Method for providing an energy assisted magnetic recording head having a laser integrally mounted to the slider

Information

  • Patent Grant
  • 9245543
  • Patent Number
    9,245,543
  • Date Filed
    Friday, April 12, 2013
    11 years ago
  • Date Issued
    Tuesday, January 26, 2016
    8 years ago
Abstract
A method for providing energy assisted magnetic recording (EAMR) heads are described. The method and system include providing a substrate, at least one EAMR transducer, an overcoat layer and at least one laser. The substrate has a leading edge and a substrate trailing edge. The EAMR transducer(s) reside in a device layer and on the substrate trailing edge. The overcoat layer includes a plurality of contacts. The device layer is between the overcoat layer and the substrate trailing edge. The laser(s) provide energy to the EAMR transducer. The overcoat layer is between the substrate trailing edge and the laser(s). The laser(s) are electrically coupled to at least a first portion of the contacts. The contacts provide thermal connection through the overcoat layer and through the device layer to the substrate. At least a second portion of the contacts is electrically insulated from the substrate.
Description
BACKGROUND


FIG. 1 depicts a side view of portion of a conventional energy assisted magnetic recording (EAMR) disk drive 10. The conventional EAMR disk drive 10 includes a recording media 12, a conventional slider 20, and a conventional laser diode 30 that are typically attached to a suspension (not shown). The conventional slider 20 has a leading edge 22, a trailing edge 26, and a back side 24. Although termed “edges”, the leading edge 22 and trailing edge 26 are surfaces of the slider 20. The leading edge 22 and trailing edge 26 are so termed because of the direction the conventional media 12 travels with respect to the EAMR transducer 28. Other components that may be part of the conventional EAMR disk drive 10 are not shown. The conventional slider 20 is typically attached to the suspension at its back side 24. A conventional EAMR transducer 28 is coupled with the slider 20.


The laser diode 30 is coupled in proximity to the EAMR transducer 28 on the trailing edge 26 of the slider 20. Light from the conventional laser diode 30 is provided substantially along the optic axis 32 of the conventional laser diode 30 to the trailing edge 26 of the slider 20. More specifically, light from the laser diode 30 is provided to a grating (not shown) of conventional EAMR transducer 28. The light from the laser diode 30 coupled into the grating is then provided to a waveguide (not shown). The waveguide directs the light toward the conventional media 12, heating a small region of the conventional media 12. The conventional EAMR transducer 28 magnetically writes to the conventional media 12 in the region the conventional media 12 is heated.


Although the conventional EAMR disk drive 10 may function, improvements are desired. More specifically, the laser diode 30 may be desired to be physically integrated onto the conventional slider 20. However, the back side 24 and trailing edge 26 of the slider 20 are generally crowded even without the addition of the laser 30. In addition, the fly height of the transducer 28 with respect to the media 12 is described to be kept substantially unaffected by inclusion of the laser diode 30. Moreover, the heat generated by the laser diode 30 is also desired to be dissipated. Failure to adequately dissipate heat generated by the laser diode 30 may adversely affect performance and reliability of the laser diode 30, as well as other components of the EAMR disk drive 10.


Accordingly, improved methods and systems for integrating the laser within the EAMR disk drive are desired.


BRIEF SUMMARY OF THE INVENTION

A method and system for providing energy assisted magnetic recording (EAMR) heads are described. The method and system include providing a substrate, at least one EAMR transducer, an overcoat layer and at least one laser. The substrate has a leading edge and a substrate trailing edge. The EAMR transducer(s) reside in a device layer and on the substrate trailing edge. The overcoat layer includes a plurality of contacts. The device layer is between the overcoat layer and the substrate trailing edge. The laser(s) provide energy to the EAMR transducer. The overcoat layer is between the substrate trailing edge and the laser(s). The laser(s) are electrically coupled to at least a first portion of the plurality of contacts. The contacts provide thermal connection through the overcoat layer and the device layer. At least a second portion of the plurality of contact is electrically insulated from the substrate.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram depicting a portion of a conventional energy assisted magnetic recording disk drive.



FIG. 2 is a diagram depicting an exemplary embodiment of an EAMR disk drive.



FIG. 3 is a diagram depicting an exemplary embodiment of an EAMR head.



FIG. 4 is a diagram depicting another exemplary embodiment of an EAMR head.



FIG. 5 is a diagram depicting another exemplary embodiment of an EAMR head.



FIG. 6 is a diagram depicting another exemplary embodiment of an EAMR head.



FIG. 7 is a diagram depicting another exemplary embodiment of an EAMR head.



FIG. 8 is a diagram depicting another exemplary embodiment of an EAMR head.



FIG. 9 is a diagram depicting another exemplary embodiment of an EAMR head.



FIG. 10 is a diagram depicting another exemplary embodiment of an EAMR head.



FIG. 11 is a flow chart depicting an exemplary embodiment of a method for fabricating an EAMR head.



FIG. 12 is a flow chart depicting an exemplary embodiment of a method for fabricating a heat spreader in an EAMR head.



FIG. 13 is a flow chart depicting an exemplary embodiment of a method for fabricating a heat spreader in an EAMR head.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION


FIG. 2 depicts an exemplary embodiment of an EAMR disk drive 100 including an EAMR head 110. FIG. 3 depicts an EAMR head 110 used in the disk drive 100. FIG. 2 is a side view of the disk drive 100. FIG. 3 depicts exploded and perspective views of the EAMR head 110. For clarity, FIGS. 2-3 are not to scale. For simplicity not all portions of the EAMR disk drive 100 and EAMR head 110 are shown. In addition, although the disk drive 100 and EAMR head 110 are depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments.


The EAMR disk drive 100 includes a media 102 and an EAMR head 110, also termed a slider. The EAMR head 110 includes a substrate 112, a device layer 120, an overcoat layer 130, a laser 140, an optional capping layer 150, and optional heat spreader 160. The head 110 has a slider leading edge 114 and a trailing edge 118. The substrate 112 has a leading edge 114 and a substrate trailing edge 116. Although termed “edges”, the edges 114, 116, and 118 are surfaces. The device layer 120 includes at least an EAMR transducer (not shown in FIG. 2) and may include a read transducer (not shown). The read transducer may be included if the EAMR head 110 is a merged head. In some embodiments, the device layer 120 is on the order of twelve microns thick, the overcoat layer 130 is on the order of fifteen microns thick, and the substrate 112 is eight hundred fifty microns thick. The capping layer 150 is shown as including a cavity 152 configured for the laser 140, vias 154, contacts 156 for the vias and pads 158. The laser 140 may be a laser diode.


The overcoat layer 130 includes contacts 132. At least some of the contacts 132 provide thermal conductivity through the overcoat layer 130 and the device layer 120. In some embodiments, the contacts 132 thermally couple the laser 140 with the substrate 112. Thus, the contacts 132 may have a high thermal conductivity with respect to the surrounding materials. For example, the contacts 132 may primarily include a high thermal conductivity material, such as Cu. In embodiments having the heat spreader 160, the contacts 132 are thermally coupled with the heat spreader 160. At least some of the contacts 132 electrically insulate the laser 140 from the substrate 112. Stated differently, the laser 140 is not electrically coupled to the substrate 112 through all of the contacts 132. For example, in some embodiments, one or more ground contacts electrically and thermally connect the laser 140 with the substrate 112. However, remaining contacts 132 electrically connect the laser 140 and/or other components to the desired portions of the device layer 120, but not to the substrate 112. These contacts still thermally connect the laser 140 with the substrate 112. The contacts 132 may also be increased in width such that the contacts 132 occupy a larger footprint. Thus, a larger portion of each of the contacts 132 may be in physical contact with the laser 140.


In operation, the laser 140 provides light to the EAMR transducer (not shown) in the device layer 120. In some embodiments, a grating (not shown) is used to couple the light into the transducer. The laser light is directed toward the ABS, for example by a waveguide (not shown). The light may be focused onto the media 102, for example using a near-field transducer (NFT, not shown). The region of the media is thus heated. A pole, which may be energized by a coil, is then used to magnetically write to the region of the media.


The thermal management of the EAMR disk drive 100 may be improved. In particular, the contacts 132 have a high thermal conductivity. Thus, heat generated by the laser 140 may be conducted from the laser 140 to the substrate 112, which has an improved ability to dissipate heat. The heat spreader 160 may also be used to carry heat to the ABS. Thus, the EAMR head 110 may be better able to manage heat and thus have improved reliability and performance. Further, already existing electrical contacts 132 are used for heat dissipation. Thus, the improved thermal management may be achieved without complicating fabrication or occupying substantially more real estate within the overcoat layer 130.



FIG. 4 is a diagram depicting an exemplary embodiment of an EAMR head 210. FIG. 4 depicts side and overcoat layer views of the EAMR head 210. For clarity, FIG. 4 is not to scale. For simplicity not all portions of the EAMR head 210 are shown. In addition, although the EAMR head 210 is depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments. The EAMR head 210 is analogous to the EAMR head 110 and may be used in the disk drive 100. Thus, similar components of the EAMR head 210 have analogous labels. The EAMR head 210 thus includes a substrate 212 having a substrate leading edge 214 and a substrate trailing edge 216, device layer 220, overcoat layer 230 including contacts 232 and laser 240 that correspond to the substrate 112 having the substrate leading edge 114 and the substrate trailing edge 116, the device layer 120, the overcoat layer 130 including contacts 132 and the laser 140, respectively. Also shown are additional contacts 236, bond pads 242 and insulating layer 244.


As can be seen in FIG. 4, the laser 240 is bonded to the EAMR head 210 via bond pads 242, which may be conductive. The bond pads 242 mechanically connect the laser 240 to the head 210. The thin insulating layer 244 may electrically isolate each of the contacts 232 from another contact 232 as well as from the laser 240. However, in other embodiments, only the overcoat layer 230 may be relied upon for insulation and the thin insulating layer 244 omitted. Further, the region of the overcoat layer 230 and device layer 220 around the contacts 232 is insulating, for example, aluminum oxide. Thus, the contacts 232 are electrically insulating from each other unless specifically designed otherwise.


The laser 240 is electrically coupled to at least some of the contacts 232. In the embodiment shown, the laser 240 is electrically connected to all of the contacts 232. In other embodiments, the laser 240 may be coupled to only a portion of the contacts 232. The contacts 232 provide thermal connection through the overcoat layer 230 and the device layer 220 to the substrate 212. In the embodiment shown, one of the contacts 232 both electrically and thermally connects the laser 240 to the substrate 212. However, in other embodiments, multiple ground contacts 232 may both electrically and thermally connect the laser 240 to the substrate 212. The remaining contacts 232 electrically isolate the laser 240 from the substrate 212 but thermally connect the laser 240 to the substrate 212. In some embodiments, the remaining contacts 232 include a thin insulating layer 234, which electrically isolates the top portion of the contacts 232 proximate to the laser 240 from the bottom portion of the contacts 232 proximate to the substrate 212. Thus, the insulating layers 234 are sufficiently thick to provide electrical insulation but sufficiently thin that the thermal connection to the substrate 212 is not broken. Stated differently, the insulating layers 234 are thin enough that heat dissipation is not significantly impeded while providing electrical insulation. Thus, the insulating layers 234 allow thermal connection through the device layer 120 and electrical connection to a portion of the device layer 120. The insulating layers 234 may reside at or below the layer in the device layer 220 to which electrical connection is to be made. In some such embodiments, the electrically conductive portion of the contacts 232 includes one or more materials, such as Cu, Au, their alloys, NiFe, CoFe and/or other materials that have high thermal and electrical conductivity. The insulating layer 234 may include electrically and thermally insulating material(s) such as aluminum oxide or silicon oxide. In other embodiments, the insulating layer 234 may be thermally conductive but electrically insulating. For example, SiC or diamond-like carbon (DLC) might be used. In some embodiments, the portion of the contacts 232 below the insulating layer 234 may have a high thermal conductivity but be electrically insulating. In other embodiments, the portion of the contacts 232 below the insulating layer 234 may have high thermal and electrically conductivities. The contacts 232 function electrically as desired yet still provide a thermal path between the laser 240 and the substrate 212.


The EAMR head 210 functions in an analogous manner to the EAMR head 110. Thus, the thermal management of the EAMR head 210 and the EAMR disk drive 100 in which it may be used may be improved. In particular, the contacts 232 have a high thermal conductivity in addition to the electrically insulating layers 234. Thus, heat generated by the laser 240 may be conducted from the laser 240 to the substrate 212, which has an improved ability to dissipate heat. Thus, the EAMR head 210 may be better able to manage heat and thus have improved reliability and performance. Already existing electrical contacts 232 are used for heat dissipation. Thus, the improved thermal management may be achieved without complicating fabrication or occupying substantially more of the overcoat layer 230.



FIG. 5 is a diagram depicting an exemplary embodiment of an EAMR head 210′. FIG. 5 depicts side and overcoat layer views of the EAMR head 210′. For clarity, FIG. 5 is not to scale. For simplicity not all portions of the EAMR head 210′ are shown. In addition, although the EAMR head 210′ is depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments. The EAMR head 210′ is analogous to the EAMR heads 110/210 and may be used in the disk drive 100. Thus, similar components of the EAMR head 210′ have analogous labels. The EAMR head 210′ thus includes a substrate 212′ having a substrate leading edge 214′ and a substrate trailing edge 216′, device layer 220′, overcoat layer 230′ including contacts 232′, and laser 240′ that correspond to the substrate 112/212 having the substrate leading edge 114/214 and the substrate trailing edge 116/216, the device layer 120/220, the overcoat layer 130/230 including contacts 132/232 and the laser 140/240, respectively. Also shown are additional contacts 236′, bond pads 242′ and insulating layer 244′ that are analogous to the contacts 236, bond pads 242, and insulating layer 244, respectively. Further, although one ground contact 232′ is shown, the remaining contacts 232′ have insulating layers 234′ therein. Thus, the contacts 232′ are analogous to the contacts 132/232.


In addition, the footprint of the contacts 232′ has been increased. As can be seen in the overcoat layer view, the contacts 232′ occupy a larger portion of the footprint of the laser 240′. In the embodiment shown, the contacts 232′ extend across the footprint of the laser 240′ in one direction (from top to bottom in FIG. 5). The contacts 232′ are separated in the horizontal direction in FIG. 5. This separation allows the contacts 232′ to be electrically isolated from each other. In some embodiments, the separation is on the order of twenty-five microns. In some embodiments, the distance between the contacts 232′ in the horizontal direction is at or slightly larger than a minimum separation. The minimum separation is the minimum distance that allows the contacts 232′ to be electrically isolated from each other. Increasing the footprint of the contacts 232′ increases the amount of thermally conductive material in the EAMR head 210′ and the thermal connection between the laser 240′ and the contacts 232′.


The EAMR head 210′ functions in an analogous manner to the EAMR heads 110/210. Thus, the thermal management of the EAMR head 210′ and the EAMR disk drive 100 in which it may be used may be improved. In particular, the contacts 232′ have a high thermal conductivity in addition to the insulating layers 234′. Thus, heat generated by the laser 240′ may be conducted from the laser 240′ to the substrate 212′, which has an improved ability to dissipate heat. This conduction of heat may be enhanced by increasing the footprint of the contacts 232′. Thus, the EAMR head 210′ may be better able to manage heat and thus have improved reliability and performance. Already existing electrical contacts 232′ are used for heat dissipation. Thus, the improved thermal management may be achieved without complicating fabrication or occupying substantially more of the overcoat layer 230′.



FIG. 6 is a diagram depicting an exemplary embodiment of an EAMR head 210″. FIG. 6 depicts side and overcoat layer views of the EAMR head 210″. For clarity, FIG. 6 is not to scale. For simplicity not all portions of the EAMR head 210″ are shown. In addition, although the EAMR head 210″ is depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments. The EAMR head 210″ is analogous to the EAMR heads 110/210/210′ and may be used in the disk drive 100. Thus, similar components of the EAMR head 210″ have analogous labels. The EAMR head 210″ thus includes a substrate 212″ having a substrate leading edge 214″ and a substrate trailing edge 216″, device layer 220″, overcoat layer 230″ including contacts 232″, and laser 240″ that correspond to the substrate 112/212/212′ having the substrate leading edge 114/214/214′ and the substrate trailing edge 116/216/218′, the device layer 120/220/220′, the overcoat layer 130/230′/230 including contacts 132/232/232′ and the laser 140/240/240′, respectively. Also shown are additional contacts 236″, bond pads 242″ and insulating layer 244″ that are analogous to the contacts 236/236′, bond pads 242/242′, and insulating layer 244/244′, respectively. Further, one ground contact 232″ is shown. The remaining contacts 232″ have insulating layers 234″ therein. Thus, the contacts 232′ are analogous to the contacts 132/232/232′. Although shown as having a smaller footprint, analogous to the footprint of the contacts 232, the contacts 232″ might have a larger footprint. For example, the contacts 232″ may be analogous to the contacts 232′.


In addition, the capping layer 250 is shown. The capping layer 250 is analogous to the capping layer 150 depicted in FIGS. 2-3. Thus, the capping layer 250 includes a cavity 252 analogous to the cavity 150 and contacts 256 analogous to the contacts/pads 156/158. Although not separately shown, the cavity 252 may have a reflective surface to redirect light from the laser 240″. The cavity 252 encloses the laser 240″. As the capping layer 250 may be sealed to the overcoat layer 230″, the laser 240″ may be sealed in the cavity 252.


The EAMR head 210″ functions in an analogous manner to the EAMR heads 110/210/210′. Thus, the thermal management of the EAMR head 210″ and the EAMR disk drive 100 in which it may be used may be improved. In particular, the contacts 232″ provide a high conductivity thermal path between the laser 240″ and the substrate 212″ as well as the desired electrical function. Heat generated by the laser 240″ may be conducted from the laser 240″ to the substrate 212″, which has an improved ability to dissipate heat. Thus, the EAMR head 210″ may be better able to manage heat and thus have improved reliability and performance. Already existing electrical contacts 232″ are used for heat dissipation. Thus, the improved thermal management may be achieved without complicating fabrication or occupying substantially more of the overcoat layer 230″. Further, the laser 240″ is enclosed in the cavity 252 of the capping layer 250. Thus, the laser 240″ may be protected from damage during manufacturing and use.



FIG. 7 is a diagram depicting an exemplary embodiment of an EAMR head 310. FIG. 7 depicts side and substrate views of the EAMR head 310. For clarity, FIG. 7 is not to scale. For simplicity not all portions of the EAMR head 310 are shown. In addition, although the EAMR head 310 is depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments. The EAMR head 310 is analogous to the EAMR heads 110/210/210′/210″ and may be used in the disk drive 100. Thus, similar components of the EAMR head 310 have analogous labels. The EAMR head 310 thus includes a substrate 312 having a substrate leading edge 314 and a substrate trailing edge 316, device layer 320, overcoat layer 330 including contacts 332 and laser 340 that correspond to the substrate 112/212/212′/212″ having the substrate leading edge 114/214/214′/214″ and the substrate trailing edge 116/216/216′/216″, the device layer 120/220/220′/220″, the overcoat layer 130/230/230′/230″ including contacts 132/232/232′/232″ and the laser 140/240/240′/240″, respectively. Also shown are additional contacts 336, bond pads 342 and insulating layer 344 that are analogous to the contacts 236/236′/236″, bond pads 242/242′/242″ and insulating layer 244/244′/244″. The structure and function of the components 312, 314, 316, 320, 330, 332, 334, 336, 340, 342, and 344 are analogous to the structure and function of the components 112/212/212′/212′, 114/214/214′/214″, 116/216/216′/216″, 120/220/220′/220″, 130/230/230′/230″, 132/232/232′/232″, 234/234′/234″, 136/236/236′/236″, 140/240/240′/240″, and 142/242/242′/242″, respectively. Although not shown, the head 310 may include a capping layer analogous to the capping layers 150 and 250.


The head 310 also includes a heat spreader 360. The heat spreader 360 includes a high thermal conductivity material, such as Cu, Ag, Au, their alloys, NiFe, and/or CoFe. In some embodiments, the heat spreader 360 may include insulating materials, such as SiC and/or DLC. The heat spreader 360 may also include a mixture of high thermal conductivity materials, such as diamond particles in a Cu matrix. The heat spreader 360 is thermally coupled with at least some of the contacts 332. In the embodiment shown, the heat spreader 360 is in contact with and thus thermally coupled with all of the contacts 332. However, in other embodiments, the heat spreader 360 might be thermally coupled with only some of the contacts 332. In the embodiment shown, the heat spreader 360 includes a plurality of bars. However, in other embodiments, the heat spreader 360 may have another configuration. Further, a portion of the heat spreader 360 occupies part of the ABS. In other embodiments, the heat spreader 360 may be recessed from the ABS. For example, it may be desirable to recess the heat spreader 360 from the ABS to prevent corrosion of the heat spreader 360. However, in some such embodiments, the heat spreader 360 is still thermally connected with the ABS. Finally, the heat spreader 360 is shown as being recessed in the substrate 312. However, in other embodiments, the heat spreader 360 may reside on the substrate trailing edge 316. In such embodiments, the heat spreader 360 may have insulating layers around it.


The EAMR head 310 functions in an analogous manner to the EAMR heads 110/210/210′/210″. Thus, the thermal management of the EAMR head 310 and the EAMR disk drive 100 in which it may be used may be improved. In particular, the contacts 332 provide a high conductivity thermal path between the laser 340 and the substrate 312 as well as the desired electrical function. Heat generated by the laser 340 may be conducted from the laser 340 to the substrate 312, which has an improved ability to dissipate heat. Thus, the EAMR head 310 may be better able to manage heat and thus have improved reliability and performance. Already existing electrical contacts 332 are used for heat dissipation. Thus, the improved thermal management may be achieved without complicating fabrication or occupying substantially more of the overcoat layer 330. Further, the head 310 includes heat spreader 360. The heat spreader 360 may further conduct heat from the laser 340 across the substrate 312. In embodiments in which the heat spreader 360 occupies a portion of the ABS or is only slightly recessed from the ABS, the heat spreader 360 also conducts heat to the ABS. The ABS may provide an improved mechanism for dissipation of the heat from the laser 340. In addition, because the heat spreader 360 is configured as a series of bars, thermal expansion of the region of the substrate 312 may be mitigated. Thus, thermal management of the EAMR head 310 may be further improved. Performance and reliability of the EAMR head 310 may thus be enhanced.



FIG. 8 is a diagram depicting an exemplary embodiment of an EAMR head 310′. FIG. 8 depicts side and substrate views of the EAMR head 310′. For clarity, FIG. 8 is not to scale. For simplicity not all portions of the EAMR head 310′ are shown. In addition, although the EAMR head 310′ is depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments. The EAMR head 310′ is analogous to the EAMR heads 110/210/210′/210″/310 and may be used in the disk drive 100. Thus, similar components of the EAMR head 310′ have analogous labels. The EAMR head 310′ thus includes a substrate 312′ having a substrate leading edge 314′ and a substrate trailing edge 316′, device layer 320′, overcoat layer 330′ including contacts 332′ and laser 340′ that correspond to the substrate 312 having the substrate leading edge 314 and the substrate trailing edge 316, the device layer 320, the overcoat layer 330 including contacts 332 and the laser 340, respectively. Also shown are additional contacts 336′, bond pads 342′ and insulating layer 344′ that are analogous to the contacts 336, bond pads 342 and insulating layer 344. The structure and function of the components 312′, 314′, 316′, 320′, 330′, 332′, 336′, 340′, 342′, and 344′ are analogous to the structure and function of components 312, 314, 316, 320, 330, 332, 334, 336, 340, 342, and 344, respectively. Although not shown, the head 310′ may include a capping layer analogous to the capping layers 150 and 250.


The head 310′ also includes a heat spreader 360′. The heat spreader 360′ is analogous to the heat spreader 360. However, the heat spreader 360′ is configured as a rectangular slab. The heat spreader 360′ includes a high thermal conductivity material, such as Cu, Ag, Au, their alloys, NiFe, and/or CoFe. In some embodiments, the heat spreader 360′ may include insulating materials, such as SiC and/or DLC. The heat spreader 360′ may also include a mixture of materials, such as diamond particles in a Cu matrix. The heat spreader 360′ is thermally coupled with at least some of the contacts 332′. In the embodiment shown, the heat spreader 360′ is in contact with and thus thermally coupled with all of the contacts 332′. However, in other embodiments, the heat spreader 360′ might be thermally coupled with only some of the contacts 332′. In the embodiment shown, the heat spreader 360′ is a conductive slab. However, in other embodiments, the heat spreader 360′ may have another configuration. Further, a portion of the heat spreader 360′ occupies part of the ABS. In other embodiments, the heat spreader 360′ may be recessed from the ABS. For example, it may be desirable to recess the heat spreader 360′ from the ABS to prevent corrosion of the heat spreader 360′. However, in some such embodiments, the heat spreader 360′ is still thermally connected with the ABS. However, in other embodiments, the heat spreader 360′ may reside on the substrate trailing edge 316′. In such embodiments, the heat spreader 360′ may have insulating layers around it.


The EAMR head 310′ functions in an analogous manner to the EAMR heads 110/210/210′/210″/310. Thus, the thermal management of the EAMR head 310′ and the EAMR disk drive 100 in which it may be used may be improved through the use of the contacts 332′. Thus, the EAMR head 310′ may be better able to manage heat and have improved reliability and performance without complicating fabrication or occupying substantially more of the overcoat layer 330′. Further, the head 310′ includes heat spreader 360′. The heat spreader 360′ may further conduct heat from the laser 340′ across the substrate 312′. In embodiments in which the heat spreader 360′ occupies a portion of the ABS or is only slightly recessed from the ABS, the heat spreader 360′ also conducts heat to the ABS. The ABS may provide an improve mechanism for dissipation of the heat from the laser 340′. Thus, thermal management of the EAMR head 310′ may be further improved. Performance and reliability of the EAMR head 310′ may thus be enhanced.



FIG. 9 is a diagram depicting an exemplary embodiment of an EAMR head 310″. FIG. 9 depicts side and substrate views of the EAMR head 310″. For clarity, FIG. 9 is not to scale. For simplicity not all portions of the EAMR head 310″ are shown. In addition, although the EAMR head 310″ is depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments. The EAMR head 310″ is analogous to the EAMR heads 110/210/210′/210″/310/310′ and may be used in the disk drive 100. Thus, similar components of the EAMR head 310″ have analogous labels. The EAMR head 310″ thus includes a substrate 312″ having a substrate leading edge 314″ and a substrate trailing edge 316″, device layer 320″, overcoat layer 330″ including contacts 332″ and laser 340″ that correspond to the substrate 312/312′ having the substrate leading edge 314/314′ and the substrate trailing edge 316/316′, the device layer 320/320′, the overcoat layer 330/330′ including contacts 332/332′ and the laser 340/340′, respectively. Also shown are additional contacts 336″, bond pads 342″ and insulating layer 344″ that are analogous to the contacts 336/336′, bond pads 342/342′ and insulating layer 344/344′. The structure and function of the components 312″, 314″, 316″, 320″, 330″, 332″, 334″, 336″, 340″, 342″, and 344″ are analogous to the structure and function of components 312/312′, 314/314′, 316/316′, 320/320′, 330/330′, 332/332′, 334/334′, 336/336′, 340/340′, 342/342′, and 344/344′, respectively. Although not shown, the head 310″ may include a capping layer analogous to the capping layers 150 and 250.


The head 310″ also includes a heat spreader 360″ analogous to the heat spreaders 360 and 360′. More specifically, the heat spreader 360″ is analogous to the heat spreader 360′ in that it has a slab configuration. The structure and function of the heat spreader 360″ is thus analogous to the structure and function of the heat spreaders 360 and 360′. However, the heat spreader 360″ resides on the substrate trailing edge 316″. Thus, insulation 362 is provided around the heat spreader 360″.


The EAMR head 310″ functions in an analogous manner to the EAMR heads 110/210/210′/210″/310/310′. Thus, the thermal management of the EAMR head 310″ and the EAMR disk drive 100 in which it may be used may be improved through the use of the contacts 332″. Thus, the EAMR head 310′ may be better able to manage heat without complicating fabrication or occupying substantially more of the overcoat layer 330′. Further, the head 310″ includes heat spreader 360″. The heat spreader 360″ may further conduct heat from the laser 340″ across the substrate 312″. In embodiments in which the heat spreader 360″ occupies a portion of the ABS or is only slightly recessed from the ABS, the heat spreader 360″ also conducts heat to the ABS. The ABS may provide an improve mechanism for dissipation of the heat from the laser 340″. Thus, thermal management of the EAMR head 310″ may be further improved. Performance and reliability of the EAMR head 310″ may thus be enhanced.



FIG. 10 is a diagram depicting an exemplary embodiment of an EAMR head 310′″. FIG. 10 depicts side and overcoat layer views of the EAMR head 310′″. For clarity, FIG. 10 is not to scale. For simplicity not all portions of the EAMR head 310′″ are shown. In addition, although the EAMR head 310′″ is depicted in the context of particular components other and/or different components may be used. Further, the arrangement of components may vary in different embodiments. The EAMR head 310′″ is analogous to the EAMR heads 110/210/210′/210″/310/310′/310″ and may be used in the disk drive 100. Thus, similar components of the EAMR head 310′″ have analogous labels. The EAMR head 310′″ thus includes a substrate 312′″ having a substrate leading edge 314′″ and a substrate trailing edge 316′″, device layer 320′″, overcoat layer 330′″ including contacts 332′″ and laser 340′″ that correspond to the substrate 312/312′/312″ having the substrate leading edge 314/314′/314″ and the substrate trailing edge 316/316′/316″, the device layer 320/320′/320″, the overcoat layer 330/330′/330″ including contacts 332/332′/332″ and the laser 340/340′/340″, respectively. Also shown are additional contacts 336′″, bond pads 342′″ and insulating layer 344′″ that are analogous to the contacts 336/336′/336″, bond pads 342/342′/342″ and insulating layer 344/344′/344″. The structure and function of the components 312′″, 314′″, 316′″, 320′″, 330′″, 332′″, 334′″, 336′″, 340′″, 342′″, and 344′″ are analogous to the structure and function of components 312/312′/312″, 314/314′/314″, 316/316′/316″, 320/320′/320″, 330/330′/330″, 332/332′/332″, 334/334′/334″, 336/336′/336″, 340/340′/340″, 342/342′/342″, and 344/344′/344″, respectively. Although not shown, the head 310′″ may include a capping layer analogous to the capping layers 150 and 250.


The heat spreader 360′″ is analogous to the heat spreaders 360 and 360′. More specifically, the heat spreader 360″ is analogous to the heat spreaders 360 and 360′ in that the heat spreader 360″ has a high thermal conductivity and is used to spread heat across the substrate 312. However, the heat spreader 360′″ is electrically insulating. Thus, the heat spreader 360′″ allows the contacts 332″ to be electrically insulated from each other. The heat spreader 360′″ is incorporated into the overcoat layer 330″. However, in other embodiments, the heat spreader 360′″ might be incorporated into the substrate 312′″ in an analogous manner to the heat spreader 360, 360′ and/or 360″.


The EAMR head 310′″ functions in an analogous manner to the EAMR heads 110/210/210′/210″/310/310′/310″. Thus, the thermal management of the EAMR head 310′″ and the EAMR disk drive 100 in which it may be used may be improved through the use of the contacts 332″. Thus, the EAMR head 310″ may be better able to manage heat without complicating fabrication or occupying substantially more of the overcoat layer 330′. Further, the head 310′″ includes heat spreader 360′″. The heat spreader 360″ may further conduct heat from the laser 340′″ across the substrate 312′″. In embodiments in which the heat spreader 360′″ occupies a portion of the ABS or is only slightly recessed from the ABS, the heat spreader 360′″ also conducts heat to the ABS. The ABS may provide an improve mechanism for dissipation of the heat from the laser 340′″. In addition, as the heat spreader 360′″ is incorporated into or as the overcoat layer 330′″, a separate heat spreader need not be provided. Further, in some embodiments, the contacts 332′″ need not extend to the substrate 312′″ if heat may be sufficiently dissipated through the heat spreader 360′″/overcoat layer 330′″. Fabrication of the head 310′″ may be simplified. Thus, thermal management of the EAMR head 310′″ may be further improved. Performance and reliability of the EAMR head 310′″ may thus be enhanced.


Thus, the EAMR heads 110, 210, 210′, 210″, 310, 310′, 310″, and 310′″ may have improved thermal properties. Although specific features have been depicted and described in each of the heads 110, 210, 210′, 210″, 310, 310′, 310″, and 310′″, specific features of the heads 110, 210, 210′, 210″, 310, 310′, 310″, and 310′″ may be selected and combined with other features of the same or other heads 110, 210, 210′, 210″, 310, 310′, 310″, 310′″, and/or other heads that are not shown. For example, the heat spreader 360′ and/or 360′″ may be incorporated into the head 210. Thus, the thermal management of EAMR heads 110, 210, 210′, 210″, 310, 310′, 310″, and 310′″ may be improved.



FIG. 11 is a flow chart depicting an exemplary embodiment of a method for fabricating an EAMR head. Although certain steps are shown, some steps may be omitted, interleaved, performed in another order, and/or combined. The method 400 is described in the context of the EAMR head 110. However, the method 400 may be used with other EAMR heads including but not limited to the EAMR heads 210, 210′, 210″, 310, 310′, 310″, and/or 310′″. The head 110 is fabricated on a substrate 112 that has a front face that corresponds to the substrate trailing edge 114.


A heat spreader 160 is optionally provided, via step 402. If the heat spreader 160 is analogous to the heat spreader 360, 360′, or 360″, step 402 may be performed prior to fabrication of the EAMR transducer and other components in the device layer 120. However, if the heat spreader 160 is analogous to the heat spreader 360′″, then step 402 may be performed later. If no heat spreader is used, then step 402 is omitted.


The EAMR transducer is fabricated in a device layer 120 for each of the plurality of EAMR heads on front face of the substrate 112, via step 404. Step 404 includes providing optical components, such as grating(s), waveguide(s), and near-field transducer(s) for each of the heads 110 being formed. In addition, magnetic components such as shield(s), pole(s), coil(s), and read sensor(s) may also be fabricated.


An overcoat layer 130 is provided on the device layer, via step 406. The overcoat layer 130 includes contacts 332 that extend through the device layer 120. In some embodiments, therefore, step 406 includes forming vias in the overcoat layer 130 and the device layer 120 and filling the vias with the appropriate material(s). However, as discussed above, the contacts 132 may include insulating layers, such as the layer 234, therein. Consequently, the portions of the contacts 132 in the device layer 120 may be formed as part of step 404. For example, vias corresponding to the contacts 132 may be formed in the device layer 120. The vias are filled with thermally conductive material at least up to the insulating layer, such as the insulating layer 234. The thermally conductive material may also be electrically conductive. Thus, insulating layers would then be provided at the desired level in the device layer 120. If an electrically insulating material is used, then the electrically insulating/thermally conducting material may be provided up to the top of the insulating layer 234. Electrically and thermally conductive material may then fill the remaining portion of the vias in the device layer 120. These activities may be performed as part of step 404. Step 406 may then include forming vias in the overcoat layer 130 and filling these vias with thermally and electrically conductive materials. Further, as discussed above, step 406 may include configuring the contacts such that they occupy a larger portion of the footprint of the laser 140. For example, the contacts 232′ may be fabricated in step 406. In addition, if an insulating heat spreader 360′″ is used, step 406 may include fabricating the heat spreader 360′″.


At least one laser is provided for each of the EAMR heads 110 being fabricated, via step 408. Step 408 may include bonding the laser 140 to the overcoat layer 130, for example using bond pads such as bond pads 242. Thus, the laser 140 is thermally, electrically, mechanically coupled with the EAMR head 110.


The laser 140 is optionally enclosed in the capping layer 150, via step 410. Thus, the laser 140 may be provided in the cavity 152. The capping layer 150 may be bonded to the overcoat layer 130.


The substrate 112 is separated into the EAMR heads, via step 412. For example, the substrate 112 may be diced, The EAMR heads 110 may also be lapped to expose the ABS. Thus, the EAMR heads 110 may be fabricated. The EAMR heads 210, 210′, 210″, 310, 310′, 310″, 310′″ may be fabricated in an analogous manner. Consequently, the benefits of the EAMR heads 110, 210, 210′, 210″, 310, 310′, 310″, 310′″ may be achieved.



FIG. 12 is a flow chart depicting an exemplary embodiment of a method 420 for fabricating an EAMR head. In particular, the method 420 may be used in providing a heat spreader 160, 360, 360′ and/or 360″. Although certain steps are shown, some steps may be omitted, interleaved, performed in another order, and/or combined. The method 420 is described in the context of the EAMR head 310. However, the method 420 may be used with other EAMR heads including but not limited to the EAMR heads 110, 210, 210′, 210″, 310′, 310″, and/or 310′″.


A depression is formed in the substrate 312, via step 422. For the heat spreader 360, the depression formed includes bars. However, for different configurations of the heat spreader, the depression formed may have other shapes. For example, for the heat spreader 360′, the depression may be a rectangular slab.


A thermally conductive material is provided, via step 424. In some embodiments, the thermally conductive material is deposited only in the depression. However, in other embodiments, the thermally conductive material may be deposited outside of the depression. For example, a full film deposition may be performed in step 424.


The transducer may then be planarized, via step 426. For example, a chemical mechanical planarization (CMP) may be performed. Thus, the thermally conductive material within the depression is exposed. Thus, the heat spreader 360 or 360′ having the desired configuration may be provided. Consequently, the EAMR heads 110, 210, 210′, 210″, 310, 310′, and/or 310″ may have improved thermal management.



FIG. 13 is a flow chart depicting an exemplary embodiment of a method 420′ for fabricating an EAMR head. In particular, the method 420′ may be used in providing a heat spreader 360′″. Although certain steps are shown, some steps may be omitted, interleaved, performed in another order, and/or combined. The method 420 is described in the context of the EAMR head 310″. However, the method 420 may be used with other EAMR heads including but not limited to the EAMR heads 110, 210, 210′, 210″, 310, 310′, and/or 310′″.


A thermally conductive material is provided on the substrate in the desired configuration, via step 422′. Step 422′ may include depositing a full film, masking a portion of the thermally conductive material, and then removing the exposed portion of the thermally conductive material. In another embodiment, step 422′ may include providing a mask on the substrate 312″. The mask exposes the portion of the substrate 312″ on which the heat spreader 360″ is to reside. The thermally conductive material is then deposited on the exposed portion of the substrate 312″. Thus, the desired shape of the heat spreader 360″ is fabricated.


An insulating material is then deposited, via step 424′. The thermally conductive material provided in step 422′ may also be electrically conductive. The remainder of the layer is desired to be electrically insulating. Consequently, the insulating material is provided.


The transducer may then be planarized, via step 426′. For example, a CMP may be performed. Thus, the thermally conductive material is exposed. Thus, the heat spreader 360″ surrounded by insulating material 362 may be provided. Consequently, the EAMR heads 110, 210, 210′, 210″, 310, 310′, and/or 310″ may have improved thermal management.


Using the methods 400, 420, and 420′, the desired EAMR heads 110, 210, 210′, 210″, 310, 310′, 310″, and/or 310′″ may be fabricated. Thus, EAMR heads 110, 210, 210′, 210″, 310, 310′, 310″, and/or 310′″ having improved thermal properties may be provided.

Claims
  • 1. A method for providing a plurality of energy assisted magnetic recording (EAMR) heads including a plurality of sliders, the method comprising: fabricating an EAMR transducer in a device layer for each of the plurality of EAMR heads on a substrate having a front face corresponding to a trailing edge of the plurality of sliders;providing an overcoat layer including a plurality of contacts for each of the plurality of EAMR heads, the device layer residing between the overcoat layer and the front face of the substrate;providing at least one laser for each of the plurality of EAMR heads, the at least one laser for providing energy to the EAMR transducer, the overcoat layer residing between the front face of the substrate and the at least one laser, the at least one laser being electrically coupled to at least a first portion of the plurality of contacts, the plurality of contacts providing thermal connection through the overcoat layer and through the device layer to the substrate, at least a second portion of the plurality of contact being electrically insulated from the substrate; andseparating the substrate into the plurality of EAMR heads.
  • 2. The method of claim 1 wherein the at least one laser has a laser footprint on the overcoat layer, and wherein the plurality of contacts extend at least across the laser footprint in a first direction and are separated a distance in a second direction, the distance being a minimum separation such that each of the plurality of electrical contacts is electrically isolated from any other electrical contact in the overcoat layer.
  • 3. The method of claim 1 further comprising: providing a plurality of laser bond pads for each of the plurality of EAMR heads, the plurality of laser bond pads for electrically connecting the at least one laser with the plurality of contacts and mechanically coupling the at least one laser with the overcoat layer; andbonding the at least one laser to the plurality of laser bond pads.
  • 4. The method of claim 1 wherein each of the second portion of the plurality of contacts includes an insulating layer therein, the insulating layer allowing thermal connection through the device layer and electrical connection between a portion of the device layer and wherein the step of providing the EAMR transducer further includes: providing a plurality of vias corresponding to the plurality of contacts in the device layer;providing at least one electrically and thermally conductive layer in the plurality of vias;depositing the insulating layer at a desired location in the device layer for a portion of the plurality of vias corresponding to the second portion of the plurality of contacts; anddepositing at least one additional electrically and thermally conductive layer in the plurality of vias.
  • 5. The method of claim 1 further comprising: enclosing the at least one laser for each of the plurality of EAMR heads in a capping layer.
  • 6. The method of claim 1 further comprising: providing a heat spreader adjacent to a portion of the substrate, the heat spreader thermally connected with at least a third portion of the plurality of contacts.
  • 7. The method of claim 6 wherein the EAMR head includes an air-bearing surface (ABS) and wherein the step of providing the heat spreader further includes: providing a portion of the heat spreader occupies a portion of the ABS.
  • 8. The method of claim 6 wherein the step of providing the heat spreader further includes forming a depression in the substrate for each of the plurality of EAMR heads; andproviding a thermally conductive slab in the depression.
  • 9. The method of claim 6 wherein the step of providing the heat spreader further includes providing a thermally conductive slab on the substrate;providing an insulating layer on the thermally conductive slab; andplanarizing the substrate, exposing at least a portion of the thermally conductive slab.
  • 10. The method of claim 6 wherein the step of providing the heat spreader further includes forming a depression in the substrate for each of the plurality of EAMR heads; andproviding a plurality of thermally conductive bars in the depression.
  • 11. The method of claim 6 wherein the step of providing the heat spreader further includes: providing a plurality of thermally conductive bars on the substrate;providing an insulating layer on the plurality of thermally conductive bars; andplanarizing the substrate, exposing at least a portion of the plurality of thermally conductive bars.
  • 12. The method of claim 1 wherein the step of providing the overcoat layer further includes: providing an electrically insulating heat spreader thermally connected with the plurality of contacts and electrically insulating the plurality of contacts.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 12/824,080, filed on Jun. 25, 2010, now U.S. Pat. No. 8,441,896, which is hereby incorporated by reference in its entirety.

US Referenced Citations (652)
Number Name Date Kind
5140569 Nebashi Aug 1992 A
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6034851 Zarouri et al. Mar 2000 A
6043959 Crue et al. Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6049650 Jerman et al. Apr 2000 A
6055138 Shi Apr 2000 A
6058094 Davis et al. May 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6099362 Viches et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6108166 Lederman Aug 2000 A
6118629 Huai et al. Sep 2000 A
6118638 Knapp et al. Sep 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6136166 Shen et al. Oct 2000 A
6137661 Shi et al. Oct 2000 A
6137662 Huai et al. Oct 2000 A
6160684 Heist et al. Dec 2000 A
6163426 Nepela et al. Dec 2000 A
6166891 Lederman et al. Dec 2000 A
6173486 Hsiao et al. Jan 2001 B1
6175476 Huai et al. Jan 2001 B1
6178066 Barr Jan 2001 B1
6178070 Hong et al. Jan 2001 B1
6178150 Davis Jan 2001 B1
6181485 He Jan 2001 B1
6181525 Carlson Jan 2001 B1
6181673 Wilde et al. Jan 2001 B1
6185051 Chen et al. Feb 2001 B1
6185077 Tong et al. Feb 2001 B1
6185081 Simion et al. Feb 2001 B1
6188549 Wiitala Feb 2001 B1
6190764 Shi et al. Feb 2001 B1
6193584 Rudy et al. Feb 2001 B1
6195229 Shen et al. Feb 2001 B1
6198608 Hong et al. Mar 2001 B1
6198609 Barr et al. Mar 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6204998 Katz Mar 2001 B1
6204999 Crue et al. Mar 2001 B1
6212153 Chen et al. Apr 2001 B1
6215625 Carlson Apr 2001 B1
6219205 Yuan et al. Apr 2001 B1
6221218 Shi et al. Apr 2001 B1
6222707 Huai et al. Apr 2001 B1
6229782 Wang et al. May 2001 B1
6230959 Heist et al. May 2001 B1
6233116 Chen et al. May 2001 B1
6233125 Knapp et al. May 2001 B1
6237215 Hunsaker et al. May 2001 B1
6252743 Bozorgi Jun 2001 B1
6255721 Roberts Jul 2001 B1
6258468 Mahvan et al. Jul 2001 B1
6266216 Hikami et al. Jul 2001 B1
6271604 Frank, Jr. et al. Aug 2001 B1
6275354 Huai et al. Aug 2001 B1
6277505 Shi et al. Aug 2001 B1
6282056 Feng et al. Aug 2001 B1
6296955 Hossain et al. Oct 2001 B1
6297955 Frank, Jr. et al. Oct 2001 B1
6304414 Crue, Jr. et al. Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6310746 Hawwa et al. Oct 2001 B1
6310750 Hawwa et al. Oct 2001 B1
6317290 Wang et al. Nov 2001 B1
6317297 Tong et al. Nov 2001 B1
6322911 Fukagawa et al. Nov 2001 B1
6330136 Wang et al. Dec 2001 B1
6330137 Knapp et al. Dec 2001 B1
6333830 Rose et al. Dec 2001 B2
6340533 Ueno et al. Jan 2002 B1
6349014 Crue, Jr. et al. Feb 2002 B1
6351355 Min et al. Feb 2002 B1
6353318 Sin et al. Mar 2002 B1
6353511 Shi et al. Mar 2002 B1
6356412 Levi et al. Mar 2002 B1
6359779 Frank, Jr. et al. Mar 2002 B1
6369983 Hong Apr 2002 B1
6376964 Young et al. Apr 2002 B1
6377535 Chen et al. Apr 2002 B1
6381095 Sin et al. Apr 2002 B1
6381105 Huai et al. Apr 2002 B1
6389499 Frank, Jr. et al. May 2002 B1
6392850 Tong et al. May 2002 B1
6396660 Jensen et al. May 2002 B1
6399179 Hanrahan et al. Jun 2002 B1
6400526 Crue, Jr. et al. Jun 2002 B2
6404600 Hawwa et al. Jun 2002 B1
6404601 Rottmayer et al. Jun 2002 B1
6404706 Stovall et al. Jun 2002 B1
6410170 Chen et al. Jun 2002 B1
6411522 Frank, Jr. et al. Jun 2002 B1
6417998 Crue, Jr. et al. Jul 2002 B1
6417999 Knapp et al. Jul 2002 B1
6418000 Gibbons et al. Jul 2002 B1
6418048 Sin et al. Jul 2002 B1
6421211 Hawwa et al. Jul 2002 B1
6421212 Gibbons et al. Jul 2002 B1
6424505 Lam et al. Jul 2002 B1
6424507 Lederman et al. Jul 2002 B1
6430009 Komaki et al. Aug 2002 B1
6430806 Chen et al. Aug 2002 B1
6433965 Gopinathan et al. Aug 2002 B1
6433968 Shi et al. Aug 2002 B1
6433970 Knapp et al. Aug 2002 B1
6437945 Hawwa et al. Aug 2002 B1
6445536 Rudy et al. Sep 2002 B1
6445542 Levi et al. Sep 2002 B1
6445553 Barr et al. Sep 2002 B2
6445554 Dong et al. Sep 2002 B1
6447935 Zhang et al. Sep 2002 B1
6448765 Chen et al. Sep 2002 B1
6451514 Iitsuka Sep 2002 B1
6452742 Crue et al. Sep 2002 B1
6452765 Mahvan et al. Sep 2002 B1
6456465 Louis et al. Sep 2002 B1
6459552 Liu et al. Oct 2002 B1
6462920 Karimi Oct 2002 B1
6466401 Hong et al. Oct 2002 B1
6466402 Crue, Jr. et al. Oct 2002 B1
6466404 Crue, Jr. et al. Oct 2002 B1
6468436 Shi et al. Oct 2002 B1
6469877 Knapp et al. Oct 2002 B1
6477019 Matono et al. Nov 2002 B2
6479096 Shi et al. Nov 2002 B1
6483662 Thomas et al. Nov 2002 B1
6487040 Hsiao et al. Nov 2002 B1
6487056 Gibbons et al. Nov 2002 B1
6490125 Barr Dec 2002 B1
6496330 Crue, Jr. et al. Dec 2002 B1
6496334 Pang et al. Dec 2002 B1
6504676 Hiner et al. Jan 2003 B1
6512657 Heist et al. Jan 2003 B2
6512659 Hawwa et al. Jan 2003 B1
6512661 Louis Jan 2003 B1
6512690 Qi et al. Jan 2003 B1
6515573 Dong et al. Feb 2003 B1
6515791 Hawwa et al. Feb 2003 B1
6532823 Knapp et al. Mar 2003 B1
6535363 Hosomi et al. Mar 2003 B1
6552874 Chen et al. Apr 2003 B1
6552928 Qi et al. Apr 2003 B1
6577470 Rumpler Jun 2003 B1
6583961 Levi et al. Jun 2003 B2
6583968 Scura et al. Jun 2003 B1
6597548 Yamanaka et al. Jul 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6618223 Chen et al. Sep 2003 B1
6629357 Akoh Oct 2003 B1
6633464 Lai et al. Oct 2003 B2
6636394 Fukagawa et al. Oct 2003 B1
6639291 Sin et al. Oct 2003 B1
6650503 Chen et al. Nov 2003 B1
6650506 Risse Nov 2003 B1
6654195 Frank, Jr. et al. Nov 2003 B1
6657816 Barr et al. Dec 2003 B1
6661621 Iitsuka Dec 2003 B1
6661625 Sin et al. Dec 2003 B1
6674610 Thomas et al. Jan 2004 B1
6680863 Shi et al. Jan 2004 B1
6683763 Hiner et al. Jan 2004 B1
6687098 Huai Feb 2004 B1
6687178 Qi et al. Feb 2004 B1
6687977 Knapp et al. Feb 2004 B2
6691226 Frank, Jr. et al. Feb 2004 B1
6697294 Qi et al. Feb 2004 B1
6700738 Sin et al. Mar 2004 B1
6700759 Knapp et al. Mar 2004 B1
6704158 Hawwa et al. Mar 2004 B2
6707083 Hiner et al. Mar 2004 B1
6713801 Sin et al. Mar 2004 B1
6721138 Chen et al. Apr 2004 B1
6721149 Shi et al. Apr 2004 B1
6721203 Qi et al. Apr 2004 B1
6724569 Chen et al. Apr 2004 B1
6724572 Stoev et al. Apr 2004 B1
6729015 Matono et al. May 2004 B2
6735850 Gibbons et al. May 2004 B1
6737281 Dang et al. May 2004 B1
6744608 Chen et al. Jun 2004 B1
6747301 Hiner et al. Jun 2004 B1
6751055 Alfoqaha et al. Jun 2004 B1
6754049 Seagle et al. Jun 2004 B1
6756071 Shi et al. Jun 2004 B1
6757140 Hawwa Jun 2004 B1
6760196 Niu et al. Jul 2004 B1
6762910 Knapp et al. Jul 2004 B1
6765756 Hong et al. Jul 2004 B1
6775902 Huai et al. Aug 2004 B1
6778358 Jiang et al. Aug 2004 B1
6781927 Heanuc et al. Aug 2004 B1
6785955 Chen et al. Sep 2004 B1
6791793 Chen et al. Sep 2004 B1
6791807 Hikami et al. Sep 2004 B1
6795630 Challener et al. Sep 2004 B2
6798616 Seagle et al. Sep 2004 B1
6798625 Ueno et al. Sep 2004 B1
6801408 Chen et al. Oct 2004 B1
6801411 Lederman et al. Oct 2004 B1
6803615 Sin et al. Oct 2004 B1
6806035 Atireklapvarodom et al. Oct 2004 B1
6807030 Hawwa et al. Oct 2004 B1
6807332 Hawwa Oct 2004 B1
6809899 Chen et al. Oct 2004 B1
6816345 Knapp et al. Nov 2004 B1
6828897 Nepela Dec 2004 B1
6829160 Qi et al. Dec 2004 B1
6829819 Crue, Jr. et al. Dec 2004 B1
6833979 Spallas et al. Dec 2004 B1
6834010 Qi et al. Dec 2004 B1
6850475 Heanue et al. Feb 2005 B1
6859343 Alfoqaha et al. Feb 2005 B1
6859346 Meyer Feb 2005 B1
6859997 Tong et al. Mar 2005 B1
6861937 Feng et al. Mar 2005 B1
6870712 Chen et al. Mar 2005 B2
6873494 Chen et al. Mar 2005 B2
6873547 Shi et al. Mar 2005 B1
6879464 Sun et al. Apr 2005 B2
6888184 Shi et al. May 2005 B1
6888704 Diao et al. May 2005 B1
6891702 Tang May 2005 B1
6894871 Alfoqaha et al. May 2005 B2
6894877 Crue, Jr. et al. May 2005 B1
6906894 Chen et al. Jun 2005 B2
6909578 Missell et al. Jun 2005 B1
6912106 Chen et al. Jun 2005 B1
6934113 Chen Aug 2005 B1
6934129 Zhang et al. Aug 2005 B1
6940688 Jiang et al. Sep 2005 B2
6942824 Li Sep 2005 B1
6943993 Chang et al. Sep 2005 B2
6944938 Crue, Jr. et al. Sep 2005 B1
6947258 Li Sep 2005 B1
6950266 McCaslin et al. Sep 2005 B1
6954332 Hong et al. Oct 2005 B1
6958885 Chen et al. Oct 2005 B1
6961221 Niu et al. Nov 2005 B1
6969989 Mei Nov 2005 B1
6975486 Chen et al. Dec 2005 B2
6987643 Seagle Jan 2006 B1
6989962 Dong et al. Jan 2006 B1
6989972 Stoev et al. Jan 2006 B1
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7027268 Zhu et al. Apr 2006 B1
7027274 Sin et al. Apr 2006 B1
7035046 Young et al. Apr 2006 B1
7041985 Wang et al. May 2006 B1
7042810 Akiyama et al. May 2006 B2
7046490 Ueno et al. May 2006 B1
7054113 Seagle et al. May 2006 B1
7057857 Niu et al. Jun 2006 B1
7059868 Yan Jun 2006 B1
7092195 Liu et al. Aug 2006 B1
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7113366 Wang et al. Sep 2006 B1
7114241 Kubota et al. Oct 2006 B2
7116517 He et al. Oct 2006 B1
7124654 Davies et al. Oct 2006 B1
7126788 Liu et al. Oct 2006 B1
7126790 Liu et al. Oct 2006 B1
7131346 Buttar et al. Nov 2006 B1
7133253 Seagle et al. Nov 2006 B1
7134185 Knapp et al. Nov 2006 B1
7154715 Yamanaka et al. Dec 2006 B2
7158470 Thornton et al. Jan 2007 B2
7170725 Zhou et al. Jan 2007 B1
7177117 Jiang et al. Feb 2007 B1
7193815 Stoev et al. Mar 2007 B1
7196880 Anderson et al. Mar 2007 B1
7199974 Alfoqaha Apr 2007 B1
7199975 Pan Apr 2007 B1
7203387 Doan Apr 2007 B2
7211339 Seagle et al. May 2007 B1
7212384 Stoev et al. May 2007 B1
7238292 He et al. Jul 2007 B1
7239478 Sin et al. Jul 2007 B1
7248431 Liu et al. Jul 2007 B1
7248433 Stoev et al. Jul 2007 B1
7248449 Seagle Jul 2007 B1
7272079 Challener Sep 2007 B2
7280325 Pan Oct 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7286329 Chen et al. Oct 2007 B1
7289303 Sin et al. Oct 2007 B1
7292409 Stoev et al. Nov 2007 B1
7296339 Yang et al. Nov 2007 B1
7307814 Seagle et al. Dec 2007 B1
7307818 Park et al. Dec 2007 B1
7310204 Stoev et al. Dec 2007 B1
7318947 Park et al. Jan 2008 B1
7327667 Thornton et al. Feb 2008 B2
7333295 Medina et al. Feb 2008 B1
7336443 Bonin Feb 2008 B2
7337530 Stoev et al. Mar 2008 B1
7342752 Zhang et al. Mar 2008 B1
7349170 Rudman et al. Mar 2008 B1
7349179 He et al. Mar 2008 B1
7349614 Doan Mar 2008 B2
7354664 Jiang et al. Apr 2008 B1
7363697 Dunn et al. Apr 2008 B1
7365941 Poon et al. Apr 2008 B2
7371152 Newman May 2008 B1
7372648 Akiyama et al. May 2008 B2
7372665 Stoev et al. May 2008 B1
7375926 Stoev et al. May 2008 B1
7379269 Krounbi et al. May 2008 B1
7386933 Krounbi et al. Jun 2008 B1
7389577 Shang et al. Jun 2008 B1
7412143 Rottmayer et al. Aug 2008 B2
7417832 Erickson et al. Aug 2008 B1
7419891 Chen et al. Sep 2008 B1
7428124 Song et al. Sep 2008 B1
7430098 Song et al. Sep 2008 B1
7436620 Kang et al. Oct 2008 B1
7436638 Pan Oct 2008 B1
7440220 Kang et al. Oct 2008 B1
7443632 Stoev et al. Oct 2008 B1
7444740 Chung et al. Nov 2008 B1
7493688 Wang et al. Feb 2009 B1
7508627 Zhang et al. Mar 2009 B1
7521137 Hohlfeld et al. Apr 2009 B2
7522377 Jiang et al. Apr 2009 B1
7522379 Krounbi et al. Apr 2009 B1
7522382 Pan Apr 2009 B1
7542246 Song et al. Jun 2009 B1
7551406 Thomas et al. Jun 2009 B1
7552523 He et al. Jun 2009 B1
7554767 Hu et al. Jun 2009 B1
7583466 Kermiche et al. Sep 2009 B2
7595967 Moon et al. Sep 2009 B1
7609480 Shukh et al. Oct 2009 B2
7639457 Chen et al. Dec 2009 B1
7660080 Liu et al. Feb 2010 B1
7672080 Tang et al. Mar 2010 B1
7672086 Jiang Mar 2010 B1
7684160 Erickson et al. Mar 2010 B1
7688546 Bai et al. Mar 2010 B1
7691434 Zhang et al. Apr 2010 B1
7695761 Shen et al. Apr 2010 B1
7719795 Hu et al. May 2010 B2
7726009 Liu et al. Jun 2010 B1
7729086 Song et al. Jun 2010 B1
7729087 Stoev et al. Jun 2010 B1
7736823 Wang et al. Jun 2010 B1
7785666 Sun et al. Aug 2010 B1
7796353 Schabes et al. Sep 2010 B2
7796356 Fowler et al. Sep 2010 B1
7800858 Bajikar et al. Sep 2010 B1
7819979 Chen et al. Oct 2010 B1
7829264 Wang et al. Nov 2010 B1
7846643 Sun et al. Dec 2010 B1
7855854 Hu et al. Dec 2010 B2
7869160 Pan et al. Jan 2011 B1
7872824 Macchioni et al. Jan 2011 B1
7872833 Hu et al. Jan 2011 B2
7885029 Miyauchi et al. Feb 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
7916426 Hu et al. Mar 2011 B2
7918013 Dunn et al. Apr 2011 B1
7968219 Jiang et al. Jun 2011 B1
7982989 Shi et al. Jul 2011 B1
8008912 Shang Aug 2011 B1
8012804 Wang et al. Sep 2011 B1
8015692 Zhang et al. Sep 2011 B1
8018677 Chung et al. Sep 2011 B1
8018678 Zhang et al. Sep 2011 B1
8024748 Moravec et al. Sep 2011 B1
8072705 Wang et al. Dec 2011 B1
8074345 Anguelouch et al. Dec 2011 B1
8077418 Hu et al. Dec 2011 B1
8077434 Shen et al. Dec 2011 B1
8077435 Liu et al. Dec 2011 B1
8077557 Hu et al. Dec 2011 B1
8079135 Shen et al. Dec 2011 B1
8081403 Chen et al. Dec 2011 B1
8091210 Sasaki et al. Jan 2012 B1
8097846 Anguelouch et al. Jan 2012 B1
8104166 Zhang et al. Jan 2012 B1
8116043 Leng et al. Feb 2012 B2
8116171 Lee Feb 2012 B1
8125856 Li et al. Feb 2012 B1
8134794 Wang Mar 2012 B1
8136224 Sun et al. Mar 2012 B1
8136225 Zhang et al. Mar 2012 B1
8136805 Lee Mar 2012 B1
8141235 Zhang Mar 2012 B1
8146236 Luo et al. Apr 2012 B1
8149536 Yang et al. Apr 2012 B1
8151441 Rudy et al. Apr 2012 B1
8163185 Sun et al. Apr 2012 B1
8164760 Willis Apr 2012 B2
8164855 Gibbons et al. Apr 2012 B1
8164864 Kaiser et al. Apr 2012 B2
8165709 Rudy Apr 2012 B1
8166631 Tran et al. May 2012 B1
8166632 Zhang et al. May 2012 B1
8169473 Yu et al. May 2012 B1
8171618 Wang et al. May 2012 B1
8179636 Bai et al. May 2012 B1
8191237 Luo et al. Jun 2012 B1
8194365 Leng et al. Jun 2012 B1
8194366 Li et al. Jun 2012 B1
8194512 Stipe Jun 2012 B2
8196285 Zhang et al. Jun 2012 B1
8200054 Li et al. Jun 2012 B1
8203800 Li et al. Jun 2012 B2
8208350 Hu et al. Jun 2012 B1
8220140 Wang et al. Jul 2012 B1
8222599 Chien Jul 2012 B1
8225488 Zhang et al. Jul 2012 B1
8227023 Liu et al. Jul 2012 B1
8228633 Tran et al. Jul 2012 B1
8231796 Li et al. Jul 2012 B1
8233248 Li et al. Jul 2012 B1
8248896 Yuan et al. Aug 2012 B1
8254060 Shi et al. Aug 2012 B1
8257597 Guan et al. Sep 2012 B1
8259410 Bai et al. Sep 2012 B1
8259539 Hu et al. Sep 2012 B1
8262918 Li et al. Sep 2012 B1
8262919 Luo et al. Sep 2012 B1
8264797 Emley Sep 2012 B2
8264798 Guan et al. Sep 2012 B1
8270126 Roy et al. Sep 2012 B1
8276258 Tran et al. Oct 2012 B1
8277669 Chen et al. Oct 2012 B1
8279719 Hu et al. Oct 2012 B1
8284517 Sun et al. Oct 2012 B1
8288204 Wang et al. Oct 2012 B1
8289821 Huber Oct 2012 B1
8291743 Shi et al. Oct 2012 B1
8307539 Rudy et al. Nov 2012 B1
8307540 Tran et al. Nov 2012 B1
8308921 Hiner et al. Nov 2012 B1
8310785 Zhang et al. Nov 2012 B1
8310901 Batra et al. Nov 2012 B1
8315019 Mao et al. Nov 2012 B1
8316527 Hong et al. Nov 2012 B2
8320076 Shen et al. Nov 2012 B1
8320077 Tang et al. Nov 2012 B1
8320219 Wolf et al. Nov 2012 B1
8320220 Yuan et al. Nov 2012 B1
8320722 Yuan et al. Nov 2012 B1
8322022 Yi et al. Dec 2012 B1
8322023 Zeng et al. Dec 2012 B1
8325569 Shi et al. Dec 2012 B1
8333008 Sin et al. Dec 2012 B1
8334093 Zhang et al. Dec 2012 B2
8336194 Yuan et al. Dec 2012 B2
8339738 Tran et al. Dec 2012 B1
8341826 Jiang et al. Jan 2013 B1
8343319 Li et al. Jan 2013 B1
8343364 Gao et al. Jan 2013 B1
8349195 Si et al. Jan 2013 B1
8351307 Wolf et al. Jan 2013 B1
8357244 Zhao et al. Jan 2013 B1
8373945 Luo et al. Feb 2013 B1
8375564 Luo et al. Feb 2013 B1
8375565 Hu et al. Feb 2013 B2
8381391 Park et al. Feb 2013 B2
8385157 Champion et al. Feb 2013 B1
8385158 Hu et al. Feb 2013 B1
8394280 Wan et al. Mar 2013 B1
8400731 Li et al. Mar 2013 B1
8404128 Zhang et al. Mar 2013 B1
8404129 Luo et al. Mar 2013 B1
8405930 Li et al. Mar 2013 B1
8409453 Jiang et al. Apr 2013 B1
8413317 Wan et al. Apr 2013 B1
8416540 Li et al. Apr 2013 B1
8419953 Su et al. Apr 2013 B1
8419954 Chen et al. Apr 2013 B1
8422176 Leng et al. Apr 2013 B1
8422342 Lee Apr 2013 B1
8422841 Shi et al. Apr 2013 B1
8424192 Yang et al. Apr 2013 B1
8441756 Sun et al. May 2013 B1
8441896 Wang et al. May 2013 B2
8443510 Shi et al. May 2013 B1
8444866 Guan et al. May 2013 B1
8449948 Medina et al. May 2013 B2
8451556 Wang et al. May 2013 B1
8451563 Zhang et al. May 2013 B1
8454846 Zhou et al. Jun 2013 B1
8455119 Jiang et al. Jun 2013 B1
8456961 Wang et al. Jun 2013 B1
8456963 Hu et al. Jun 2013 B1
8456964 Yuan et al. Jun 2013 B1
8456966 Shi et al. Jun 2013 B1
8456967 Mallary Jun 2013 B1
8458892 Si et al. Jun 2013 B2
8462592 Wolf et al. Jun 2013 B1
8468682 Zhang Jun 2013 B1
8472288 Wolf et al. Jun 2013 B1
8477571 Zhou et al. Jul 2013 B1
8480911 Osugi et al. Jul 2013 B1
8486285 Zhou et al. Jul 2013 B2
8486286 Gao et al. Jul 2013 B1
8488272 Tran et al. Jul 2013 B1
8491801 Tanner et al. Jul 2013 B1
8491802 Gao et al. Jul 2013 B1
8493693 Zheng et al. Jul 2013 B1
8493695 Kaiser et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8514517 Batra et al. Aug 2013 B1
8518279 Wang et al. Aug 2013 B1
8518832 Yang et al. Aug 2013 B1
8520336 Liu et al. Aug 2013 B1
8520337 Liu et al. Aug 2013 B1
8524068 Medina et al. Sep 2013 B2
8526275 Yuan et al. Sep 2013 B1
8531801 Xiao et al. Sep 2013 B1
8532450 Wang et al. Sep 2013 B1
8533937 Wang et al. Sep 2013 B1
8537494 Pan et al. Sep 2013 B1
8537495 Luo et al. Sep 2013 B1
8537502 Park et al. Sep 2013 B1
8545999 Leng et al. Oct 2013 B1
8547659 Bai et al. Oct 2013 B1
8547667 Roy et al. Oct 2013 B1
8547730 Shen et al. Oct 2013 B1
8555486 Medina et al. Oct 2013 B1
8559141 Pakala et al. Oct 2013 B1
8563146 Zhang et al. Oct 2013 B1
8565049 Tanner et al. Oct 2013 B1
8576517 Tran et al. Nov 2013 B1
8578594 Jiang et al. Nov 2013 B2
8582238 Liu et al. Nov 2013 B1
8582241 Yu et al. Nov 2013 B1
8582253 Zheng et al. Nov 2013 B1
8588039 Shi et al. Nov 2013 B1
8593914 Wang et al. Nov 2013 B2
8597528 Roy et al. Dec 2013 B1
8599520 Liu et al. Dec 2013 B1
8599657 Lee Dec 2013 B1
8603593 Roy et al. Dec 2013 B1
8607438 Gao et al. Dec 2013 B1
8607439 Wang et al. Dec 2013 B1
8611035 Bajikar et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8614864 Hong et al. Dec 2013 B1
8619512 Yuan et al. Dec 2013 B1
8625233 Ji et al. Jan 2014 B1
8625941 Shi et al. Jan 2014 B1
8628672 Si et al. Jan 2014 B1
8630068 Mauri et al. Jan 2014 B1
8634280 Wang et al. Jan 2014 B1
8638529 Leng et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8649123 Zhang et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8670211 Sun et al. Mar 2014 B1
8670213 Zeng et al. Mar 2014 B1
8670214 Knutson et al. Mar 2014 B1
8670294 Shi et al. Mar 2014 B1
8670295 Hu et al. Mar 2014 B1
8675318 Ho et al. Mar 2014 B1
8675455 Krichevsky et al. Mar 2014 B1
8681594 Shi et al. Mar 2014 B1
8689430 Chen et al. Apr 2014 B1
8693141 Elliott et al. Apr 2014 B1
8703397 Zeng et al. Apr 2014 B1
8705205 Li et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8711528 Xiao et al. Apr 2014 B1
8717709 Shi et al. May 2014 B1
8720044 Tran et al. May 2014 B1
8721902 Wang et al. May 2014 B1
8724259 Liu et al. May 2014 B1
8749790 Tanner et al. Jun 2014 B1
8749920 Knutson et al. Jun 2014 B1
8753903 Tanner et al. Jun 2014 B1
8760807 Zhang et al. Jun 2014 B1
8760818 Diao et al. Jun 2014 B1
8760819 Liu et al. Jun 2014 B1
8760822 Li et al. Jun 2014 B1
8760823 Chen et al. Jun 2014 B1
8763235 Wang et al. Jul 2014 B1
8780498 Jiang et al. Jul 2014 B1
8780505 Xiao Jul 2014 B1
8786983 Liu et al. Jul 2014 B1
8790524 Luo et al. Jul 2014 B1
8790527 Luo et al. Jul 2014 B1
8792208 Liu et al. Jul 2014 B1
8792312 Wang et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
8797680 Luo et al. Aug 2014 B1
8797684 Tran et al. Aug 2014 B1
8797686 Bai et al. Aug 2014 B1
8797692 Guo et al. Aug 2014 B1
8813324 Emley et al. Aug 2014 B2
20040001394 Challener et al. Jan 2004 A1
20050030883 Hesselink et al. Feb 2005 A1
20050031278 Shi et al. Feb 2005 A1
20050041950 Rottmayer et al. Feb 2005 A1
20050208768 Finlay et al. Sep 2005 A1
20050226636 Hiramatsu et al. Oct 2005 A1
20060119983 Rausch et al. Jun 2006 A1
20060232869 Itagi et al. Oct 2006 A1
20070036040 Mihalcea et al. Feb 2007 A1
20070165495 Lee et al. Jul 2007 A1
20070297082 Peng et al. Dec 2007 A1
20080002298 Sluzewski Jan 2008 A1
20080170319 Seigler et al. Jul 2008 A1
20080218891 Gubbins et al. Sep 2008 A1
20080239541 Shimazawa et al. Oct 2008 A1
20080239580 Harada et al. Oct 2008 A1
20090310459 Gage et al. Dec 2009 A1
20100061018 Albrecht et al. Mar 2010 A1
20100123965 Lee et al. May 2010 A1
20100290157 Zhang et al. Nov 2010 A1
20100328807 Snyder et al. Dec 2010 A1
20110026156 Shimazawa et al. Feb 2011 A1
20110086240 Xiang et al. Apr 2011 A1
20110096435 Sasaki et al. Apr 2011 A1
20110317527 Wang et al. Dec 2011 A1
20120044790 Shimazawa et al. Feb 2012 A1
20120073120 Shimazawa et al. Mar 2012 A1
20120090162 Shimazawa et al. Apr 2012 A1
20120111826 Chen et al. May 2012 A1
20120139566 Shimazawa et al. Jun 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120298621 Gao Nov 2012 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20140154529 Yang et al. Jun 2014 A1
20140175050 Zhang et al. Jun 2014 A1
Foreign Referenced Citations (2)
Number Date Country
1831987 Sep 2006 CN
2009150981 Dec 2009 WO
Non-Patent Literature Citations (5)
Entry
Office Action dated Aug. 23, 2012 in U.S. Appl. No. 12/824,080, 20 pages.
Notice of Allowance dated Jan. 16, 2013 in U.S. Appl. No. 12/824,080, 9 pages.
Chinese Office Action dated Mar. 27, 2015 from related Chinese Application Serial No. 201110183014.8, 6 pages.
Notice of Allowance dated Nov. 23, 2011 from U.S. Appl. No. 12/645,498, 10 pages.
Office Action dated Jun. 20, 2011 from U.S. Appl. No. 12/645,498, 10 pages.
Divisions (1)
Number Date Country
Parent 12824080 Jun 2010 US
Child 13861663 US