Method for providing negative pressure to a negative pressure wound therapy bandage

Information

  • Patent Grant
  • 10300178
  • Patent Number
    10,300,178
  • Date Filed
    Thursday, June 11, 2015
    9 years ago
  • Date Issued
    Tuesday, May 28, 2019
    5 years ago
Abstract
A method for providing a negative pressure wherein a pump is cycled on and off to achieve a target negative pressure, which is set slightly lower than the therapeutic negative pressure. A device determines the actual pressure by averaging samples which may occur at a different rate than the pump cycle.
Description
FIELD OF THE INVENTION

The invention relates to a method for providing negative pressure to a negative pressure wound therapy bandage.


BACKGROUND OF THE INVENTION

Negative pressure wound therapy is one method that is used to treat certain wounds or sores on people. In general the treatment includes, a bandage being placed over a wound site, and connected to a pumping device. The pumping device provides suction, creating a negative pressure under the bandage at the wound site. Exudates and other materials are removed from the wound site, allowing the wound to heal faster than under ambient pressure.


The pumping device includes, amongst other things, a pump. Typically, a user selects (or otherwise enters) an appropriate therapeutic pressure on the pumping device that correlates to the specific negative pressure treatment for that patient. It is important that the pump and pumping device achieve the therapeutic pressure that is to be used in association with the negative pressure wound therapy quickly and correctly.


The speed at which the pump can achieve the therapeutic pressure is important because the speed can detrimentally effect the treatment. Moreover, the ability for the pump to recognize that the therapeutic pressure has been achieved is important to avoid applying too little or too much negative pressure. Thus, for a pump device, the speed and the accuracy at which it obtains the therapeutic pressure is an important characteristic.


In order to accurately and quickly achieve the therapeutic pressure, some pumps are left on continuously. In some devices this can be problematic. For example, some pumps can quickly achieve the therapeutic pressure; however, the pump and system tends to overshoot the therapeutic pressure value. This requires additional valves and other components that allow the pumping device to release negative pressure until the appropriate negative pressure is obtained.


Moreover, leaving the pump on continuously can act as a power drain, and for pumping devices that operate on batteries or other portable power sources, this can negatively impact the life time of the power source.


The present invention is directed to resolving these and other matters.


SUMMARY OF THE INVENTION

In one embodiment of the invention, the invention is directed towards a method for providing negative pressure to a negative pressure wound therapy bandage by providing a pumping device having a pump and setting a therapeutic negative pressure on the pumping device. The pumping device determines a target negative pressure associated with the therapeutic negative pressure and the target negative pressure is less than the therapeutic negative pressure (as discussed herein, “less than” means it is less negative, or a lower amount of a negative pressure, in other words, closer to zero). The pumping device is connected to a negative pressure wound therapy bandage. The target negative pressure is achieved by cycling the pump on and off to create a negative pressure in the negative pressure wound therapy bandage, obtaining a plurality of samples of the negative pressure in the negative pressure wound therapy bandage, each sample being obtained at a first set time interval, calculating an average of a predetermined number of consecutive samples, comparing the average to the target negative pressure, and, continuing to cycle the pump on and off until the average is greater than the target pressure.


The method may also include after cycling the pump on and off until the average of samples is greater than the target pressure after the complete off cycle, sampling the negative pressure in the negative pressure wound therapy bandage at a second set time interval greater than the first set time interval.


In another embodiment of the invention, the sampling of the negative pressure in the negative pressure wound therapy bandage at the second set time interval begins when the pump has been off for a predetermined amount of time.


The predetermined amount of time may be 300 milliseconds.


The second set time interval may be 1000 milliseconds and the first set time interval is 100 milliseconds.


In an embodiment, the cycling of the pump on and off to create negative pressure in the negative pressure wound therapy bandage on is performed by turning the pump on for 80 milliseconds and then turning the pump off for 80 milliseconds.


In some embodiments of the present invention, the therapeutic negative pressure is 125 mmHg and the target negative pressure is approximately 115 mmHg.


In some embodiments of the present invention, the therapeutic negative pressure is 90 mmHg and the target negative pressure is approximately 85 mmHg.


In some embodiments of the present invention, the therapeutic negative pressure is 60 mmHg and the target negative pressure is approximately 54 mmHg.


In some embodiments of the present invention, the therapeutic negative pressure is 40 mmHg and the target negative pressure is approximately 34 mmHg.


In another embodiment of the invention, the invention is for a method for providing negative pressure to a negative pressure wound therapy bandage by providing a pumping device having a pump and setting a therapeutic negative pressure on the pumping device. The pumping device determines a target negative pressure associated with the therapeutic negative pressure and the target negative pressure is less than the therapeutic negative pressure. The pumping device is connected to a negative pressure wound therapy bandage. The target negative pressure is achieved by cycling the pump on and off for a first predetermined amount of time to create a negative pressure in the negative pressure wound therapy bandage, obtaining a plurality of samples of the negative pressure in the negative pressure wound therapy bandage, each sample being obtained at a first set time interval, calculating an average of a predetermined number of consecutive samples, comparing the average to the target negative pressure, and, if the average is not greater than the target negative pressure, repeating the steps of cycling the pump on and off, obtaining a plurality of samples, calculating an average and comparing the average, until the average is greater than the target negative pressure.


In some embodiments the comparing of the average occurs at a rate faster than the rate of calculating the average.


In some embodiments, if the average is greater than the target negative pressure, the target negative pressure is maintained by obtaining a plurality of second samples of the negative pressure in the negative pressure wound therapy bandage at a second set time interval begin greater than the first time interval, and, comparing each second sample to the target negative pressure, and, repeating the steps of obtaining and comparing if a second sample is greater than the target negative pressure.


In some embodiments, if a second sample is not greater than the target negative pressure, the step of achieving the target negative pressure by: cycling the pump on and off; obtaining a plurality of samples; calculating an average; and, comparing the average until the average is greater than the target negative pressure, is repeated.


In the various embodiments of the present invention, the therapeutic negative pressure may be selected from the group consisting of: 40 mmHg; 60 mmHg; 90 mmHg; and, 125 mmHg.


An invention according to one or more of the disclosed embodiments allows the pump to achieve the therapeutic negative pressure/target negative pressure reasonably quickly and limit exceeding the therapeutic negative pressure/target negative pressure as much as practical.


Moreover, at least one of the embodiments also provides a reliable method to detect when the bandage pressure was being “topped-up” too frequently due to a leak (i.e., often returning to cycle the pump on and off to increase negative pressure). It is expected that the system will leak a small amount over time, for example, due to the imperfect plumbing connections in the system. A leak rate of one “top-up” per minute is normal. However, a leak rate four times that is cause for a minor leak to be declared. Such a leak rate is still within the bounds of the system to handle long term but the user should be informed so that it is corrected and system battery life is extended. It is also desirable to clear the fault as soon as it appears that the leaking has returned to normal levels.


It is to be understood that the aspects and objects of the present invention described above may be combinable and that other advantages and aspects of the present invention will become apparent upon reading the following description of the drawings and detailed description of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that the accompanying drawings depict only typical embodiments, and are, therefore, not to be considered to be limiting of the scope of the present disclosure, the embodiments will be described and explained with specificity and detail in reference to the accompanying drawings as provided below.



FIG. 1 is a front perspective view of a device used in association with one or more embodiments of the present invention.



FIG. 2 is a front side cutaway view of a device provided according to one or more embodiments of the present invention.



FIG. 3 is a flow chart of a method according to one or more embodiments of the present invention.





DETAILED DESCRIPTION OF THE DRAWINGS

While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail one or more embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the embodiments illustrated.


Reference throughout this description to features, advantages, objects or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.


As shown in the attached FIGS. 1 and 2, the present invention is directed towards a method used with a pumping device 10 having a pump 20. The pumping device 10 generally includes a pressure sensor 22, a check valve 24, a control circuit 26 (with microcontroller), internal plumbing 28, LEDs 30 and a power source 32.


In order to provide negative pressure to a wound, the pumping device 10 is connected to a negative pressure wound therapy bandage 12, typically with tubing 14.


In order to achieve a target negative pressure the pumping device 10 turns the pump 20 on for short amounts of time when the pressure is below the target pressure.


The pump device 10 typically operates as follows: a microcontroller turns the pump 20 on via a digital output; the pump 20 starts producing a vacuum; the vacuum is converted to a voltage by a pressure sensor 22; the voltage is converted by an analog to digital converter (“the A/D”) to a standard, recognized pressure engineering unit; and, the microcontroller compares the monitored pressure to the target pressure.


In order to achieve the target negative pressure in a short amount of time and avoid overshooting the target negative pressure, the pump 20 is cycled. The duty cycle, the percentage of pump on time relative to pump off time, after examining several pumps in action, can be constant for a variety of pumps 20. How much vacuum the pump 20 can draw in a short time period will influence the pump on time. Moreover, bandage 14 and plumbing 28 elasticity and how quickly the pressure sensor 22 and the A/D can take a measurement will influence the pump off time.


In one embodiment, the pressure sensor 22 measurement time is 20 milliseconds; while the A/D measurement time is 16 microseconds. Therefore, since a change in pressure must first be converted by the pressure sensor 22 and then the A/D, the minimum measurement time is 20.016 milliseconds.


It is believed to be advantageous to average readings before they are used to mitigate occasional measurement system anomalies. The number of samples in the average, on the one hand, when it tends to be low, do some anomaly mitigation but also remain the most responsive to quick changes in the parameter they are measuring. The best anomaly mitigation appears to occur when the number of samples is high, but then the averaging is not very responsive to quick changes in the parameter they are measuring.


It was determined that it would be advantageous to use a sliding 5 sample average. If the pressure were sampled continuously, a complete average would be ready in: 5×20.016=100.090 milliseconds. However, it would not be necessary to wait for all 5 samples to be acquired before a pump control decision was made on the value because just a few samples still mitigates against system anomalies sufficiently. However, sampling the pressure continuously, especially since the pressure sensor 22 places the largest mA load of any component (other than the pump 20) on the system would unnecessarily shorten battery life for too little gain in pump control.


Consequently, a measurement process asynchronous to the pump on/off cycle was used wherein pressure samples are contributed to the average every 100 milliseconds, and if the pump on/off control logic compared the average every 80 milliseconds it would compare it often enough to determine an average affected by the very last contribution that was made to that average. This can be achieved by: starting the process every 100 milliseconds; waiting the 20 milliseconds pressure sensor measurement time; then, measuring the pressure with the A/D.


It is contemplated to synchronize the completion of the A/D measurement to the pump on/off control logic exactly but software design best practice says that dependencies between software modules should be avoided where possible and synchronization is not necessary here—the pump on/off control logic (cycle) will see every change any contribution makes to the average.


When the pump 20 has met its target pressure, the A/D sampling and comparing process detailed above changes from, for example, a repeat rate of 100 milliseconds to a repeat rate of 1000 milliseconds when the pump has been off for a sufficient amount of time. This further saves battery life at a time when the pressure is not likely to change very much. The period of time the pump 20 has to be off to switch to the slower repeat rate may be, for example, 300 milliseconds; however, it may be any value that was larger than the off period in the pump on/off duty cycle (more later on the duty cycle). Moreover, it should be at least that long to distinguish the “off” that is due to the pump 20 having reached the target pressure and the “off” of the pump control duty cycle. (The 300 milliseconds was utilized as it is a sufficient amount of time for the A/D to wait before it samples the battery voltage after the pump is turned off. The battery is only sampled when the pump 20 is turned off because the mA load that the pump places on the system is significantly different than when it is off and battery life is more easily predicted when the pump is not loading the system.)


The pump control on/off duty cycle is preferably 80 milliseconds on and 80 milliseconds off. It was determined that an “on” time of 40 or 80 milliseconds was sufficient for constraining the overshoot for a variety of bandages 12. The 40 milliseconds value constrained it better, yielded end pressures closer to the target pressure, but took longer to get to the target pressure. The “on” times longer than 80 milliseconds created out-of-bounds overshoot for some bandages—no matter what the “off” time was. As mentioned above, the “off” time has an effect on the measurement part of the control/measurement algorithm. Further, plumbing and bandage elasticity, although minor, can contort the average or “steady” pressure for a short while. It is believed that it is advantageous to let such pressure contortions settle before measurement. Moreover, the pressure sensor 22 and A/D measurements need time also as noted above.


An “off” time of approximately 30 milliseconds would cover both but it was convenient to use the same 80 milliseconds timer to control both the on time and the off time. Further, letting the system settle longer, for one or more multiples of the 80 milliseconds, would improve the quality of the measurement because it would let the sliding average fill more completely—at the cost of taking longer to get to the end pressure. While these times have been discussed, nothing herein should be construed to limit the present invention to these times.


In use, a user inputs the therapeutic negative pressure into the pumping device. Of course, this can be accomplished with the pumping device having pre-set therapeutic negative pressures and the user merely selects one.


In one or more embodiments of the present invention, a target negative pressure is set slightly less than the therapeutic negative pressure entered by the user into pumping device. In a working example of an embodiment of the invention, the following parameters were used with the object to obtain the therapeutic negative pressure of 40/60/90/125 mmHg within 15 seconds and limit overshoot to +/−10% of the therapeutic negative pressure. However, for the 40 mmHg therapeutic negative pressure, the tolerance is preferably +/−10 mmHg (not +/−10%).


Using a target negative pressure that is set slightly less than the 40/60/90/125 therapeutic negative pressure allows for compensation of the system's tendency to undervalue the actual negative pressure within the bandage. Therefore, the target pressures contemplated to be used with the previously mentioned therapeutic negative pressure values are 34, 54, 85 and 115 mmHg (respectively). Other target pressures can be used depending on the variety of parameters discussed above (pump, bandage, elasticity, etc.) without departing from the spirit of the present invention.


In a device according to one or more embodiments of the present invention, the pump 20 will reasonably quickly achieve the target negative pressure, stop, “top-up” once or twice after a few seconds and transition to the state where it only tops-up every minute or so to compensate for system leaking. The initial one or two top-ups are due to the pressure completely settling.


In sum, in one or more embodiments of the present invention, pressure is sampled every 100 ms; with the sampling by the pressure sensor and A/D taking 20.016 milliseconds. Samples go into a sliding 5 element average. The pumping device 10 asynchronously compares the average every 80 milliseconds s (slightly faster than the pressure is sampled). The pumping device 10 turns the pump 20 on for no more than one cycle (80 milliseconds) if pressure is below target pressure. After waiting one off cycle (80 milliseconds), if the pressure is still below the target pressure, the pump 20 is turned on again. These last two steps repeat until the pressure is greater than the target pressure, at which point the pump 20 is left off until the normal leaking in the system reduces the pressure below the target pressure. During the period when the pressure is above the target pressure, starting when the pump 20 has been continuously off for 300 milliseconds, sampling may be reduced to the 1000 milliseconds rate (to extend battery life).


A flow chart for performing the steps of some embodiments is shown in FIG. 3. As shown therein, and as discussed above, a method according to one or more embodiments of the present invention may begin with the setting of a therapeutic negative pressure 100. In response to same, the pumping device will determine a target negative pressure 102. As previously discussed the target negative pressure is less than the therapeutic negative pressure.


At this point, the pumping device will begin to cycle the pump on and off 104. In addition, the pumping device will also begin sampling the pressure at the bandage 106. This sampling is preferably done at a set time. In FIG. 3, this is shown as being at “Timing A.” The pumping device determines if there are at least five samples measured 108. If less than five samples have been collected 100, the pumping device continues to sample the pressure at the bandage 106.


If, however, more than five samples have been collected 112, the pumping device will calculate the average of the last five samples taken 114. The pumping device will then compare the average of the last five samples to the target negative pressure 116. If the average of the last five samples is less than the target negative pressure 118, the pumping device will continue to sample the pressure at the bandage 106.


If the average of the last five samples is greater than the target pressure 120, the pumping device will cease the pump cycling. It is contemplated, although not required, that if the pump is in the middle of a cycle, that specific cycle be completed, before the pumping cycling is stopped. Alternatively, the pump cycling can be immediately stopped when the average is determined to be greater than the target negative pressure.


After the pump cycling has been stopped, the device begins sampling the pressure at the bandage 124. This sampling is conducted, preferably at a predetermined time interval, and as shown, occurs at “Timing B.” As previously mentioned, in order to increase the life of the batteries that may be powering the pumping device, it is preferred that Timing B is greater than Timing A.


Finally, the device continues to compare the sample of the pressure (taken in step 124) with the target negative pressure 126. If the most recent sample is greater than the target negative pressure 128, the device continues to sampling the pressure at the bandage 124.


If the most recent sample is less than the target pressure 130, the device may turn the pump on for one cycle 132, and continue to sample the pressure under the bandage 124. Alternatively, the device can return to cycling the pumping on and off 104 and the subsequent steps previously taken to achieve the target negative pressure.


In addition to achieving and maintaining negative pressure, one or more embodiments of the present invention also include a method for detecting a leak. For example, if the target negative pressure has been reached and at least 20 top-ups have occurred at the target negative pressure and the average of the last N (=3) top-up intervals is less than 15 seconds, a leak may be declared by the pump device. The minor leak detection may be cleared if the pump is disabled by the user or the top-up intervals are greater than or equal to 15 seconds.


The 15 seconds time value is related to an unacceptable leak rate (4 top-ups per minute) that was determined to be optimal. The pumping device records the time (since unit reset) of every top-up into a circular array of N elements and checks the top-up interval at every top-up or every 80 milliseconds, whichever occurs first. (The “or 80 milliseconds” facet is more useful for clearing the fault than declaring it.)


The time in the oldest of the array elements is subtracted from the current time and then divided by N to either yield the average of the last N top-ups (or what the average would have been if the 80 milliseconds timer tick that prompted the check was a top-up). An example of setting the fault and clearing the fault is given below:









TABLE ONE







Setting the fault


(assume 17 top-ups for this pressure have already occurred):









Top-Up #
Time
Note





18
05:42:23.000



19
05:42:33.000



20
05:42:43.000
Check called due to this top-up.




System time is 05:42:43.




System time − oldest top-up time = 00:00:20




00:00:20/3 = 6




6 < 15, fault declared









The checks called due to the 80 milliseconds timer expiring are not shown in the above because they would have had no effect and their omission makes it easier to understand how the checks due to just the top-ups take place.









TABLE TWO







Clearing the fault (assume a continuation of the above TABLE ONE)









Top-Up #
Time
Note





18
05:42:23.000



19
05:42:33.000



20
05:42:43.000
Check called due to this top-up.




System time is 05:42:43.




System time-oldest top-up time = 00:00:20




00:00:20/3 = 6




6 < 15, fault declared



05:42:43.080
Check called due to 80 ms timer tick,




System time is 05:42:43.080




System time-oldest top-up time =




00:00:20.080




00:00:20.080/3 = 6




6 still less than 15, fault stands



05:42:43.160
Similar to the previous, fault stands



etc
No top-ups



etc
No top-ups



05:43:08.000
Check called due to 80 ms timer tick




System time is 05:43:08.000




System time − oldest top-up time = 00:00:45




00:00:45/3 = 15




15 is not less than 15, fault cleared.









In the example above, the fault was cleared within 25 seconds of the last top-up, a fraction of three times the 15 seconds threshold (the threshold used to declare the fault). This is consistent with the goal of clearing the fault quickly if it appears as though the fault has been corrected. It could have been cleared even sooner, as fast as within 15 seconds, if the system time was compared to the newest recorded top-up instead of the oldest—but using more than one top-up time gives greater confidence that the fault has really been cleared.


It is to be understood that additional embodiments of the present invention described herein may be contemplated by one of ordinary skill in the art and that the scope of the present invention is not limited to the embodiments disclosed. While specific embodiments of the present invention have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention, and the scope of protection is only limited by the scope of the accompanying claims.

Claims
  • 1. A method of providing negative pressure wound therapy comprising: determining a therapeutic negative pressure for a negative pressure wound therapy device having a source of negative pressure, wherein the negative pressure wound therapy device is configured to be fluidically connected to a wound covered by a wound dressing;attaining the therapeutic negative pressure under the wound dressing by activating the source of negative pressure, measuring wound pressure under the wound dressing at a first sampling rate, and determining based on the measured wound pressure that the therapeutic negative pressure is reached and thereafter deactivating the source of negative pressure; andmaintaining the therapeutic negative pressure under the wound dressing by alternately activating and deactivating the source of negative pressure based on measuring the wound pressure under the wound dressing at a second sampling rate lower than the first sampling rate, the maintaining comprising activating the source of negative pressure in response to determining that the wound pressure is more positive than the therapeutic negative pressure and deactivating the source of negative pressure in response to determining that the wound pressure reaches the therapeutic negative pressure.
  • 2. The method of claim 1, wherein maintaining the therapeutic negative pressure comprises keeping the pressure under the wound dressing within ±10% of the therapeutic negative pressure by alternately activating and deactivating the source of negative pressure.
  • 3. The method of claim 1, wherein alternately activating and deactivating the source of negative pressure comprises one or more activations and one or more corresponding deactivations during a period of time, the period of time beginning when the source of negative pressure is first deactivated after the therapeutic negative pressure has been attained.
  • 4. The method of claim 1, wherein attaining the therapeutic negative pressure under the wound dressing comprises activating the source of negative pressure until an average pressure under the wound dressing reaches the therapeutic negative pressure and thereafter deactivating the source of negative pressure, the average pressure being determined by: measuring a plurality of pressures under the wound dressing, andaveraging the plurality of measured pressures.
  • 5. The method of claim 4, wherein attaining the therapeutic negative pressure under the wound dressing comprises comparing the average pressure to the therapeutic negative pressure.
  • 6. The method of claim 4, wherein maintaining the therapeutic negative pressure under the wound dressing comprises maintaining the average pressure under the wound dressing.
  • 7. The method of claim 6, wherein maintaining the average pressure under the wound dressing comprises keeping the average pressure under the wound dressing within ±10% of the therapeutic negative pressure.
  • 8. The method of claim 1, further comprising: detecting a presence of a leak while maintaining the therapeutic negative pressure under the wound dressing by determining that the source of negative pressure has been activated more than a threshold number of activations over a time interval; andindicating the presence of a detected leak with at least one of a visual indication, an audio indication, or deactivation of the source of negative pressure.
  • 9. The method of claim 8, wherein the threshold number of activations is 20 activations.
  • 10. The method of claim 1, further comprising: detecting a presence of a leak when the source of negative pressure is activated for a threshold activation duration; andindicating the presence of a detected leak with at least one of a visual indication, an audio indication, or deactivation of the source of negative pressure.
  • 11. The method of claim 1, wherein the therapeutic negative pressure is configured to range from about −40 mmHg to about −125 mmHg.
  • 12. A method of providing negative pressure wound therapy comprising: determining a therapeutic negative pressure for a negative pressure wound therapy device having a source of negative pressure, wherein the negative pressure wound therapy device is configured to be fluidically connected to a wound covered by a wound dressing;measuring a plurality of pressures under the wound dressing;averaging the plurality of measured pressures;activating the source of negative pressure, measuring wound pressure under the wound dressing at a first sampling rate, and determining based on the measured wound pressure that the average pressure under the dressing achieves the therapeutic negative pressure, and thereafter deactivating the source of negative pressure; andmaintaining the average pressure under the dressing to within ±10% of the therapeutic negative pressure by alternately activating and deactivating the source of negative pressure based on measuring the wound pressure under the wound dressing at a second sampling rate lower than the first sampling rate, the maintaining comprising activating the source of negative pressure in response to determining that the wound pressure is more positive than the therapeutic negative pressure and deactivating the source of negative pressure in response to determining that the wound pressure reaches the therapeutic negative pressure.
  • 13. The method of claim 12, further comprising: detecting a presence of a leak while maintaining the average pressure under the dressing by determining that the source of negative pressure has been activated more than a threshold number of activations over a time interval; andindicating the presence of a detected leak with at least one of a visual indication, an audio indication, or deactivation of the source of negative pressure.
  • 14. The method of claim 13, wherein the threshold number of activations is 20 activations.
  • 15. The method of claim 12, further comprising: detecting a presence of a leak when the source of negative pressure is activated for a threshold activation duration; andindicating the presence of a detected leak with at least one of a visual indication, an audio indication, or deactivation of the source of negative pressure.
  • 16. The method of claim 12, wherein the therapeutic negative pressure is configured to range from about −40 mmHg to about −125 mmHg.
  • 17. A negative pressure wound therapy apparatus comprising: a source of negative pressure configured to be fluidically connected to a wound covered by a wound dressing;a pressure sensor configured to measure pressure under the wound dressing; anda controller configured to: determine a therapeutic negative pressure for the source of negative pressure;initially activate the source of negative pressure to attain the therapeutic negative pressure under the wound dressing, measure wound pressure under the wound dressing at a first sampling rate, determine based on the measured wound pressure that the therapeutic negative pressure has been reached, and subsequently deactivate the source of negative pressure when the therapeutic negative pressure under the wound dressing has been attained; andafter therapeutic negative pressure under the wound dressing has been attained, maintain the therapeutic negative pressure under the wound dressing by alternately activating and deactivating the source of negative pressure based on measuring the wound pressure under the wound dressing at a second sampling rate lower than the first sampling rate, the controller further configured to activate the source of negative pressure in response to determining that the wound pressure is more positive than the therapeutic negative pressure and deactivating the source of negative pressure in response to determining that the wound pressure reaches the therapeutic negative pressure.
  • 18. The apparatus of claim 17, wherein the controller is further configured to: maintain the pressure under the dressing to within ±10% of the therapeutic negative pressure by alternately activating and deactivating the source of negative pressure.
  • 19. The apparatus of claim 17, wherein the controller is further configured to: calculate an average pressure under the dressing;compare the average pressure to the therapeutic negative pressure; andinitially activate the source of negative pressure and allow the source of negative pressure to be active until the average pressure under the dressing reaches the therapeutic negative pressure, and subsequently deactivate the source of negative pressure.
  • 20. The apparatus of claim 19, wherein the controller is further configured to: maintain the average pressure under the dressing to within ±10% of the therapeutic negative pressure by alternately activating and deactivating the source of negative pressure.
  • 21. The apparatus of claim 17, wherein the controller is further configured to: detect a presence of a leak while maintaining the therapeutic negative pressure under the dressing by determining that the source of negative pressure has been activated more than a threshold number of activations over a time interval; andindicate the presence of a detected leak with at least one of a visual indication, an audio indication, or deactivation of the source of negative pressure.
  • 22. The apparatus of claim 21, wherein the threshold number of activations is 20 activations.
  • 23. The apparatus of claim 17, wherein the controller is further configured to: detect a presence of a leak when the source of negative pressure is activated for a threshold activation duration; andindicate the presence of a detected leak with at least one of a visual indication, an audio indication, or deactivation of the source of negative pressure.
  • 24. The apparatus of claim 20, wherein the controller is further configured to: detect a presence of a leak while maintaining the average pressure under the dressing by determining that the source of negative pressure has been activated more than a threshold number of activations over a time interval; andindicate the presence of a detected leak with at least one of a visual indication, an audio indication, or deactivation of the source of negative pressure.
  • 25. The apparatus of claim 24, wherein the threshold number of activations is 20 activations.
  • 26. The apparatus of claim 20, wherein the controller is further configured to: detect a presence of a leak when the source of negative pressure is activated for a threshold activation duration; andindicate the presence of a detected leak with at least one of a visual indication, an audio indication, or deactivation of the source of negative pressure.
  • 27. The apparatus of claim 17, wherein the therapeutic negative pressure is configured to range from about −40 mmHg to about −125 mmHg.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/299,783, filed Nov. 18, 2011, titled “METHOD FOR PROVIDING NEGATIVE PRESSURE TO A NEGATIVE PRESSURE WOUND THERAPY BANDAGE,” which claims priority to U.S. Provisional Application No. 61/490,118, filed May 26, 2011, titled “METHOD FOR PROVIDING NEGATIVE PRESSURE TO A NEGATIVE PRESSURE WOUND THERAPY BANDAGE.” The disclosure of each of these prior applications is hereby incorporated by reference in its entirety herein.

US Referenced Citations (471)
Number Name Date Kind
695270 Beringer Mar 1902 A
1480562 Mock Jan 1924 A
2280915 Johnson Apr 1942 A
2367690 Purdy Jan 1945 A
2568933 Robbins Sep 1951 A
2632443 Lesher Mar 1953 A
2682873 Evans et al. Jul 1954 A
3367332 Groves Feb 1968 A
3486504 Austin et al. Dec 1969 A
3572340 Lloyd et al. Mar 1971 A
3610238 Rich et al. Oct 1971 A
3874387 Barbieri Apr 1975 A
3993080 Loseff Nov 1976 A
RE29319 Nordby Jul 1977 E
4062012 Colbert et al. Dec 1977 A
4102342 Akiyama et al. Jul 1978 A
4112947 Nehring Sep 1978 A
4136696 Nehring Jan 1979 A
4184510 Murry et al. Jan 1980 A
4217894 Franetzki Aug 1980 A
4219019 Coates Aug 1980 A
4224945 Cohen Sep 1980 A
4250882 Adair Feb 1981 A
4316466 Babb Feb 1982 A
4382441 Svedman May 1983 A
4465485 Kashmer et al. Aug 1984 A
4468227 Jensen Aug 1984 A
4525166 Laclerc Jun 1985 A
4534356 Papadakis Aug 1985 A
4551141 McNeil Nov 1985 A
4573965 Russo Mar 1986 A
4608041 Nielsen Aug 1986 A
4643641 Clausen et al. Feb 1987 A
4655766 Theeuwes et al. Apr 1987 A
4681562 Beck et al. Jul 1987 A
4710165 McNeil et al. Dec 1987 A
4778446 Jensen Oct 1988 A
4778456 Lokken Oct 1988 A
4792328 Beck et al. Dec 1988 A
4795435 Steer Jan 1989 A
4820284 Hauri Apr 1989 A
4921488 Maitz et al. May 1990 A
4936834 Beck et al. Jun 1990 A
4950483 Ksander et al. Aug 1990 A
4969880 Zamierowski Nov 1990 A
4972829 Knerr Nov 1990 A
4979944 Luzsicza Dec 1990 A
4994022 Steffler et al. Feb 1991 A
5055198 Shettigar Oct 1991 A
5056510 Gilman Oct 1991 A
5073172 Fell Dec 1991 A
5100396 Zamierowski Mar 1992 A
5127388 Cicalese et al. Jul 1992 A
5149331 Ferdman et al. Sep 1992 A
5152757 Eriksson Oct 1992 A
5167613 Karami et al. Dec 1992 A
5176663 Svedman et al. Jan 1993 A
5215519 Shettigar Jun 1993 A
5261893 Zamierowski Nov 1993 A
5266928 Johnson Nov 1993 A
5279608 Cherif Cheikh Jan 1994 A
5328614 Matsumura Jul 1994 A
5358494 Svedman Oct 1994 A
5380280 Peterson Jan 1995 A
5437651 Todd et al. Aug 1995 A
5445604 Lang Aug 1995 A
5489280 Russell Feb 1996 A
5498338 Kruger et al. Mar 1996 A
5527293 Zamierowski Jun 1996 A
5549584 Gross Aug 1996 A
5562107 Lavender et al. Oct 1996 A
5616121 McKay Apr 1997 A
5636643 Argenta et al. Jun 1997 A
5643189 Masini Jul 1997 A
5645081 Argenta et al. Jul 1997 A
5678564 Lawrence et al. Oct 1997 A
5733337 Carr et al. Mar 1998 A
5759570 Arnold Jun 1998 A
5785688 Joshi et al. Jul 1998 A
5830496 Freeman Nov 1998 A
5833646 Masini Nov 1998 A
5843011 Lucas Dec 1998 A
5857502 Buchalter Jan 1999 A
5868933 Patrick et al. Feb 1999 A
5876611 Shettigar Mar 1999 A
5964723 Augustine Oct 1999 A
6071267 Zamierowski Jun 2000 A
6103951 Freeman Aug 2000 A
6110197 Augustine et al. Aug 2000 A
6135116 Vogel et al. Oct 2000 A
D434150 Turney et al. Nov 2000 S
6142982 Hunt et al. Nov 2000 A
6168800 Dobos et al. Jan 2001 B1
6176307 Danos et al. Jan 2001 B1
6225523 Masini May 2001 B1
6254567 Treu et al. Jul 2001 B1
6255552 Cummings et al. Jul 2001 B1
6261283 Morgan et al. Jul 2001 B1
6287521 Quay et al. Sep 2001 B1
6345623 Heaton et al. Feb 2002 B1
6398767 Fleischmann Jun 2002 B1
6402724 Smith et al. Jun 2002 B1
6450773 Upton Sep 2002 B1
6458109 Henley et al. Oct 2002 B1
6465708 Augustine Oct 2002 B1
6471685 Johnson Oct 2002 B1
6471982 Lydon et al. Oct 2002 B1
6482491 Samuelsen et al. Nov 2002 B1
6491684 Joshi et al. Dec 2002 B1
6553998 Heaton et al. Apr 2003 B2
6599262 Masini Jul 2003 B1
6648862 Watson Nov 2003 B2
6673028 Argenta et al. Jan 2004 B1
6676610 Morton et al. Jan 2004 B2
6685681 Lockwood et al. Feb 2004 B2
6695823 Lina et al. Feb 2004 B1
6695824 Howard et al. Feb 2004 B2
6752794 Lockwood et al. Jun 2004 B2
6755807 Risk, Jr. et al. Jun 2004 B2
6756903 Omry et al. Jun 2004 B2
6764462 Risk, Jr. et al. Jul 2004 B2
6767334 Randolph Jul 2004 B1
6814079 Heaton et al. Nov 2004 B2
6824533 Risk, Jr. et al. Nov 2004 B2
6855135 Lockwood et al. Feb 2005 B2
6856821 Johnson Feb 2005 B2
6936037 Bubb Aug 2005 B2
6951553 Bubb et al. Oct 2005 B2
6977323 Swenson Dec 2005 B1
6979324 Bybordi et al. Dec 2005 B2
6994702 Johnson Feb 2006 B1
7004915 Boynton et al. Feb 2006 B2
7022113 Lockwood et al. Apr 2006 B2
7067709 Murata et al. Jun 2006 B2
7070584 Johnson et al. Jul 2006 B2
7077832 Fleischmann Jul 2006 B2
7087806 Scheinberg et al. Aug 2006 B2
7108683 Zamierowski Sep 2006 B2
7118545 Boyde Oct 2006 B2
7128735 Weston Oct 2006 B2
7195624 Lockwood Mar 2007 B2
7214202 Vogel et al. May 2007 B1
7216651 Argenta et al. May 2007 B2
7361184 Joshi Apr 2008 B2
7381859 Hunt et al. Jun 2008 B2
7438705 Karpowicz et al. Oct 2008 B2
7494482 Orgill et al. Feb 2009 B2
7503910 Adahan Mar 2009 B2
7524315 Blott et al. Apr 2009 B2
7534240 Johnson May 2009 B1
7534927 Lockwood May 2009 B2
7569742 Haggstrom Aug 2009 B2
7611500 Lina et al. Nov 2009 B1
7612247 Oyaski Nov 2009 B2
7615036 Joshi Nov 2009 B2
7645253 Gura et al. Jan 2010 B2
7645269 Zamierowski Jan 2010 B2
7678090 Risk, Jr. Mar 2010 B2
7699823 Haggstrom Apr 2010 B2
7699830 Martin Apr 2010 B2
7708724 Weston May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7753894 Blott et al. Jul 2010 B2
7759537 Bishop et al. Jul 2010 B2
7759538 Fleischmann Jul 2010 B2
7759539 Shaw et al. Jul 2010 B2
7763000 Risk, Jr. Jul 2010 B2
7775998 Riesinger Aug 2010 B2
7776028 Miller et al. Aug 2010 B2
7779625 Joshi Aug 2010 B2
7790945 Watson, Jr. Sep 2010 B1
7790946 Mulligan Sep 2010 B2
7794438 Henley Sep 2010 B2
7794450 Blott et al. Sep 2010 B2
7811269 Boynton Oct 2010 B2
7815616 Boehringer et al. Oct 2010 B2
7825289 Vess Nov 2010 B2
7828782 Suzuki Nov 2010 B2
7838717 Haggstrom Nov 2010 B2
7846141 Weston Dec 2010 B2
7862339 Mulligan Jan 2011 B2
7883494 Martin Feb 2011 B2
7909805 Weston Mar 2011 B2
7927319 Lawhorn Apr 2011 B2
7959624 Riesinger Jun 2011 B2
7964766 Blott et al. Jun 2011 B2
7976519 Bubb et al. Jul 2011 B2
7998125 Weston Aug 2011 B2
8025052 Matthews et al. Sep 2011 B2
8062272 Weston Nov 2011 B2
8062273 Weston Nov 2011 B2
8080702 Blott et al. Dec 2011 B2
8100887 Weston Jan 2012 B2
8105295 Blott et al. Jan 2012 B2
8118794 Weston Feb 2012 B2
8128615 Blott Mar 2012 B2
8152785 Vitaris Apr 2012 B2
8162907 Heagle Apr 2012 B2
8162909 Blott et al. Apr 2012 B2
8167869 Wudyka May 2012 B2
8235955 Blott et al. Aug 2012 B2
8241018 Harr Aug 2012 B2
8282611 Weston Oct 2012 B2
8294586 Pidgeon et al. Oct 2012 B2
8303552 Weston Nov 2012 B2
8308714 Weston et al. Nov 2012 B2
8317774 Adahan Nov 2012 B2
8323264 Weston et al. Dec 2012 B2
8353857 Rosenberg Jan 2013 B2
8366692 Weston Feb 2013 B2
8377016 Argenta et al. Feb 2013 B2
8398614 Blott Mar 2013 B2
D679819 Peron Apr 2013 S
D679820 Peron Apr 2013 S
8444392 Turner et al. May 2013 B2
8449509 Weston May 2013 B2
8460255 Joshi et al. Jun 2013 B2
8494349 Gordon Jul 2013 B2
8617129 Hartwell Dec 2013 B2
8641693 Locke et al. Feb 2014 B2
8663198 Buan et al. Mar 2014 B2
8663200 Weston et al. Mar 2014 B2
8715256 Greener May 2014 B2
8734425 Nicolini May 2014 B2
8764732 Hartwell Jul 2014 B2
8785059 Hartwell Jul 2014 B2
8795243 Weston Aug 2014 B2
8808259 Walton et al. Aug 2014 B2
8808274 Hartwell Aug 2014 B2
8814841 Hartwell Aug 2014 B2
8834451 Blott et al. Sep 2014 B2
8905985 Allen et al. Dec 2014 B2
8945074 Buan et al. Feb 2015 B2
8951235 Allen et al. Feb 2015 B2
9084845 Adie et al. Jul 2015 B2
20010016205 Shimizu Aug 2001 A1
20010029956 Argenta Oct 2001 A1
20010034499 Sessions et al. Oct 2001 A1
20020065494 Lockwood et al. May 2002 A1
20020068913 Fleischmann Jun 2002 A1
20020115952 Tumey Aug 2002 A1
20020120185 Johnson Aug 2002 A1
20020143286 Tumey Oct 2002 A1
20020150720 Howard et al. Oct 2002 A1
20020161346 Lockwood et al. NUM Oct 2002 A1
20020183702 Henley et al. Dec 2002 A1
20020198503 Risk et al. Dec 2002 A1
20020198504 Risk et al. Dec 2002 A1
20030014022 Lockwood et al. Jan 2003 A1
20030014025 Allen et al. Jan 2003 A1
20030021775 Freeman Jan 2003 A1
20030040687 Boynton et al. Feb 2003 A1
20030050594 Zamierowski Mar 2003 A1
20030088202 Gilman May 2003 A1
20030097086 Gura May 2003 A1
20030108587 Orgill et al. Jun 2003 A1
20030125649 McIntosh Jul 2003 A1
20030144619 Augustine Jul 2003 A1
20030171675 Rosenberg Sep 2003 A1
20030175798 Raees et al. Sep 2003 A1
20030208149 Coffey Nov 2003 A1
20030212357 Pace Nov 2003 A1
20030212431 Brady et al. Nov 2003 A1
20030225347 Argenta et al. Dec 2003 A1
20040019342 Nagasuna et al. Jan 2004 A1
20040030304 Hunt et al. Feb 2004 A1
20040039391 Argenta et al. Feb 2004 A1
20040039415 Zamierowski Feb 2004 A1
20040054338 Bybordi et al. Mar 2004 A1
20040064132 Boehringer et al. Apr 2004 A1
20040118460 Stinson Jun 2004 A1
20040122434 Argenta et al. Jun 2004 A1
20040127834 Sigurjonsson et al. Jul 2004 A1
20040127862 Bubb et al. Jul 2004 A1
20040127863 Bubb et al. Jul 2004 A1
20040167482 Watson Aug 2004 A1
20040225208 Johnson Nov 2004 A1
20040241214 Kirkwood et al. Dec 2004 A1
20040249353 Risk, Jr. Dec 2004 A1
20050004534 Lockwood et al. Jan 2005 A1
20050010153 Lockwood et al. Jan 2005 A1
20050020955 Sanders et al. Jan 2005 A1
20050028828 Heaton et al. Feb 2005 A1
20050033214 Cantor Feb 2005 A1
20050058694 Nielsen Mar 2005 A1
20050070835 Joshi Mar 2005 A1
20050080372 Nielsen et al. Apr 2005 A1
20050090787 Risk, Jr. Apr 2005 A1
20050148913 Weston Jul 2005 A1
20050222527 Miller et al. Oct 2005 A1
20050261643 Bybordi et al. Nov 2005 A1
20050267402 Stewart et al. Dec 2005 A1
20060015087 Risk, Jr. et al. Jan 2006 A1
20060025727 Boehringer et al. Feb 2006 A1
20060029650 Coffey Feb 2006 A1
20060041247 Petrosenko et al. Feb 2006 A1
20060069365 Sperl et al. Mar 2006 A1
20060079852 Bubb et al. Apr 2006 A1
20060083623 Higgins et al. Apr 2006 A1
20060100586 Karpowicz et al. May 2006 A1
20060100594 Adams et al. May 2006 A1
20060116620 Oyaski Jun 2006 A1
20060129137 Lockwood Jun 2006 A1
20060149170 Boynton et al. Jul 2006 A1
20060282175 Haines et al. Dec 2006 A1
20070005028 Risk, Jr. Jan 2007 A1
20070010797 Nishtala et al. Jan 2007 A1
20070032762 Vogel Feb 2007 A1
20070038172 Zamierowski Feb 2007 A1
20070055209 Patel et al. Mar 2007 A1
20070118096 Smith et al. May 2007 A1
20070141128 Blott et al. Jun 2007 A1
20070167884 Mangrum et al. Jul 2007 A1
20070179460 Adahan Aug 2007 A1
20070185426 Ambrosio et al. Aug 2007 A1
20070185463 Mulligan Aug 2007 A1
20070219532 Karpowicz et al. Sep 2007 A1
20070239139 Weston Oct 2007 A1
20070265585 Joshi et al. Nov 2007 A1
20070265586 Joshi Nov 2007 A1
20080004549 Anderson Jan 2008 A1
20080004559 Riesinger Jan 2008 A1
20080039759 Holm et al. Feb 2008 A1
20080077091 Mulligan Mar 2008 A1
20080082059 Fink Apr 2008 A1
20080108977 Heaton et al. May 2008 A1
20080119802 Riesinger May 2008 A1
20080167593 Fleischmann Jul 2008 A1
20080183119 Joshi Jul 2008 A1
20080188820 Joshi Aug 2008 A1
20080208147 Argenta et al. Aug 2008 A1
20080223378 Henderson et al. Sep 2008 A1
20080269651 Warlick et al. Oct 2008 A1
20080306407 Taylor Dec 2008 A1
20080306456 Riesinger Dec 2008 A1
20090005746 Nielsen Jan 2009 A1
20090012441 Mulligan Jan 2009 A1
20090030402 Adahan Jan 2009 A1
20090036873 Nielsen Feb 2009 A1
20090054855 Blott et al. Feb 2009 A1
20090054856 Mormino et al. Feb 2009 A1
20090069759 Blott et al. Mar 2009 A1
20090105670 Bentley et al. Apr 2009 A1
20090125004 Shen May 2009 A1
20090131888 Joshi May 2009 A1
20090177135 Rogers et al. Jul 2009 A1
20090192499 Weston et al. Jul 2009 A1
20090198201 Adahan Aug 2009 A1
20090216170 Robinson et al. Aug 2009 A1
20090221977 Blott et al. Sep 2009 A1
20090227968 Vess Sep 2009 A1
20090227969 Jaeb Sep 2009 A1
20090234306 Vitaris Sep 2009 A1
20090234307 Vitaris Sep 2009 A1
20090234309 Vitaris et al. Sep 2009 A1
20090240185 Jaeb et al. Sep 2009 A1
20090240218 Braga et al. Sep 2009 A1
20090254053 Svensby Oct 2009 A1
20090254054 Blott et al. Oct 2009 A1
20090264837 Adahan Oct 2009 A1
20090270820 Johnson Oct 2009 A1
20090270833 DeBelser et al. Oct 2009 A1
20090292264 Hudspeth et al. Nov 2009 A1
20090299251 Buan Dec 2009 A1
20090299255 Kazala, Jr. et al. Dec 2009 A1
20090299256 Barta et al. Dec 2009 A1
20090299257 Long et al. Dec 2009 A1
20090299306 Buan Dec 2009 A1
20090299307 Barta et al. Dec 2009 A1
20090299341 Kazala, Jr. et al. Dec 2009 A1
20090299342 Cavanaugh, II et al. Dec 2009 A1
20090306580 Blott et al. Dec 2009 A1
20090312723 Blott et al. Dec 2009 A1
20090312728 Randolph et al. Dec 2009 A1
20090326487 Vitaris Dec 2009 A1
20100010477 Augustine et al. Jan 2010 A1
20100036334 Heagle et al. Feb 2010 A1
20100036367 Krohn Feb 2010 A1
20100042074 Weston Feb 2010 A1
20100063483 Adahan Mar 2010 A1
20100063484 Heagle Mar 2010 A1
20100069858 Olson Mar 2010 A1
20100069863 Olson Mar 2010 A1
20100087767 McNeil Apr 2010 A1
20100100063 Joshi et al. Apr 2010 A1
20100100075 Weston et al. Apr 2010 A1
20100106114 Weston et al. Apr 2010 A1
20100121286 Locke et al. May 2010 A1
20100122417 Vrzalik et al. May 2010 A1
20100125258 Coulthard et al. May 2010 A1
20100126484 Skell et al. May 2010 A1
20100150991 Bernstein Jun 2010 A1
20100160879 Weston Jun 2010 A1
20100160880 Weston Jun 2010 A1
20100185163 Heagle Jul 2010 A1
20100185165 Middleton Jul 2010 A1
20100207768 Pidgeon Aug 2010 A1
20100249733 Blott et al. Sep 2010 A9
20100268198 Buan et al. Oct 2010 A1
20100274207 Weston Oct 2010 A1
20100278518 Gordon Nov 2010 A1
20100280468 Haggstrom et al. Nov 2010 A1
20100286635 Watson, Jr. Nov 2010 A1
20100286638 Malhi Nov 2010 A1
20100298866 Fischvogt Nov 2010 A1
20100305490 Coulthard Dec 2010 A1
20100305524 Vess et al. Dec 2010 A1
20100312575 Witt Dec 2010 A1
20100318043 Malhi et al. Dec 2010 A1
20100324510 Andresen et al. Dec 2010 A1
20100324516 Braga et al. Dec 2010 A1
20100325864 Briones et al. Dec 2010 A1
20100331797 Patel ET AL. Dec 2010 A1
20110004171 Blott et al. Jan 2011 A1
20110004172 Eckstein et al. Jan 2011 A1
20110008179 Turner et al. Jan 2011 A1
20110009835 Blott Jan 2011 A1
20110009838 Greener Jan 2011 A1
20110015593 Svedman Jan 2011 A1
20110028918 Hartwell Feb 2011 A1
20110028921 Hartwell Feb 2011 A1
20110034892 Buan Feb 2011 A1
20110046584 Haggstrom Feb 2011 A1
20110054421 Hartwell Mar 2011 A1
20110054422 Locke et al. Mar 2011 A1
20110054423 Blott et al. Mar 2011 A1
20110071483 Gordon et al. Mar 2011 A1
20110077605 Karpowicz et al. Mar 2011 A1
20110087176 Blott Apr 2011 A2
20110087178 Weston Apr 2011 A2
20110087180 Weston Apr 2011 A2
20110092927 Wilkes et al. Apr 2011 A1
20110092958 Jacobs Apr 2011 A1
20110105963 Hu et al. May 2011 A1
20110106030 Scholz May 2011 A1
20110112492 Bharti et al. May 2011 A1
20110118683 Weston May 2011 A1
20110130712 Topaz Jun 2011 A1
20110172615 Greener et al. Jul 2011 A2
20110190735 Locke et al. Aug 2011 A1
20110202220 Seta et al. Aug 2011 A1
20110230849 Coulthard et al. Sep 2011 A1
20110251567 Blott et al. Oct 2011 A1
20110257572 Locke et al. Oct 2011 A1
20110275964 Greener Nov 2011 A1
20110282309 Adie et al. Nov 2011 A1
20120001762 Turner et al. Jan 2012 A1
20120053538 Blott et al. Mar 2012 A1
20120078539 Vernon-Harcourt et al. Mar 2012 A1
20120109084 Blott et al. May 2012 A1
20120130325 Blott et al. May 2012 A1
20120136325 Allen May 2012 A1
20120157942 Weston Jun 2012 A1
20120165764 Allen et al. Jun 2012 A1
20120197229 Buan Aug 2012 A1
20120302975 Buan et al. Nov 2012 A1
20120302978 Buan et al. Nov 2012 A1
20130018338 Weston et al. Jan 2013 A1
20130110058 Adie et al. May 2013 A1
20130150813 Gordon et al. Jun 2013 A1
20130150814 Buan Jun 2013 A1
20130296816 Greener Nov 2013 A1
20130331823 Askem et al. Dec 2013 A1
20140018753 Joshi et al. Jan 2014 A1
20140088528 Hartwell Mar 2014 A1
20140107599 Fink et al. Apr 2014 A1
20140121617 Locke et al. May 2014 A1
20140163494 Buan et al. Jun 2014 A1
20140257212 Boynton et al. Sep 2014 A1
20140316356 Nicolini Oct 2014 A1
20150025482 Begin et al. Jan 2015 A1
Foreign Referenced Citations (94)
Number Date Country
2198243 Feb 1996 CA
2367460 Oct 2000 CA
2390513 May 2001 CA
2121688 Jul 2001 CA
2408305 Nov 2001 CA
2458285 Mar 2003 CA
2157772 Sep 2003 CA
2809828 Sep 1978 DE
3 935 818 May 1991 DE
4 012 232 Oct 1991 DE
198 44 355 Apr 2000 DE
0 020 662 Jul 1984 EP
0 355 186 Feb 1990 EP
0 777 504 Oct 1998 EP
0 782 421 Jul 1999 EP
1 897 569 Aug 2002 EP
0 708 620 May 2003 EP
1 088 569 Aug 2003 EP
1 440 667 Mar 2006 EP
1 284 777 Apr 2006 EP
1 171 065 Mar 2007 EP
1 476 217 Mar 2008 EP
1 121 163 Nov 2008 EP
2098257 Sep 2009 EP
1163907 Oct 1958 FR
114754 Apr 1918 GB
641061 Aug 1950 GB
1224009 Mar 1971 GB
1549756 Aug 1979 GB
2195255 Apr 1988 GB
2378392 Feb 2003 GB
2415908 Jan 2006 GB
2003-165843 Jun 2003 JP
2010-504805 Feb 2010 JP
2002-517288 Jun 2010 JP
2010-531698 Sep 2010 JP
1251912 Apr 1983 SU
WO 198401904 May 1984 WO
WO 199011795 Oct 1990 WO
WO 199100718 Jan 1991 WO
WO 199220299 Nov 1992 WO
WO 199605873 Feb 1996 WO
WO 199819068 May 1998 WO
WO 199901173 Jan 1999 WO
WO 1999064091 Dec 1999 WO
WO 200007653 Feb 2000 WO
WO 200050143 Aug 2000 WO
WO 200059424 Oct 2000 WO
WO 200119430 Mar 2001 WO
WO 01037922 May 2001 WO
WO 200134223 May 2001 WO
WO 200185248 Nov 2001 WO
WO 0193793 Dec 2001 WO
WO 2002083046 Oct 2002 WO
WO 2002092783 Nov 2002 WO
WO 03045492 Jun 2003 WO
WO 03057307 Jul 2003 WO
WO 2003092620 Nov 2003 WO
WO 2004024300 Mar 2004 WO
WO 2004037334 May 2004 WO
WO 2005025666 Mar 2005 WO
WO 2005051461 Jun 2005 WO
WO 2005070480 Aug 2005 WO
WO 2005082435 Sep 2005 WO
WO 2006046060 May 2006 WO
WO 2008049029 Oct 2006 WO
WO 07030601 Mar 2007 WO
WO 2007024230 Mar 2007 WO
WO 2007087811 Aug 2007 WO
WO 2008039223 Apr 2008 WO
WO 2008048481 Apr 2008 WO
WO 2008100440 Aug 2008 WO
WO 2008135997 Nov 2008 WO
WO 2009004291 Jan 2009 WO
WO 2009004371 Jan 2009 WO
WO 2009019415 Feb 2009 WO
WO 2009047524 Apr 2009 WO
WO 09066105 May 2009 WO
WO 09066106 May 2009 WO
WO 2009089390 Jul 2009 WO
WO 2010039481 Apr 2010 WO
WO 2010051418 May 2010 WO
WO 2010093753 Aug 2010 WO
WO 2010121186 Oct 2010 WO
WO 2010126444 Nov 2010 WO
WO 2011023275 Mar 2011 WO
WO 2011087871 Oct 2011 WO
WO 2012022484 Feb 2012 WO
WO 2012162370 Nov 2012 WO
WO 2012162382 Nov 2012 WO
WO 2012038724 Mar 2013 WO
WO 2013140255 Sep 2013 WO
WO 2013171585 Nov 2013 WO
WO 2014151930 Sep 2014 WO
Non-Patent Literature Citations (82)
Entry
US 6,306,115, 10/2001, Kelly et al. (withdrawn)
Written Opinion of the International Searching Authority dated Sep. 6, 2012 in International Application No. PCT/US2012/039103 in 7 pages.
International Search Report dated Sep. 6, 2012 in International Application No. PCT/US2012/039103 in 3 pages.
U.S. Appl. No. 10/599,720, filed Oct. 6, 2006, Blott et al.
U.S. Appl. No. 12/192,000, filed Aug. 14, 2008, Hartwell et al.
U.S. Appl. No. 14/598,083, filed Jan. 15, 2015, Allen et al.
U.S. Appl. No. 60/559,727, filed Apr. 5, 2004, Weston.
U.S. Appl. No. 60/573,655, filed May 21, 2004, Weston.
European Extended Search Report, re EP Application No. 12789546.4, dated Dec. 5, 2014.
International Search Report dated Sep. 6, 2012 in International Application No. PCT/US2012/39103.
International Preliminary Report on Patentability dated Nov. 26, 2013 in International Application No. PCT/US2012/39103.
Achterberg, V., Ph.D., Hydroactive dressings and serum proteins: an in vitro study, Journal of Wound Care, February, vol. 5, No. 2, 1996 (pp. 79-82).
Argenta, Louis C., et al., “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment; Clinical Experience”, Ann Plas Surg 1997;38:563-577 (Dec. 10, 1996).
Aubrey, D.A., et al., Treatment of the Perinea! Wound after Proctectomy by Intermittent Irrigation, Arch. Surg., Oct. 1984, 119, 1141-1144.
Bagautdinov, N.A., “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” in current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye. Volkov et al. (Chuvashia State University, Cheboksary, USSR 1986) pp. 94-96 (with English translation).
Biblehimer, Helen L., “Dealing With a Wound that Drains 1.5 Liters a Day,” RN, Aug. 1986, pp. 21-23, USA.
Bier, A., Hyperemia as a Therapeutic Agent, Ed. Dr. Gustavus M. Blech, A. Robertson & Co., Chicago 1905, pp. 74-85.
Brubacher, “To Heal A Draining Wound”, RN Mar. 1982, 7 pages.
Bucalo et al. “Inhibition of Cell Proliferation by Chronic Wound Fluid.” Wound Repair and Regeneration, Miami, 1993, pp. 181-186.
Canadian Office Action for Canadian Application No. 2739605 dated Aug. 22, 2011 in 2 pages.
Chariker, M.E., et al, “Effective Management of Incisional and Cutaneous Fistulae with Closed Suction Wound Drainage,” Contemporary Surgery. Jun. 1989, pp. 59-63, vol. 34 USA.
Chinese Office Action dated Aug. 29, 2008 for Patent Application No. 200480032101.1,
Chintamani, et al., “Half versus full vacuum suction drainage after modified radical mastectomy for breast cancer—a prospective randomized clinical trial”, Research Article (Jan. 27, 2005), 1-5.
Costunchenok, BM, Effect of Vacuum on Surgical Purulent Wounds, Vestnik Chirurgia, 1986, 6 pages.
Davydov et al. “Pathogenic Mechanisms of the Effect of Vacuum Therapy on the Course of the Wound Process” pp. 43-46 (Dec. 1990).
Davydov, Yu A., et al., “Concepts for Clinical Biological Management of the Wound Process in the Treatment of Purulent Wounds Using Vacuum Therapy”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik KhirurQii, BlueSky PublishinQ, La Costa, California (2004), 15-17.
Davydov, Yu A., et al., “The Bacteriological and Cytological Assessment of Vacuum Therapy of Purulent Wounds”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik KhirurQii, BlueSky PublishinQ, La Costa, California (2004), 11-14.
Davydov, Yu A., et al., “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004\, 5-7.
De Lange, M.Y., et al., “Vacuum-Assisted Closure: Indications and Clinical Experience”, Eur J Plast Surg (2000) 2;178-182 (Feb. 9, 2000).
Dilmaghani et al., “A Method for Closed Irrigation and Suction Therapy in Deep Wound Infections,” Journal of Bone and Joint Surgery, 1969, vol. 51-A, No. 2, pp. 323-342.
EPO, Office Action for EP App. No. 04 791 592.1 dated Jun. 12, 2008.
EPO, Second European Office Action for EP App. No. 04 791 592.1 dated Feb. 10, 2011.
Fleischmann, Vacuum sealing: indication, technique, and results, European Journal of Orthopaedic Surgery & Traumatology (1995), pp. 37-40.
Fleischmann, W. Wund Forum Spezial. IHW '94. “Vakuumversiegelung zur Behandlung von Problemwuden” (with English translation: Vacuum Sealing for Treatment of Problematical Wounds).
Garcia-Rinaldi, R., et al., Improving the Efficiency of Wound Drainage Catheters, Amer. Journ. of Surg., Sep. 1975, pp. 130, 372-373.
Hartz, R.S., et al., Healing of the Perinea! Wound, Arch. Surg., Apr. 1980, 115, 471-474.
Health Technology, Literature R., “Vacuum Assisted Closure Therapy for Wound Care”, Health Technology Literature Review (Dec. 2004), 3-59.
International Preliminary Report for International Application No. PCT/GB/2004/004549, dated Dec. 20, 2005.
International Search Report for International Application No. PCT/GB/2004/004549, dated Feb. 21, 2005.
Japanese Office Action dated Aug. 25, 2009 for Patent Application No. 2006-537411.
Japanese Office Action dated Dec. 15, 2009 for Patent Application No. 2006-537411.
Japanese Office Action dated Jun. 22, 2010 for Patent Application No. 2006-537411.
Japanese Office Action dated Jan. 17, 2012 for Patent Application No. 2010-59188.
Jeter, K.F., et al, “Managing Draining Wounds and Fistulae: New and Established Methods”, Chronic Wound Care, pp. 240-246.
Johnson, F.E., An Improved Technique for Skin Graft Placement using a Suction Drain, Surgery, Gynecology and Obstetrics, Dec. 1984, 3 pages.
KCI Inc., If It's Not VAC Therapy, It's Not Negative Pressure Wound Therapy, Jan. 2005.
Khirugii, Vestnik, “A Collection of Published Studies Complementing the Research and Innovation of Wound Care”, The Kremlin Papers, Perspectives in Wound Care, Russian Medical Journal, Vestnik Khiruqii, Blue Sky Publishing (2004), 2-17.
Kostiuchenok, B. M., et al., “The Vacuum Effect in the Surgical Treatment of Purulent Wounds”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 3-4.
Landes, R.R. and I. Melnick, An Improved Suction Device for Draining Wounds, Arch. Surg., May 1972, 104, p. 707.
Linden, Willem van der, et al, “Randomized Trial of Drainage After Cholecystectomy: Suction Versus Static Drainage Through a Main Wound Versus a Stab Incision”, American Journal of Surgery, Feb. 1981, vol. 141, oo. 289-294.
Mcfarlane, R.M., The Use of Continuous Suction under Skin Flaps, Br. Journ. Plast. Surg., pp. 77-86.
Mclaughlan, J, et al, “Sterile Microenvironment for Postoperative Wound Care”, The Lancet, Sep. 2, 1978, pp. 503-504.
Meyer, W. and V. Schmeiden, Bier's Hyperemic Treatment, Published 1908 W. B. Saunders Company, pp. 44-65.
Morykwas, Michael J., et al., “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation”, Ann Plast Surg 1997;38:553-562 (Dec. 10, 1996).
Nakayama, Y, et al, “A New Method for the Dressing of Free Skin Grafts”, Plastic and Reconstructive Surgery, Dec. 1990 pp. 1216-1219, UK.
NURSING75, Wound Suction: Better Drainage with Fewer Problems, Nursing, vol. 5, No. 10, Oct. 1975, pp. 52-55.
Office Action (Final) for U.S. Appl. No. 10/575,875, published as 2007/129,707, dated Jun. 17, 2009 in 19 pages.
Ramirez, O.M., et al., Optimal Wound Healing under Op-Site Dressing, Ideas and Innovations, 73(3), pp. 474-475.
Ranson, J. H. C., et al, “Safer Intraperitoneal Sump Drainage”, Surgery, Gynecology & Obstetrics, Nov. 1973, vol. 137, pp. 841-842.
Sames, C.P., Sealing of Wounds with Vacuum Drainage, Br. Med. Journ., Nov. 5, 1977, p. 1223, Correspondence.
Solovev, V. A., et al., “The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract—Guidelines” USSR Ministry of Health, S. M. Kirov Gorky State Medical Institute, 1987 (with English translation).
Solovev, V.A. “Treatment and Prevention of Suture Failures after Gastric Resection” (Dissertation Abstract) (S.M. Kirov Gorky State Medical Institute, Gorky USSR 1988).
Stewart, Joanne, Ph.D., World Wide Wounds—Next generation of products for wound management—2002 (13 pages).
Svedman, P., “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers,” Scand J. Plast. Reconst. Surg., 19:211-213, 1985.
Svedman, P., “Irrigation Treatment of Leg Ulcers,” The Lancet, Sep. 1983, 532-34.
Svedman, P., A Dressing Allowing Continuous Treatment of a Biosurface, IRCS Med. Science: Biomed. Tech.; Clinic. Med.; Surg. and Transplantation, 1979, 7, p. 221.
Svedman, P., et al., “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent irrigation,” Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133.
Swift, et al, “Quorum Sensing in Aeromonas hydrophila and Aeromonas salmoncida: Identification of LuxRI Homologs AhyRI and AsaRl and Their Cognate N-Acylhomoserine Lactone Signal Molecules,” J. Bacterial., 179(17):5271-5281 (1997).
Teder and Svedman et al., “Continuous Wound Irrigation in the Pig,” Journal of Investigative Surgery, 1990, vol. 3, pp. 399-407.
Tribble, David E. M.D., An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery New York, pp. 511-13, 1972 vol. 105.
Usupov, Y. N., et al., “Active Wound Drainage”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 8-10.
Venturi, Mark L., “Mechanisms and Clinical Applications of the Vacuum-Assisted Closure (VAC) Device”, Am J Clin Dermatol (2005) 693, 185-194; Review Article (2005),185-194.
Vijanto, J. and J. Raekallio, Local Hyperalimentation of Open Wounds, Br. J. surg., 1976, 63, 427-430.
Wackenfors, A., et al., Effects of Vacuum-Assisted Closure Therapy on Inguinal Wound Edge Microvascular Blood Flow, Wound Rep. Reg, 2004, 12, 600-606.
Webb, New Techniques in Wound Management: Vacuum-Assisted Wound Closure, Journal of the American Academy of Orthopaedic Surgeons, v. 10, No. 5, pp. 303-311, Sep. 2002.
Webster's Revised Unabridged Dictionary, published 1913 by C. & G. Merriam Co., definition of Flapper Valve, downloaded from Free Online Dictionary.
Westaby, S., et al., “A Wound Irrigation Device”, The Lancet, Sep. 2, 1978, pp. 503-504.
Wooding-Scott, Margaret, et al., “No Wound is Too Big for Resourceful Nurses,” RN Dec. 1988, pp. 22-25 USA.
Wound Suction, Nursing, Oct. 1975, USA pp. 52-53.
Wu, W.S., et al. Vacuum therapy as an intermediate phase in would closure: a clinical experience, Eur J Plast Surg (2000) 23: pp. 174-177.
Office Action dated Jul. 17, 2015 received in Chinese Application No. 201280036812.0.
Meyer, D. et al., “Weight-Loaded Syringes as a Simple and Cheap Alternative to Pumps for Vacuum-Enhanced Wound Healing”, Plastic and Reconstructive Surg., Jun. 2005, 2174-2176.
Related Publications (1)
Number Date Country
20150352267 A1 Dec 2015 US
Provisional Applications (1)
Number Date Country
61490118 May 2011 US
Continuations (1)
Number Date Country
Parent 13299783 Nov 2011 US
Child 14737387 US