The present invention relates to IP multicast control technique, particularly to method for rapidly recovering multicast service and network device.
In access network communications using Ethernet technique, multicast service (e.g. IPTV network television, IP conversation television service, IP online courses and etc.) becomes a more and more popular service.
As shown in
Generally, the network device of the link lay has a main link and a spare link connected to the upper network device and corresponding spare devices are provided for some key upper network devices. The main link and the spare link are respectively connected to corresponding main and spare upper network devices. When a fault occurs in the main link, the network access device may switch to the spare link and recover services carried on the main link.
As shown in
As shown in
Under the above network environment, after link faults occur, even if the link were recovered in a short time, the user host accessed by the DSLAM would need to resend a request for participating in multicast or recover the multicast by a General Member Query (GMQ) message periodically sent from the multicast router and a response to the message of the user if it is required to recover the multicast service before link faults occur. The process of recovering is shown in
Summing up the above, under the above network environment, the multicast service can be recovered by the multicast router periodically sending a GMQ message, however, the recovering time is random (a random time within 135 seconds) and long, which has an effect on provision of multicast service.
One of the objects of the present invention is to provide a method for rapidly recovering multicast service, a first network device having at least one link connected to a second network device and receiving a multicast data stream, the method comprising: a) the first network device performing link fault detection and link recovery; b) the first network device actively sending a multicast request message to the second network device via a recovered link to recover the multicast data stream; c) the second network device parsing said multicast request message and providing the multicast data stream to the first network device.
Preferably, the link between said first and second network devices operates in a mode of main-spare link comprising steps a) the first network device performing switching between the main link and the spare link when a fault occurs on the main link, and b) the first network device actively sending the multicast request message to an upper network device via the spare link to recover the multicast data stream of the main link.
In the above-mentioned method, the multicast request message is a standard Internet Group Management Protocol (IGMP) multicast request message.
In the above-mentioned method, the multicast request message is an extended Internet Group Management Protocol (IGMP) multicast request message, which includes a plurality of multicast group request messages and Identification information of Virtual Local Area Network where the multicast is (VLAN_ID).
The further object of the present invention is to provide a network device, comprising: a link interface module having at least one link interface connected to an upper network device and receiving a multicast data stream; a link detection module for performing detection of fault and recovery on said link interface and generating a corresponding control message; a multicast protocol control module for sending a multicast request message to the upper network device via a recovered link based on a link recovery control message generated by the link detection module to recover the multicast data stream.
Preferably, the link interface of the link interface module operates in a mode of main-spare link and performs switching between the main link and the spare link based on a link fault control message generated by the link detection module, the multicast protocol control module sends the multicast request message to an upper network device based on a link switching control message generated by the link detection module to recover the multicast data stream of the link in fault.
Wherein the multicast request message is a standard Internet Group Management Protocol (IGMP) multicast request message.
Wherein the multicast request message is an extended Internet Group Management Protocol (IGMP) multicast request message, which includes a plurality of multicast group request messages and Identification information of Virtual Local Area Network where the multicast is (VLAN_ID).
According to the method or the network device provided in the present invention, after the link is recovered from fault, the network device actively sends the multicast request message to rapidly recover multicast service, which enhances reliability of multicast service and has a minimum effect on existing network devices.
Detailed description of the preferred embodiments of the present invention is provided as follows in conjunction with accompanying figures.
In conjunction with
Step S50: when a fault occurs in the link, for example, a fault in DSLAM link interface corresponding to the link, physical connection of the link, SWITCH port corresponding to the link, resulting in interrupt in the multicast data stream, the DSLAM is required to perform link fault detection to recover the link as soon as possible.
In the case of only one link corresponding to
In the case of two links (a main one and a spare one) corresponding to
Step S51: once the link is recovered, the DSLAM sends a multicast request message to an upper network device via the recovered link to recover the multicast data stream.
The multicast request message sent by the DSLAM may be the one of standard Internet Group Management Protocol Version 1 (IGMPv1) or Internet Group Management Protocol Version 2 (IGMPv2). The IGMP message is transmitted by IP data packet and indicated by the protocol field value “2” in head of the IP data packet.
Preferably, when the upper network device SWITCH1/SWITCH2 supports IGMPv3 protocol, the multicast request message sent by the DSLAM may be an IGMPv3-based multicast participating request message (as shown in
Preferably, the multicast request message sent by the DSLAM may be generated by extending the IGMPv1 or IGMPv2 protocol message. An extended IGMP message includes M multicast group request messages, which include information on identification of the virtual local area network (VLAN_ID) where respective multicasts are, and thus an extended protocol message can be used to make request for multicast request messages of different VLANs. The extended protocol message is shown in
Step S52: after receiving the multicast request message sent by the DSLAM, the SWITCH1/SWITCH2 parses the message: it updates its multicast forwarding table and directly forwards the requested multicast data stream to the DSLAM via the recovered link if the multicast data stream exists on the device; otherwise, the SWITCH1/SWITCH2 makes a request for the multicast data stream from a multicast router and then forwards the multicast data stream to the DSLAM.
Preferably, the multicast request message sent by the DSLAM is based on the IGMPv1 or IGMPv2 protocol message. An extended IGMP message includes VLAN_ID information. The SWITCH1/SWITCH2 receiving the multicast request message corresponds to receiving several single multicast request messages in respective virtual local area networks. The processing on each multicast request message is as above described.
The above process is that the DSLAM actively makes a request for the multicast data stream from the upper network device just after link recovery, so the multicast data stream may be recovered just after the SWITCH1/SWITCH2 accomplishes processing on the multicast request message and the time is predictable and controllable.
The link interface module has at least one link interface connected to the upper network device and receives the multicast data stream.
In conjunction with
In conjunction with
Further, the link interface module 70 has a plurality of link interfaces to form a plurality of spare links if particular cases are not excluded.
The link detection module 71 performs detection of fault and recovery on the link in the link interface module 70 and generates a corresponding control message based on link status.
When the link interface module 70 only has one link interface, the link detection module 71 may perform fault detection on the link interface and generate a recovery control message to the multicast protocol control module 72 when the fault in the link is eliminated.
When the link interface module 70 has two link interfaces, the link interfaces operate in a main-spare mode and the link detection module 71 may perform fault detection on the link interfaces by redundant spare means of associated links, e.g. executing STP/RSTP protocol: 1) when the spare link is used as a single backup, the link detection module 71 may performs detection on the main link, generate a switching control message to the link interface module 70 to switch to the spare link interface when a fault occurs in the main link, and further generate a recovery control message, which includes link interface information corresponding the link in fault, to the multicast protocol control module 72 after the spare link is established; 2) when the spare link is used for load balance, the link detection module 71 may perform detection on the main and spare links, generate the switching control message to the link interface module 70 to switch to the other link interface when a fault occurs in one link and further generate the recovery control message, which includes link interface information corresponding to the link in fault, to the multicast protocol control module 72.
The multicast protocol control module 72 sends the multicast request message to the upper network device SWITCH1/SWITCH2 via the reestablished link based on the link recovery control message generated by the link detection module to recover the multicast data stream of the link in fault.
The implementation of the multicast request message can be referred to the aforementioned description.
The above embodiments of the present invention have been presented by way of example only, and not limitation. It should be noted that various changes and modifications could be made by those skilled in the art herein without departing from the sprit and scope of the invention. Therefore, all equivalent technical solutions should belong to the scope of the present invention which should be limited by the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
200510112294.8 | Dec 2005 | CN | national |