The present invention relates to a method for re-gasification of liquid natural gas.
Conventional Liquid Natural gas (LNG) re-gasification processes require an external heat source. Heat is usually provided by using various types of vaporizers; such as seawater vaporizers, submerged combustion vaporizers, intermediate fluid vaporizers or ambient air vaporizers. LNG vaporization is an energy intensive process. Seawater heating is the most common method of re-gasification at LNG seaport terminals. New LNG re-gasification processes integrate the vaporization process with a power plant to maximize overall power efficiency. This practice is limited at centralized LNG terminals
According to the present invention there is provided a method for re-gasification of liquid natural gas. A first step involves positioning a storage vessel for liquid natural gas at a facility that has at least one refrigeration unit that uses a circulating fluid heat transfer medium for cooling purposes on an on going basis. A second step involves providing at least one heat exchanger that has a primary fluid flow path for passage of liquid natural gas from the storage vessel and at least one secondary fluid flow path for passage of the circulating fluid heat transfer medium to the refrigeration unit. A third step involves circulating liquid natural gas along the primary fluid flow path and the circulating fluid heat transfer medium along the at least one secondary fluid flow path. A heat exchange takes place during circulation through the heat exchanger between the liquid natural gas and the circulating fluid heat transfer medium which raises the temperature of the liquid natural gas changing it from a liquid phase to a gaseous phase in preparation for consumption and which lowers the temperature of the circulating fluid heat transfer medium in preparation for use in the at least one refrigeration unit.
These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings, the drawings are for the purpose of illustration only and are not intended to in any way limit the scope of the invention to the particular embodiment or embodiments shown, wherein:
The preferred method will now be described with reference to
Referring to
Referring to
Liquid Natural Gas (LNG) is stored at −160 C at atmospheric pressure in storage vessel 22, which is an insulated cryogenic tank. Typically the LNG is re-gasified at the receiving seaport terminal before being distributed into the pipeline networks. The proposed process stores LNG at the point of use with the intention of using the cold that users require for refrigeration in their production facilities. The objective being to control and match the usage patterns of LNG with cryogenic energy patterns. LNG is pumped by pump 34 to a set pressure into cold box 24. The cold box has three sections; a cryogenic section 36 in which secondary flow path 28 is positioned, a freezer section 38 in which secondary flow path 30 is positioned and a cooler section 40 in which secondary flow path 32 is positioned. A heat exchange takes place during circulation through cold box 24 between the liquid natural gas and the circulating fluid heat transfer medium. As will hereinafter be further explained, this raises the temperature of the liquid natural gas changing it from a liquid phase to a gaseous phase in preparation for consumption in the fuel burner and lowers the temperature of the circulating fluid heat transfer medium in preparation for use in the various refrigeration units. The LNG first enters cryogenic section 36 where it exchanges its extreme cold for cryogenic uses. A two phase flow then enters freezer section 38 where additional cold is given up for freezer applications. Now a vapor, it enters the cooler section 40 where low level cold is given up before it exits cold box 24 as a re-gasified natural gas stream ready for use. The coolant stream for each section is selected based on their properties for the field of use. The temperature control in each stream is controlled by the circulation flow rate.
LNG possesses two types of energy; hydrocarbon fuel and “cold energy”. The above described method recovers this stored “cold energy” by integrating the use of LNG with fuel and main gas distribution networks requirements and with required refrigeration requirements in residential, commercial and industrial applications
The typical heating curve of LNG shows a potential in power savings of 250 KWh/ton of LNG.
The field of application is vast, varying from the high density residence complexes, beverages, food, meat processing and poultry processing to the refinery/petrochemical industries.
The needs of a facility may change with seasonal variations. For example, if the gaseous phase natural gas was consumed solely for heating purposes, it may all be consumed during cold winter months, not be needed at all during warm summer months and only partially be consumed during the moderate months of spring and fall.
In this patent document, the word “comprising” is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article “a” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements.
Number | Date | Country | Kind |
---|---|---|---|
2551062 | Jun 2006 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA07/00984 | 6/6/2007 | WO | 00 | 12/8/2008 |