assembled, including affixing the slider to a suspension or analogous structure. Thus, the disk drive 110 may be fabricated. As a result, the benefits of the composite NFT 120 may be achieved.



FIG. 8 is a flow chart depicting an exemplary embodiment of a method 210 for fabricating a composite NFT in a HAMR transducer. For simplicity, some steps may be omitted, interleaved and/or combined. FIGS. 9A and 9B-23A and 23B are diagrams depicting various portions of an exemplary embodiment of a magnetic recording transducer 250 during fabrication. For clarity, FIGS. 9A and 9B-23A and 23B are not to scale. Further, although FIGS. 9A and 9B-23A and 23B depict the ABS location (location at which the ABS is to be formed) and the ABS at a particular point in the pole, other embodiments may have other locations for the ABS. Referring to FIGS. 8-23A and 23B, the method 210 is described in the context of the HAMR transducer 250. However, the method 210 may be used to form another device (not shown). The HAMR transducer 250 being fabricated may be part of a merged head that also includes a read head (not shown in FIGS. 9A and 9B-23A and 23B), a laser (not shown in FIGS. 9A and 9B-23A and 23B) and resides on a slider (not shown) in a disk drive. In addition, other portions of the HAMR transducer 250, such as the pole(s), shield(s), coil(s), and remaining optics are not shown. The method 210 also may commence after formation of other portions of the HAMR transducer 250. For example, a tantalum oxide core for the waveguide may have been formed. The method 210 is also described in the context of providing a single HAMR transducer 250 and a single composite NFT in the HAMR transducer 250. However, the method 210 may be used to fabricate multiple transducers and/or multiple heat sinks per transducer at substantially the same time. The method 210 and device 250 are also described in the context of particular layers. However, in some embodiments, such layers may include multiple sublayers.



FIGS. 9A and 9B depict side and plan views, respectively, of the device area, the grating area and the NFT electronic lapping guide (ELG) area before the method 210 starts. Thus, the cladding 251 and core 252 of the waveguide have been formed. An additional thin cladding layer 253 has also been provided. The cladding 252 and 253 are dielectrics, such as SiO2. The core 252 is a dielectric such as Ta2O5. In other embodiments, other material(s) may be used. The grating 254 has also been formed. Also shown is the conductive layer 256 used for the NFT ELG. In some embodiments, the conductive layer 256 is a Ru layer.


A protective layer having an aperture in the region in which the NFT is to be formed is provided, via step 212. In some embodiments, the protective layer is an aluminum oxide layer having a nominal thickness of sixty nanometers. Step 212 may include depositing the aluminum oxide layer using atomic layer deposition (ALD). However, in other embodiments, other material(s) and/or other deposition methods may be used. FIGS. 10A and 10B depict plan and side views, respectively, of the device, grating and NFT ELG regions after step 212 is performed. Thus, a protective layer 258 has been provided. The grating and NFT ELG regions are covered by the protective layer 258. However, the dielectric (cladding) layer 253 is exposed by the aperture in the protective layer in the device region.


The layer(s) for the disk of the NFT are provided, via step 214. In some embodiments, step 214 includes depositing a stack including a Ta2O5 layer and a gold layer. FIGS. 11A and 11B depict plan and side views, respectively, of the device, grating and NFT ELG regions after step 212 is performed. Thus, a tantalum oxide layer 259, a gold layer 260 are shown.


The layers are patterned to form a disk, via step 215. Step 215 includes forming a hard mask. Thus, hard mask layers may be deposited and photolithographically patterned. The underlying layers 259 and 260 may then be patterned. FIGS. 12A and 12B depict plan and side views, respectively, of the device, grating and NFT ELG regions after the hard mask layers are provide as part of step 215. Thus, a silicon oxide layer 262 and amorphous carbon layer 264 (α-carbon) have been formed. The layers 262 and 264 are used as a mask. FIGS. 13A and 13B depict plan and side views, respectively, of the device, grating and NFT ELG regions after step 215 has been performed. Thus, etches or other removal steps appropriate for layers 264, 262, 260 and 259 are performed. For example, layers 259, 262 and 264 may be removed by RIEs, while the gold layer 260 may be removed using an ion mill. A disk has been formed of layers 259, 260, 262 and 264.


The region of the NFT ELG may be milled, via step 216. For example, the exposed portion of the cladding layer 253 and underlying conductive ELG layer 256 may be milled. FIGS. 14A and 14B depict plan and side views, respectively, of the device, grating and NFT ELG regions after step 216 is performed. Thus, the NFT ELG may be patterned.


A photoresist mask having an aperture for the NFT pin is provided, via step 217. Use of a photoresist mask allows for lift-off and, therefore, easier fabrication of the NFT pin. FIGS. 15A and 15B depict plan and side views, respectively, of the device, grating and NFT ELG regions after step 217 is performed. Thus, a mask 266 with aperture 268 has been formed. As can be seen in FIG. 15B, a portion of the aperture 268 overlaps the disk layers.


The layer(s) for the dielectric pin are deposited, via step 218. In some embodiments, step 218 includes depositing a tantalum oxide pin. In other embodiments, other material(s) may be used. A portion of the layer(s) for the dielectric pin reside on the mask 266. Another portion resides in the aperture 268. The photoresist mask 266 is lifted off, via step 220. FIGS. 16A and 16B depict plan and side views, respectively, of the device, grating and NFT ELG regions after step 220 is performed. Thus, the remaining dielectric 270 is shown. The dielectric 270 has a pin portion near the disk and an anchor portion on the opposite side of the ABS location from the disk. The dielectric layer 270 may be nominally twenty nanometers thick. In some embodiments, the length of the pin layer 270 from the ABS to the disk is desired to be at least ten nanometers and not more than fifteen nanometers. As can be seen in FIG. 16B, the ABS location is within the portion of the dielectric layer 270 on the side of the layers 259, 260, 262 and 264. Thus, in the embodiment shown, the pin of the NFT is formed from the portion of the dielectric layer 270 deposited on the sides of the disk. In some embodiments, therefore, the thickness of the dielectric layer 270 deposited is greater than the length of the pin.


The alumina protective layer is removed, via step 222. In some embodiments, step 222 includes performing an alumina wet etch. FIGS. 17A and 17B depict plan and side views, respectively, of the device, grating and NFT ELG regions after step 222 is performed. Thus, the protective layer 258 has been removed.


A first cladding, or dielectric, layer is deposited, via step 224. In some embodiments, a silicon dioxide layer is deposited in step 224. The thickness of the layer may be at least fifty nanometers in some embodiments and not more than seventy-five nanometers. FIGS. 18A and 18B depict plan and side views, respectively, of the device, grating and NFT ELG regions after step 224 is performed. Thus, the first cladding layer 272 has been deposited. In some embodiments, the first cladding layer 272 has a top surface at the same height as the top of the gold layer 260 in the region around which the NFT is being formed. Thus, the thickness of the first cladding layer 272 may depend upon the thickness of the NFT disk.


An endpoint detection layer is deposited, via step 226. In some embodiments, ten nanometers of amorphous carbon is deposited in step 226. In other embodiments, Ta may be used for the endpoint detection layer. FIGS. 19A and 19B depict plan and side views, respectively, of the device, grating and NFT ELG regions after step 226 is performed. Thus, the endpoint detection (EPD) layer 274 is shown. In the embodiment shown, the EPD layer is deposited in substantially the same location that the alumina protective layer 258 occupied. Thus, a lift-off process is used to pattern the EPD layer 274 in step 226. For example, a photoresist mask covering part of the device area and part of the NFT ELG region is provided. The EPD layer 274 is deposited and the mask lifted off. The remaining EPD layer 274 is shown in FIGS. 19A and 19B.


A second cladding layer is deposited, via step 228. Thus, an additional dielectric layer is deposited. In some embodiments, a silicon dioxide layer that is nominally fifty nanometers thick is provided in step 228. FIGS. 20A and 20B depict plan and side views, respectively, of the device, grating and NFT ELG regions after step 228 is performed. Thus, an additional cladding layer 276 has been provided.


A planarization step is then performed, via step 230. In some embodiments, a resist planarization is performed in step 230. For example, the top layer(s) 272 and 276 may be ion milled. The ion mill terminates based on detection of the EPD layer 274. FIGS. 21A and 21B depict plan and side views, respectively, of the device, grating and NFT ELG regions after step 230 is performed. Thus, the top surfaces of the remaining portions of layers 276, 272 and 262 are substantially level with the top surface of the remaining portion of the EPD layer 274.


The EPD layer 274 is removed, via step 232. For an amorphous carbon EPD layer 274, the layer 274 may simply be burned off. This process may also remove the amorphous carbon layer 264 on the disk. Further, the top surface of the transducer 250 may no longer be flat. Consequently, a thin cladding layer may be deposited and an additional planarization, such as a light (or kiss) CMP, may performed in step 232. This step removes the EPD layer 274 while allowing the top surface of the transducer 250 to remain substantially planar. FIGS. 22A and 22B depict plan and side views, respectively, of the device, grating and NFT ELG regions after step 232. Thus, the EPD layer 274 has been removed. The top amorphous carbon layer 264 of the disk has also been removed in step 232. The gold disk 260 for the NFT has also been exposed.


Fabrication of the HAMR transducer 250 may then be completed, via step 234. For example, regions around the NFT may be refilled and other structures formed. Further, the device may be lapped back to the ABS location. FIGS. 23A and 23B depict plan and side views, respectively, of the device, grating and NFT ELG regions after at least part of step 234 is performed. Thus, the ABS has been exposed, for example by lapping. Further, the composite NFT 280 is formed by the metallic disk 260 and the dielectric pin 270. As can be seen in FIG. 23B, a portion of the pin 270 is at the ABS, while the metallic disk 260 is recessed from the ABS. In the embodiment shown, the disk 260 is wider than the pin 270. In other embodiments, however, other configurations may be used.


Thus, using the method 210, the HAMR transducer 250 may be fabricated. The HAMR transducer has an NFT 280 having the desired geometry, including pin width, as well as the desired combination of materials. The method 210, NFT 280, and HAMR transducer 250 share the benefits of the method 100, the NFT 120 and the HAMR head 150. Consequently, manufacturing, reliability, and performance of the HAMR transducer 250 may be improved.

Claims
  • 1. A method for providing a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) device, the method comprising: forming disk of the NFT from a first material;forming a pin of the NFT from at least a second material different from the first material, the pin contacting the disk, at least a portion of the pin residing between the disk and an air-bearing surface (ABS) location, wherein forming the pin further includes: providing a mask having an aperture therein, at least a portion of the aperture having a shape and a location of the pin;depositing the at least the second material; andlifting off the mask, wherein the mask is a photoresist mask; andproviding an alumina protective layer comprising a NFT aperture therein, the NFT aperture exposing a region including the disk and the pin.
  • 2. The method of claim 1 wherein the first material is a metal and the at least the second material includes a dielectric.
  • 3. The method of claim 1 further comprising: removing the alumina protective layer after lifting off the mask.
  • 4. The method of claim 1 wherein forming the pin further includes: providing at least one dielectric layer; andplanarizing the at least one dielectric layer.
  • 5. The method of claim 4 wherein providing the at least one dielectric layer further includes: providing a first cladding layer; andproviding a second cladding layer on the first cladding layer.
  • 6. The method of claim 5 wherein forming the pin further includes: depositing an endpoint detection layer on the first cladding layer, the endpoint detection layer being between the first cladding layer and the second cladding layer.
  • 7. The method of claim 6 wherein planarizing includes performing a resist planarization.
  • 8. The method of claim 7 wherein planarizing further includes a chemical mechanical planarization.
  • 9. A method for providing a near-field transducer (NFT) for use in a heat-assisted magnetic recording (HAMR) device comprising: providing an alumina protective layer having a NFT aperture therein, the NFT aperture exposing a region including an NFT location;forming disk of the NFT from at least one metal, the disk residing in the NFT aperture;forming a pin of the NFT from at least one dielectric, the pin residing in the NFT aperture, a portion of the pin contacting a portion of the disk and residing between the disk and an air-bearing surface (ABS) location, wherein forming the pin further including: providing a resist mask comprising an aperture therein, at least a portion of the aperture having a shape and a location corresponding to the pin;depositing the at least one dielectric;lifting off the resist mask, a remaining portion of the at least one dielectric including the pin;removing the alumina protective layer after the step of lifting off the mask;providing a first cladding layer, the first cladding layer including silicon oxide;depositing a Ta endpoint detection layer on the first cladding layer;providing a second cladding layer on the Ta endpoint detection layer, the second cladding layer including the silicon oxide;resist planarizing the at least one dielectric layer; andperforming a chemical mechanical planarization after the resist planarization.
US Referenced Citations (608)
Number Name Date Kind
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6034851 Zarouri et al. Mar 2000 A
6043959 Crue et al. Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6049650 Jerman et al. Apr 2000 A
6055138 Shi Apr 2000 A
6058094 Davis et al. May 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6099362 Viches et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6108166 Lederman Aug 2000 A
6118629 Huai et al. Sep 2000 A
6118638 Knapp et al. Sep 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6136166 Shen et al. Oct 2000 A
6137661 Shi et al. Oct 2000 A
6137662 Huai et al. Oct 2000 A
6160684 Heist et al. Dec 2000 A
6163426 Nepela et al. Dec 2000 A
6166891 Lederman et al. Dec 2000 A
6173486 Hsiao et al. Jan 2001 B1
6175476 Huai et al. Jan 2001 B1
6178066 Barr Jan 2001 B1
6178070 Hong et al. Jan 2001 B1
6178150 Davis Jan 2001 B1
6181485 He Jan 2001 B1
6181525 Carlson Jan 2001 B1
6185051 Chen et al. Feb 2001 B1
6185077 Tong et al. Feb 2001 B1
6185081 Simion et al. Feb 2001 B1
6188549 Wiitala Feb 2001 B1
6190764 Shi et al. Feb 2001 B1
6193584 Rudy et al. Feb 2001 B1
6195229 Shen et al. Feb 2001 B1
6198608 Hong et al. Mar 2001 B1
6198609 Barr et al. Mar 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6204998 Katz Mar 2001 B1
6204999 Crue et al. Mar 2001 B1
6212153 Chen et al. Apr 2001 B1
6215625 Carlson Apr 2001 B1
6219205 Yuan et al. Apr 2001 B1
6221218 Shi et al. Apr 2001 B1
6222707 Huai et al. Apr 2001 B1
6229782 Wang et al. May 2001 B1
6230959 Heist et al. May 2001 B1
6233116 Chen et al. May 2001 B1
6233125 Knapp et al. May 2001 B1
6237215 Hunsaker et al. May 2001 B1
6252743 Bozorgi Jun 2001 B1
6255721 Roberts Jul 2001 B1
6258468 Mahvan et al. Jul 2001 B1
6266216 Hikami et al. Jul 2001 B1
6271604 Frank, Jr. et al. Aug 2001 B1
6275354 Huai et al. Aug 2001 B1
6277505 Shi et al. Aug 2001 B1
6282056 Feng et al. Aug 2001 B1
6296955 Hossain et al. Oct 2001 B1
6297955 Frank, Jr. et al. Oct 2001 B1
6304414 Crue, Jr. et al. Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6310746 Hawwa et al. Oct 2001 B1
6310750 Hawwa et al. Oct 2001 B1
6317290 Wang et al. Nov 2001 B1
6317297 Tong et al. Nov 2001 B1
6322911 Fukagawa et al. Nov 2001 B1
6330136 Wang et al. Dec 2001 B1
6330137 Knapp et al. Dec 2001 B1
6333830 Rose et al. Dec 2001 B2
6340533 Ueno et al. Jan 2002 B1
6349014 Crue, Jr. et al. Feb 2002 B1
6351355 Min et al. Feb 2002 B1
6353318 Sin et al. Mar 2002 B1
6353511 Shi et al. Mar 2002 B1
6356412 Levi et al. Mar 2002 B1
6359779 Frank, Jr. et al. Mar 2002 B1
6369983 Hong Apr 2002 B1
6376964 Young et al. Apr 2002 B1
6377535 Chen et al. Apr 2002 B1
6381095 Sin et al. Apr 2002 B1
6381105 Huai et al. Apr 2002 B1
6389499 Frank, Jr. et al. May 2002 B1
6392850 Tong et al. May 2002 B1
6396660 Jensen et al. May 2002 B1
6399179 Hanrahan et al. Jun 2002 B1
6400526 Crue, Jr. et al. Jun 2002 B2
6404600 Hawwa et al. Jun 2002 B1
6404601 Rottmayer et al. Jun 2002 B1
6404706 Stovall et al. Jun 2002 B1
6410170 Chen et al. Jun 2002 B1
6411522 Frank, Jr. et al. Jun 2002 B1
6417998 Crue, Jr. et al. Jul 2002 B1
6417999 Knapp et al. Jul 2002 B1
6418000 Gibbons et al. Jul 2002 B1
6418048 Sin et al. Jul 2002 B1
6421211 Hawwa et al. Jul 2002 B1
6421212 Gibbons et al. Jul 2002 B1
6424505 Lam et al. Jul 2002 B1
6424507 Lederman et al. Jul 2002 B1
6430009 Komaki et al. Aug 2002 B1
6430806 Chen et al. Aug 2002 B1
6433965 Gopinathan et al. Aug 2002 B1
6433968 Shi et al. Aug 2002 B1
6433970 Knapp et al. Aug 2002 B1
6437945 Hawwa et al. Aug 2002 B1
6445536 Rudy et al. Sep 2002 B1
6445542 Levi et al. Sep 2002 B1
6445553 Barr et al. Sep 2002 B2
6445554 Dong et al. Sep 2002 B1
6447935 Zhang et al. Sep 2002 B1
6448765 Chen et al. Sep 2002 B1
6451514 Iitsuka Sep 2002 B1
6452742 Crue et al. Sep 2002 B1
6452765 Mahvan et al. Sep 2002 B1
6456465 Louis et al. Sep 2002 B1
6459552 Liu et al. Oct 2002 B1
6462920 Karimi Oct 2002 B1
6466401 Hong et al. Oct 2002 B1
6466402 Crue, Jr. et al. Oct 2002 B1
6466404 Crue, Jr. et al. Oct 2002 B1
6468436 Shi et al. Oct 2002 B1
6469877 Knapp et al. Oct 2002 B1
6477019 Matono et al. Nov 2002 B2
6479096 Shi et al. Nov 2002 B1
6483662 Thomas et al. Nov 2002 B1
6487040 Hsiao et al. Nov 2002 B1
6487056 Gibbons et al. Nov 2002 B1
6490125 Barr Dec 2002 B1
6496330 Crue, Jr. et al. Dec 2002 B1
6496334 Pang et al. Dec 2002 B1
6504676 Hiner et al. Jan 2003 B1
6512657 Heist et al. Jan 2003 B2
6512659 Hawwa et al. Jan 2003 B1
6512661 Louis Jan 2003 B1
6512690 Qi et al. Jan 2003 B1
6515573 Dong et al. Feb 2003 B1
6515791 Hawwa et al. Feb 2003 B1
6532823 Knapp et al. Mar 2003 B1
6535363 Hosomi et al. Mar 2003 B1
6552874 Chen et al. Apr 2003 B1
6552928 Qi et al. Apr 2003 B1
6577470 Rumpler Jun 2003 B1
6583961 Levi et al. Jun 2003 B2
6583968 Scura et al. Jun 2003 B1
6597548 Yamanaka et al. Jul 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6618223 Chen et al. Sep 2003 B1
6629357 Akoh Oct 2003 B1
6633464 Lai et al. Oct 2003 B2
6636394 Fukagawa et al. Oct 2003 B1
6639291 Sin et al. Oct 2003 B1
6650503 Chen et al. Nov 2003 B1
6650506 Risse Nov 2003 B1
6654195 Frank, Jr. et al. Nov 2003 B1
6657816 Barr et al. Dec 2003 B1
6661621 Iitsuka Dec 2003 B1
6661625 Sin et al. Dec 2003 B1
6674610 Thomas et al. Jan 2004 B1
6680863 Shi et al. Jan 2004 B1
6683763 Hiner et al. Jan 2004 B1
6687098 Huai Feb 2004 B1
6687178 Qi et al. Feb 2004 B1
6687977 Knapp et al. Feb 2004 B2
6691226 Frank, Jr. et al. Feb 2004 B1
6697294 Qi et al. Feb 2004 B1
6700738 Sin et al. Mar 2004 B1
6700759 Knapp et al. Mar 2004 B1
6704158 Hawwa et al. Mar 2004 B2
6707083 Hiner et al. Mar 2004 B1
6713801 Sin et al. Mar 2004 B1
6721138 Chen et al. Apr 2004 B1
6721149 Shi et al. Apr 2004 B1
6721203 Qi et al. Apr 2004 B1
6724569 Chen et al. Apr 2004 B1
6724572 Stoev et al. Apr 2004 B1
6729015 Matono et al. May 2004 B2
6735850 Gibbons et al. May 2004 B1
6737281 Dang et al. May 2004 B1
6744608 Chen et al. Jun 2004 B1
6747301 Hiner et al. Jun 2004 B1
6751055 Alfoqaha et al. Jun 2004 B1
6754049 Seagle et al. Jun 2004 B1
6756071 Shi et al. Jun 2004 B1
6757140 Hawwa Jun 2004 B1
6760196 Niu et al. Jul 2004 B1
6762910 Knapp et al. Jul 2004 B1
6765756 Hong et al. Jul 2004 B1
6775902 Huai et al. Aug 2004 B1
6778358 Jiang et al. Aug 2004 B1
6781927 Heanuc et al. Aug 2004 B1
6785955 Chen et al. Sep 2004 B1
6791793 Chen et al. Sep 2004 B1
6791807 Hikami et al. Sep 2004 B1
6798616 Seagle et al. Sep 2004 B1
6798625 Ueno et al. Sep 2004 B1
6801408 Chen et al. Oct 2004 B1
6801411 Lederman et al. Oct 2004 B1
6803615 Sin et al. Oct 2004 B1
6806035 Atireklapvarodom et al. Oct 2004 B1
6807030 Hawwa et al. Oct 2004 B1
6807332 Hawwa Oct 2004 B1
6809899 Chen et al. Oct 2004 B1
6816345 Knapp et al. Nov 2004 B1
6828897 Nepela Dec 2004 B1
6829160 Qi et al. Dec 2004 B1
6829819 Crue, Jr. et al. Dec 2004 B1
6833979 Knapp et al. Dec 2004 B1
6834010 Qi et al. Dec 2004 B1
6859343 Alfoqaha et al. Feb 2005 B1
6859997 Tong et al. Mar 2005 B1
6861937 Feng et al. Mar 2005 B1
6870712 Chen et al. Mar 2005 B2
6873494 Chen et al. Mar 2005 B2
6873547 Shi et al. Mar 2005 B1
6879464 Sun et al. Apr 2005 B2
6888184 Shi et al. May 2005 B1
6888704 Diao et al. May 2005 B1
6891702 Tang May 2005 B1
6894871 Alfoqaha et al. May 2005 B2
6894877 Crue, Jr. et al. May 2005 B1
6906894 Chen et al. Jun 2005 B2
6909578 Missell et al. Jun 2005 B1
6912106 Chen et al. Jun 2005 B1
6934113 Chen Aug 2005 B1
6934129 Zhang et al. Aug 2005 B1
6940688 Jiang et al. Sep 2005 B2
6942824 Li Sep 2005 B1
6943993 Chang et al. Sep 2005 B2
6944938 Crue, Jr. et al. Sep 2005 B1
6947258 Li Sep 2005 B1
6950266 McCaslin et al. Sep 2005 B1
6954332 Hong et al. Oct 2005 B1
6958885 Chen et al. Oct 2005 B1
6961221 Niu et al. Nov 2005 B1
6969989 Mei Nov 2005 B1
6975486 Chen et al. Dec 2005 B2
6987643 Seagle Jan 2006 B1
6989962 Dong et al. Jan 2006 B1
6989972 Stoev et al. Jan 2006 B1
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7027268 Zhu et al. Apr 2006 B1
7027274 Sin et al. Apr 2006 B1
7035046 Young et al. Apr 2006 B1
7041985 Wang et al. May 2006 B1
7046490 Ueno et al. May 2006 B1
7054113 Seagle et al. May 2006 B1
7057857 Niu et al. Jun 2006 B1
7059868 Yan Jun 2006 B1
7092195 Liu et al. Aug 2006 B1
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7113366 Wang et al. Sep 2006 B1
7114241 Kubota et al. Oct 2006 B2
7116517 He et al. Oct 2006 B1
7124654 Davies et al. Oct 2006 B1
7126788 Liu et al. Oct 2006 B1
7126790 Liu et al. Oct 2006 B1
7131346 Buttar et al. Nov 2006 B1
7133253 Seagle et al. Nov 2006 B1
7134185 Knapp et al. Nov 2006 B1
7154715 Yamanaka et al. Dec 2006 B2
7170725 Zhou et al. Jan 2007 B1
7177117 Jiang et al. Feb 2007 B1
7193815 Stoev et al. Mar 2007 B1
7196880 Anderson et al. Mar 2007 B1
7199974 Alfoqaha Apr 2007 B1
7199975 Pan Apr 2007 B1
7211339 Seagle et al. May 2007 B1
7212384 Stoev et al. May 2007 B1
7238292 He et al. Jul 2007 B1
7239478 Sin et al. Jul 2007 B1
7248431 Liu et al. Jul 2007 B1
7248433 Stoev et al. Jul 2007 B1
7248449 Seagle Jul 2007 B1
7280325 Pan Oct 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7286329 Chen et al. Oct 2007 B1
7289303 Sin et al. Oct 2007 B1
7292409 Stoev et al. Nov 2007 B1
7296339 Yang et al. Nov 2007 B1
7307814 Seagle et al. Dec 2007 B1
7307818 Park et al. Dec 2007 B1
7310204 Stoev et al. Dec 2007 B1
7318947 Park et al. Jan 2008 B1
7333295 Medina et al. Feb 2008 B1
7337530 Stoev et al. Mar 2008 B1
7342752 Zhang et al. Mar 2008 B1
7349170 Rudman et al. Mar 2008 B1
7349179 He et al. Mar 2008 B1
7354664 Jiang et al. Apr 2008 B1
7363697 Dunn et al. Apr 2008 B1
7371152 Newman May 2008 B1
7372665 Stoev et al. May 2008 B1
7375926 Stoev et al. May 2008 B1
7379269 Krounbi et al. May 2008 B1
7386933 Krounbi et al. Jun 2008 B1
7389577 Shang et al. Jun 2008 B1
7417832 Erickson et al. Aug 2008 B1
7419891 Chen et al. Sep 2008 B1
7428124 Song et al. Sep 2008 B1
7430098 Song et al. Sep 2008 B1
7436620 Kang et al. Oct 2008 B1
7436638 Pan Oct 2008 B1
7440220 Kang et al. Oct 2008 B1
7443632 Stoev et al. Oct 2008 B1
7444740 Chung et al. Nov 2008 B1
7493688 Wang et al. Feb 2009 B1
7508627 Zhang et al. Mar 2009 B1
7522377 Jiang et al. Apr 2009 B1
7522379 Krounbi et al. Apr 2009 B1
7522382 Pan Apr 2009 B1
7542246 Song et al. Jun 2009 B1
7551406 Thomas et al. Jun 2009 B1
7552523 He et al. Jun 2009 B1
7554767 Hu et al. Jun 2009 B1
7583466 Kermiche et al. Sep 2009 B2
7595967 Moon et al. Sep 2009 B1
7639457 Chen et al. Dec 2009 B1
7660080 Liu et al. Feb 2010 B1
7672080 Tang et al. Mar 2010 B1
7672086 Jiang Mar 2010 B1
7684160 Erickson et al. Mar 2010 B1
7688546 Bai et al. Mar 2010 B1
7691434 Zhang et al. Apr 2010 B1
7695761 Shen et al. Apr 2010 B1
7719795 Hu et al. May 2010 B2
7726009 Liu et al. Jun 2010 B1
7729086 Song et al. Jun 2010 B1
7729087 Stoev et al. Jun 2010 B1
7736823 Wang et al. Jun 2010 B1
7785666 Sun et al. Aug 2010 B1
7796356 Fowler et al. Sep 2010 B1
7800858 Bajikar et al. Sep 2010 B1
7819979 Chen et al. Oct 2010 B1
7829264 Wang et al. Nov 2010 B1
7846643 Sun et al. Dec 2010 B1
7855854 Hu et al. Dec 2010 B2
7869160 Pan et al. Jan 2011 B1
7872824 Macchioni et al. Jan 2011 B1
7872833 Hu et al. Jan 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
7916426 Hu et al. Mar 2011 B2
7918013 Dunn et al. Apr 2011 B1
7968219 Jiang et al. Jun 2011 B1
7982989 Shi et al. Jul 2011 B1
7996986 Gokemeijer Aug 2011 B2
8008912 Shang et al. Aug 2011 B1
8012804 Wang et al. Sep 2011 B1
8015692 Zhang et al. Sep 2011 B1
8018677 Chung et al. Sep 2011 B1
8018678 Zhang et al. Sep 2011 B1
8024748 Moravec et al. Sep 2011 B1
8072705 Wang et al. Dec 2011 B1
8074345 Anguelouch et al. Dec 2011 B1
8077418 Hu Dec 2011 B1
8077434 Shen et al. Dec 2011 B1
8077435 Liu et al. Dec 2011 B1
8077557 Hu et al. Dec 2011 B1
8079135 Shen et al. Dec 2011 B1
8081403 Chen et al. Dec 2011 B1
8091210 Sasaki et al. Jan 2012 B1
8097846 Anguelouch et al. Jan 2012 B1
8104166 Zhang et al. Jan 2012 B1
8116043 Leng et al. Feb 2012 B2
8116171 Lee Feb 2012 B1
8125856 Li et al. Feb 2012 B1
8134794 Wang Mar 2012 B1
8136224 Sun et al. Mar 2012 B1
8136225 Zhang et al. Mar 2012 B1
8136805 Lee Mar 2012 B1
8141235 Zhang Mar 2012 B1
8146236 Luo et al. Apr 2012 B1
8149536 Yang et al. Apr 2012 B1
8151441 Rudy et al. Apr 2012 B1
8163185 Sun et al. Apr 2012 B1
8164760 Willis Apr 2012 B2
8164855 Gibbons et al. Apr 2012 B1
8164864 Kaiser et al. Apr 2012 B2
8165709 Rudy Apr 2012 B1
8166631 Tran et al. May 2012 B1
8166632 Zhang et al. May 2012 B1
8169473 Yu et al. May 2012 B1
8171618 Wang et al. May 2012 B1
8179636 Bai et al. May 2012 B1
8191237 Luo et al. Jun 2012 B1
8194365 Leng et al. Jun 2012 B1
8194366 Li et al. Jun 2012 B1
8196285 Zhang et al. Jun 2012 B1
8200054 Li et al. Jun 2012 B1
8203800 Li et al. Jun 2012 B2
8208350 Hu et al. Jun 2012 B1
8220140 Wang et al. Jul 2012 B1
8222599 Chien Jul 2012 B1
8225488 Zhang et al. Jul 2012 B1
8227023 Liu et al. Jul 2012 B1
8228633 Tran et al. Jul 2012 B1
8231796 Li et al. Jul 2012 B1
8233248 Li et al. Jul 2012 B1
8248896 Yuan et al. Aug 2012 B1
8254060 Shi et al. Aug 2012 B1
8257597 Guan et al. Sep 2012 B1
8259410 Bai et al. Sep 2012 B1
8259539 Hu et al. Sep 2012 B1
8262918 Li et al. Sep 2012 B1
8262919 Luo et al. Sep 2012 B1
8264797 Emley Sep 2012 B2
8264798 Guan et al. Sep 2012 B1
8270126 Roy et al. Sep 2012 B1
8276258 Tran et al. Oct 2012 B1
8277669 Chen et al. Oct 2012 B1
8279719 Hu et al. Oct 2012 B1
8284517 Sun et al. Oct 2012 B1
8288204 Wang et al. Oct 2012 B1
8289821 Huber Oct 2012 B1
8291743 Shi et al. Oct 2012 B1
8307539 Rudy et al. Nov 2012 B1
8307540 Tran et al. Nov 2012 B1
8308921 Hiner et al. Nov 2012 B1
8310785 Zhang et al. Nov 2012 B1
8310901 Batra et al. Nov 2012 B1
8315019 Mao et al. Nov 2012 B1
8316527 Hong et al. Nov 2012 B2
8320076 Shen et al. Nov 2012 B1
8320077 Tang et al. Nov 2012 B1
8320219 Wolf Nov 2012 B1
8320220 Yuan et al. Nov 2012 B1
8320722 Yuan et al. Nov 2012 B1
8322022 Yi et al. Dec 2012 B1
8322023 Zeng et al. Dec 2012 B1
8325569 Shi et al. Dec 2012 B1
8333008 Sin et al. Dec 2012 B1
8334093 Zhang et al. Dec 2012 B2
8336194 Yuan et al. Dec 2012 B2
8339738 Tran et al. Dec 2012 B1
8341826 Jiang et al. Jan 2013 B1
8343319 Li et al. Jan 2013 B1
8343364 Gao Jan 2013 B1
8349195 Si et al. Jan 2013 B1
8351307 Wolf Jan 2013 B1
8357244 Zhao et al. Jan 2013 B1
8373945 Luo et al. Feb 2013 B1
8375564 Luo et al. Feb 2013 B1
8375565 Hu Feb 2013 B2
8381391 Park et al. Feb 2013 B2
8385157 Champion et al. Feb 2013 B1
8385158 Hu et al. Feb 2013 B1
8394280 Wan et al. Mar 2013 B1
8400731 Li et al. Mar 2013 B1
8404128 Zhang et al. Mar 2013 B1
8404129 Luo et al. Mar 2013 B1
8405930 Li et al. Mar 2013 B1
8409453 Jiang et al. Apr 2013 B1
8413317 Wan et al. Apr 2013 B1
8416540 Li et al. Apr 2013 B1
8419953 Su et al. Apr 2013 B1
8419954 Chen et al. Apr 2013 B1
8422176 Leng et al. Apr 2013 B1
8422342 Lee Apr 2013 B1
8422841 Shi et al. Apr 2013 B1
8424192 Yang et al. Apr 2013 B1
8441756 Sun et al. May 2013 B1
8443510 Shi et al. May 2013 B1
8444866 Guan et al. May 2013 B1
8449948 Medina et al. May 2013 B2
8451556 Wang et al. May 2013 B1
8451563 Zhang et al. May 2013 B1
8454846 Zhou et al. Jun 2013 B1
8455119 Jiang et al. Jun 2013 B1
8456961 Wang et al. Jun 2013 B1
8456963 Hu et al. Jun 2013 B1
8456964 Yuan et al. Jun 2013 B1
8456966 Shi et al. Jun 2013 B1
8456967 Mallary Jun 2013 B1
8458892 Si et al. Jun 2013 B2
8462592 Wolf et al. Jun 2013 B1
8468682 Zhang Jun 2013 B1
8472288 Wolf Jun 2013 B1
8480911 Osugi et al. Jul 2013 B1
8486285 Zhou et al. Jul 2013 B2
8486286 Gao et al. Jul 2013 B1
8488272 Tran et al. Jul 2013 B1
8491801 Tanner et al. Jul 2013 B1
8491802 Gao et al. Jul 2013 B1
8493693 Zheng et al. Jul 2013 B1
8493695 Kaiser et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8514517 Batra et al. Aug 2013 B1
8518279 Wang et al. Aug 2013 B1
8518832 Yang et al. Aug 2013 B1
8520336 Liu et al. Aug 2013 B1
8520337 Liu et al. Aug 2013 B1
8524068 Medina et al. Sep 2013 B2
8526275 Yuan et al. Sep 2013 B1
8531801 Xiao et al. Sep 2013 B1
8532450 Wang et al. Sep 2013 B1
8533937 Wang et al. Sep 2013 B1
8537494 Pan et al. Sep 2013 B1
8537495 Luo et al. Sep 2013 B1
8537502 Park et al. Sep 2013 B1
8545999 Leng et al. Oct 2013 B1
8547659 Bai et al. Oct 2013 B1
8547667 Roy et al. Oct 2013 B1
8547730 Shen et al. Oct 2013 B1
8555486 Medina et al. Oct 2013 B1
8559141 Pakala et al. Oct 2013 B1
8563146 Zhang et al. Oct 2013 B1
8565049 Tanner Oct 2013 B1
8576517 Tran et al. Nov 2013 B1
8578594 Jiang et al. Nov 2013 B2
8582238 Liu et al. Nov 2013 B1
8582241 Yu et al. Nov 2013 B1
8582253 Zheng et al. Nov 2013 B1
8588039 Shi et al. Nov 2013 B1
8593914 Wang et al. Nov 2013 B2
8597528 Roy et al. Dec 2013 B1
8599520 Liu et al. Dec 2013 B1
8599657 Lee Dec 2013 B1
8603593 Roy et al. Dec 2013 B1
8607438 Gao et al. Dec 2013 B1
8607439 Wang et al. Dec 2013 B1
8611035 Bajikar et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8614864 Hong et al. Dec 2013 B1
8619512 Yuan Dec 2013 B1
8625233 Ji et al. Jan 2014 B1
8625941 Shi et al. Jan 2014 B1
8628672 Si et al. Jan 2014 B1
8630068 Mauri et al. Jan 2014 B1
8634280 Wang et al. Jan 2014 B1
8638529 Leng et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8649123 Zhang et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8670211 Sun et al. Mar 2014 B1
8670213 Zeng et al. Mar 2014 B1
8670214 Knutson et al. Mar 2014 B1
8670294 Shi et al. Mar 2014 B1
8670295 Hu et al. Mar 2014 B1
8675318 Ho et al. Mar 2014 B1
8675455 Krichevsky et al. Mar 2014 B1
8681594 Shi et al. Mar 2014 B1
8689430 Chen et al. Apr 2014 B1
8693141 Elliott et al. Apr 2014 B1
8703397 Zeng et al. Apr 2014 B1
8705205 Li et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8711528 Xiao et al. Apr 2014 B1
8717709 Shi et al. May 2014 B1
8720044 Tran et al. May 2014 B1
8721902 Wang et al. May 2014 B1
8724259 Liu et al. May 2014 B1
8749790 Tanner et al. Jun 2014 B1
8749920 Knutson et al. Jun 2014 B1
8753903 Tanner et al. Jun 2014 B1
8760807 Zhang et al. Jun 2014 B1
8760818 Diao et al. Jun 2014 B1
8760819 Liu et al. Jun 2014 B1
8760822 Li et al. Jun 2014 B1
8760823 Chen et al. Jun 2014 B1
8763235 Wang et al. Jul 2014 B1
8780498 Jiang et al. Jul 2014 B1
8780505 Xiao Jul 2014 B1
8786983 Liu et al. Jul 2014 B1
8790524 Luo et al. Jul 2014 B1
8790527 Luo et al. Jul 2014 B1
8792208 Liu et al. Jul 2014 B1
8792312 Wang et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
8797680 Luo et al. Aug 2014 B1
8797684 Tran et al. Aug 2014 B1
8797686 Bai et al. Aug 2014 B1
8797692 Guo et al. Aug 2014 B1
8813324 Emley et al. Aug 2014 B2
8834728 Hu Sep 2014 B1
8971160 Yuan Mar 2015 B1
9153277 Zhao Oct 2015 B2
20080068748 Olson Mar 2008 A1
20100290157 Zhang et al. Nov 2010 A1
20110086240 Xiang et al. Apr 2011 A1
20120111826 Chen et al. May 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120298621 Gao Nov 2012 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20140154529 Yang et al. Jun 2014 A1
20140175050 Zhang et al. Jun 2014 A1