Method for improving results of hydraulic fracturing in heterogeneous reservoirs. More specifically method is provided for preventing fluid from entering a well during or soon after hydraulic fracturing of an offset well completed in the same reservoir.
Hydraulic fracturing in unconventional reservoirs has increased in many parts of the world in recent years. Large amounts of fracturing fluid may be injected into a well in an effort to open more rock to allow hydrocarbons to be produced from the reservoir. Hydraulic fractures in conventional reservoirs (that are not naturally fractured) are formed in a preferred direction and the fracturing fluid leaks from a plane in fractured rock. Fracturing fluids do not move for long distances away from the confined vertical fracture. In contrast, in unconventional reservoirs the rock is often naturally fractured and when a hydraulic fracturing treatment is performed, fracturing fluid may flow far away from the well being fractured in different directions.
It has been observed in the field that fracturing fluids from fracturing treatments in offset wells in various directions may be produced into a producing well in the same reservoir or reservoir fluids may be temporarily produced at a higher rate. This is a disadvantage, because fracturing fluid or water near the producing well may decrease production rate of hydrocarbons and may require disposal of additional water.
What is needed is a simple and inexpensive method of preventing fracturing fluid from offset wells or additional reservoir water flowing into a producing well in the same reservoir as another well is being fractured.
Referring to
The following procedure may be followed when well 10 is to be hydraulically fractured and it is desired to prevent influx of fracturing or reservoir fluid into well 20. Before injection of fracturing fluid into well 10 or soon after injection begins, degradable ball sealers 30 or degradable particles 31, or both, together or separately, may be injected into well 20 in a carrier fluid such as water or a fracturing fluid. Injection of fluid into well 20 is continued and sufficient ball sealers or degradable particles are injected to provide partial or complete shut-off of all perforations 22 in well 20, i.e., ball sealer or degradable particle injection may continue until a “ball-out” of well 20 is observed. A ball-out will be defined for purposes herein as an injection rate less than 0.1 barrels per minute. Preferably, a slow injection rate will be continued in well 20 to maintain pressure at the perforations at least above estimated reservoir pressure around the well during the fracturing treatment, so as to ensure that flow into the well does not unseat a ball or backflow particles. Alternatively, pressure in the wellbore at the perforations may be obtained above fracturing pressure to ensure that no fluid enters the well. The surface pressure may be maintained on well 20 during the hydraulic fracturing treatment of well 10 and until pressure decreases around well 10 and well 20 after the treatment. This will allow a much smaller injection of fluid into well 20 than would be required without use of the ball sealers 30 or particulate material 31 and leave a lower water saturation around producing well 20, providing a higher production rate.
Degradable ball sealers and degradable particles may be obtained from pumping service companies in the industry.
A variety of degradable materials may be used in the ball sealers or particulate material. For example, the degradable material may be a polymer that degrades in contact with water, such as a polyester. Other degradable materials such as metal degradable material that degrade under reservoir conditions are also widely available in industry.
After the hydraulic fracturing treatment is completed in well 10, production may be restarted from well 20. Ball sealers or particles 31 may degrade before being produced with production from well 20, or they may not be recovered if fully degraded. Degradation of ball sealers 30 or particles 31, however, will assure that no perforations are plugged by using ball sealers to seal perforations 22.
Although the present invention has been described with respect to specific details, it is not intended that such details should be regarded as limitations on the scope of the invention, except to the extent that they are included in the accompanying claims.
This application is a continuation of U.S. application Ser. No. 17/949,146 filed on Sep. 20, 2022, which is a continuation of U.S. application Ser. No. 17/134,893 filed on Dec. 28, 2020, which is a continuation of U.S. application Ser. No. 16/922,689 filed on Jul. 7, 2020, which is a continuation of U.S. application Ser. No. 14/979,560 filed on Dec. 28, 2015, the disclosures of which are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 17949146 | Sep 2022 | US |
Child | 18220566 | US | |
Parent | 17134893 | Dec 2020 | US |
Child | 17949146 | US | |
Parent | 16922689 | Jul 2020 | US |
Child | 17134893 | US | |
Parent | 14979560 | Dec 2015 | US |
Child | 16922689 | US |