The present application relates to the art of data display. It finds particular application to the display of aperiodically acquired physiological data and will be described with particular reference thereto. However, it will also find application in other types of displays in which the age of the data is of interest.
Patients in a medical setting typically have several physiological parameters monitored. Some, like ECG, SpO2 and invasive are continuously measured. Others, like non-invasive blood pressure, spot check temperature, and laboratory values, are only measured intermittently. The values of these and other physiological parameters are temporally relevant as they may have triggered treatment change, and are typically displayed on a monitor with a date and time stamp indicating when they were obtained.
Because the age of the intermittently measured parameter data is significant to the clinician, it is commonly marked with a sample acquisition date and time stamp, particularly the time when the parameter was measured. One problem with the time stamp is that the monitor display is already cluttered with the numerical values of numerous measured physiological parameters. Another problem is that the clinician performs mental math to see how old the measurement really is. In some instances, the clinician will also make a determination of whether and how much the age of the measurement affects the clinical value of the measurement.
The present application provides an improved method and apparatus which overcomes the above-referenced problems and others.
In accordance with one aspect, a method is presented for displaying a reading or data value. A reading or data value is displayed and the display is altered as the data value ages with time such that the display is indicative of the data value and its age.
In accordance with one aspect, an apparatus is presented that displays a reading or data value. The apparatus includes a human readable display device and a processor programmed to control the display device to display the reading or data value and alter the displayed reading or data value or a label progressively with time such that the displayed value or the table thereof is indicative of its age.
An advantage resides in reducing clutter, particularly a number of alphanumeric characters and symbols, on the face of a display device.
An advantage resides in enabling a clinician to quickly determine the age of each reading on a display screen without requiring the clinician to performing the mental arithmetic of by subtracting the time a the reading was taken from the current time now in order to calculate the age of a reading, and repeating this math for each reading on the display.
A further advantage is that it provides intuitive assessment of the clinical value of a reading on a display.
Still further advantages of the present invention will be appreciated to those of ordinary skill in the art upon reading and understand the following detailed description.
The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention.
With reference to
In one embodiment, the age of data displayed is conveyed by the color or intensity of the data 140. In another embodiment, the age of data is conveyed by use of a subscript next to the actual data reading which would indicate the number of days, hours, minutes, or seconds the reading has been displayed or could present the amount of time until the next reading is due. In another embodiment, the age of a data display is conveyed graphically 160 through use of an icon or symbol such as, but not limited to a clock or a circle with removable wedges, an hour glass, or the like. The picture or symbol represents the length of time the data has been displayed, will remain on display, or the length of time remaining until the next data reading is to be obtained. Use of such means may also reduce screen clutter.
Typically, bedside patient monitors and nursing station central monitors display a plurality of physiological parameters for each patient. Some of these parameters are measured continuously and in real time, and others are measured aperiodically. The aperiodic measurements may be taken every hour, every few hours, every day, etc. In order to inform the medical care giver how old each displayed aperiodic parameter is, it was common to place a date stamp in conjunction with the parameter title and number. The date stamp might be a time, or time and day at which the measurement was made. These additional numbers on an already-busy display add to clutter, making the display harder to read. Typically, the more data displayed, the more difficult it becomes for a user to read the display and sort out relevant data from not relevant data. Moreover, the care-giver has to do mental math to derive the age of the measurement from the time it was made.
The present application discloses a method and apparatus to display data and simultaneously inform the user how old, recent, and relevant the data is to the current clinical picture. Using a non-text based intuitive technique to convey the age of data without use of time and date stamps eliminates text from the display screen area and thereby reduces screen clutter. Relevance of data may be indicated based on a displayed parameter such as brightness, intensity, color intensity relative to the parameter label used in the real-time monitor, by use of a subscript or superscript located on either side of the value, or special icon as a background for the data parameter. As a new aperiodic parameter is measured, such as non-invasive blood pressure, it is displayed on the display of the monitor by an underlying parameter display algorithm. In some instances, the reading is displayed with a time stamp and the reading is automatically removed from the real time display after a preconfigured aging threshold. A threshold is a predetermined maximum time for which the data parameter should be displayed. An example would be that of a certain data value which should remain on the screen for one hour and then should be removed.
In the embodiment of
In the embodiment of
In one embodiment, the displayed reading value is initially presented at maximum contrast with the background. As the parameter ages, the color or intensity fades into the background color. For example, the color intensity decreases gradually to gray. Once the aging threshold is met, the data parameter is then removed.
The display of aperiodic measurements is aged in an intuitive way. In one embodiment, the content reading value fades as time elapses, such that the intensity of the data displayed dims. In another embodiment, the color assigned to the parameter in question fades to gray with time. This replaces a time or date stamp and reduces the clutter caused by including a date and time with the accompanying data.
With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
Furthermore, the indicators presented herein including the fading change in intensity, the change in color, use of a subscript, or the changing background. Another changing graphical symbol may be combined in any manner to signify the age of a data parameter reading.
With reference to
With reference to
As time passes and the medical value ages, 1340, the bar may transition from a fully darkened graphical display 1320 to a partially darkened graphical display 1350. The length of time that has passed or is remaining on the life of the medical value may be determined through use of an accompanying legend 1360. The degree to which the display is darkened will ideally correspond to the amount of time that has passed since the medical value was initially generated.
At the end of the useful life of the medical value 1370, the bar may be entirely undarkened such that there remains no shaded or darkened portion within the remaining outline of the previously darkened or shaded bar 1380. This unshaded or undarkened bar may also be accompanied by a legend 1390.
In an alternative embodiment, the graphical bar may begin life completely undarkened or unshaded, which would indicate that the accompanying medical value is new. In this embodiment, the graphical bar would gradually darken or fill up as time passes and the medical value ages such that a partially shaded or darkened bar would indicate an aging medical value. At the end of the useful life of the medical value, the graphical bar may be fully darkened so as to indicate that time is up for the life of the medical value and this value has expired.
In a further embodiment, the shading or darkening may be replaced by a change in the graphical bar's color, color shade, color intensity, shading pattern or shape. The color changing or darkening may proceed from right to left, from left to right, from center outward toward the edge, from the edge inward toward the center, from top to bottom, from bottom to top, from inside to outside, from outside to inside, diagonally from the upper right hand corner to lower left hand corner, diagonally from the upper right hand corner to the lower left hand corner, diagonally from the lower right hand corner to the upper left hand corner, diagonally from the lower right hand corner to the upper left hand corner, and the like.
The method, system and apparatus described herein may also incorporate a computer operable means including but not limited to a computer data input means, a computer display terminal for presenting data, a computer memory that may contain a database, and a network connection that may enable the method, system and apparatus to interact on a computer network system including but not limited to the Internet.
The invention has been described with reference to the preferred embodiments. Modifications and alterations may occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be constructed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application claims the benefit of U.S. provisional application Ser. No. 61/092,462 filed Aug. 28, 2008, which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2009/053549 | 8/11/2009 | WO | 00 | 2/9/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/023578 | 3/4/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5532715 | Bates et al. | Jul 1996 | A |
5622178 | Gilham | Apr 1997 | A |
5912656 | Tham et al. | Jun 1999 | A |
6322516 | Masuda et al. | Nov 2001 | B1 |
7530077 | Bhogal et al. | May 2009 | B2 |
7802634 | Boone | Sep 2010 | B2 |
20020133061 | Manetta | Sep 2002 | A1 |
20040025113 | Penke et al. | Feb 2004 | A1 |
20050275655 | Stolze et al. | Dec 2005 | A1 |
20070159922 | Zimmerman et al. | Jul 2007 | A1 |
20070167693 | Scholler et al. | Jul 2007 | A1 |
20080097175 | Boyce et al. | Apr 2008 | A1 |
20100223070 | Kelly et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
0764912 | Mar 1997 | EP |
1027320 | Sep 1964 | GB |
59117047 | Jul 1984 | JP |
2006255020 | Sep 2006 | JP |
2007025341 | Mar 2007 | WO |
WO 2007025341 | Mar 2007 | WO |
2008045538 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110140912 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
61092462 | Aug 2008 | US |