Abraham, E.P. and E. Chain, An Enzyme from Bacteria able to Destroy Penicillin, Nature 146, 837 (1940). |
Perl, T. M., The Threat of Vancomycin Resistance, Am. J. Med. 106:5A, 26S-37S (1999). |
Wright, G. D. and C. T. Walsh, D-Alanyl-D-alanine Ligases and the Molecular Mechanism of Vancomycin Resistance, Acc. Chem. Res. 25, 468-473 (1992). |
Walsh, C. T., Vancomycin Resistance: Decoding the Molecular Logic, Science 261, 308-309 (1993). |
Silva, J.C. et al., In vivo characterization of the type A and B vancomycin resistant enterocossi (VRE) VanRS two-component systems in Escherichia coli: A nonpathogenic model for studying the VRE signal trasduction pathways, Proc. Natl. Acad. Sci. U.S.A. 95 11951-11956.(1998). |
Arthur, M. et al., Structural relationship between the vancomycin resistance protein VanH and 2-hydroxycarboxylic acid dehydrogenases, Gene 103, 133-134 (1991). |
Bugg, T. D. et al., Molecular Basis for Vancomycin Resistance in Enterococcus feacium BM4147:Biosynthesis of a Dispeptide Peptidoglycan Precursor by Vancomycin Resistance Proteins VanH and VanA, Biochem. 30, 10408-10415 (1991). |
Wu, Z. and C. T. Walsh, Phosphate analogs of D-,D-dipeptides: Slow-binding inhibition and proteolysis protection of VanX, a D-, D-dipeptidase required for vancomycin resistance in Enterococcus faecium, Proc. Natl. Acad. Sci. U.S.A. 92, 11603-11607 (1995). |
Xu, R. et al., Combinatorial Library Approach for the Identification of Synthetic Receptors Targeting Vancomycin-Resistant Bacteria, J. Am. Chem. Soc. 121, 4898 (1999). |
Ge, M. et al., Vancomycin Derivatives That Inhibit Peptidoglycan Biosynthesis Without Binding D-Ala-D-Ala, Science 284, 507-511 (1999). |
Sundram, U. N. et al., Novel Vancomycin Dimers with Activity against Vancomycin-Resistant Enterococci, J. Am. Chem. Soc. 118, 13107-13108 (1996). |
Ohlmeyer M. H. J. et al., Complex synthetic chemical libraries indexed with molecular tags, Proc. Natl. Acad. Sci. U.S.A. 90, 10922-10926 (1993). |
Templin, M. F. et al., A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli, EMBO J., 18, 4108-4177 (1999). |
Ulijasz, A. T. et al., A Vancomycin-Inducible LacZ Reporter System in Bacillus subtilis: Induction by Antibiotics That Inhibit Cell Wall Synthesis and by Lysozyme, J. Bacteriol. 178, 6305-6309 (1996). |
Baptista, M. et al., Specificity of Induction of Glycopeptide Resistance Genes in Enterococcus faecalis, Antimicrob. Agents Chemother. 40, 2291-2295 (1996). |
Cheng, Y. et al., Sequence-Selective Peptide Binding with a Peptido-A,B-trans-steroidal Receptor Selected from an Encoded Combinatorial Receptor Library, J. Am. Chem. Soc. 118, 1813-1814 (1996). |
Burger, M., and W.C. Still, Synthetic Ionophores. Encoded Combinatorial Libraries of Cyclen-based Receptors for Cu2+ and Co2+, J. Org. Chem., 60, 7382-7383 (1995). |
Borchardt, A., and W.C. Still, Synthetic Receptor Binding Elucidated with an Encoded Combinatorial Library, J. Am. Chem. Soc. 116, 373-374 (1994). |
Nelson, R.R., Intrinsically Vancomycin Resistant Gram-positive Organisms: Clinical Relevance and Implications for Infection Control, Journal of Hospital Infection, 42, 275-282 (1999). |
T.G. Emori, and R. P. Gaynes, An Overview of Nosocomial Infections, Including the Role of the Microbiology Laboratory, Clin Microbiol. Rev., 6(4):428-442 (1993). |
N. Woodford, Glycopeptide-resistant enterococci: a decade of experience, J. Med. Microbiol. 47:849-862 (1998). |
G. L. French, Enterococci and Vancomycin Resistance, Clin. Infect. Dis., Suppl 1:S75-S83 (1998). |
C.T. Walsh, Vancomycin Resistance: Decoding the Molecular Logic, Science, 261:308-309 (1993). |
G.D. Wright et al., Characterization of VanY, a DD-Carboxypeptidase from Vancomycin-Resistant Enterococcus faecium BM4147, Antimicrob. Agents. Chemother., 36(7):1514-1518 (1992). |
P.E. Reynolds et al., Glycopeptide resistance mediated by enterococcal transposon Tn 1546 requires production of VanX for hydrolysis of D-alanyl-D-alanine, Mol. Microbiol., 13(6):1065-1070 (1994). |
H. P. Netsler et al., A General Method for Molecular Tagging of Encoded Combinatorial Chemistry Libraries, J. Org. Chem., 59:4723-4724 (1994). |
S. Handwerger et al., Vancomycin Resistance Is Encoded on a Pheromone Response Plasmid in Entercoccus faecium 228, Antimicrob. Agents. Chemother., 34:358-360 (1990). |
A. E. Jacobs and S. J. Hobbs, Conjugal Transfer of Plasmid-Borne Multiple Antibiotic Resistance in Streptococcus faecalis var. zymogenes, J. Bacteriol., 117(2):360-372 (1974). |
M. H. Lai and D. R. Kirsch, Induction Signals for Vancomycin Resistance Encoded by the vanA Gene Cluster in Enterococcus faecium, Antimicrob. Agents. Chemother., 40(7):1645-1648 (1996). |
B.L.M. De Jonge et al., Peptidoglycan Composition of Vancomycin-Resistant Enterococcus faecium, Microb. Drug Resist. 2:225-229 (1996). |
S. Evers et al., Genetics of Glycopeptide Resistance in Enterococci, Microb. Drug Resist. 2:219-223 (1996). |
P.E. Reynolds, Biochemistry, and Mechanism of Action of Glycopeptide Antibiotics, Eur. J. Microbiol. Infect. Dis. 8:943-950 (1993). |
K. Matusmoto, A Vancomycin-Related Antibiotic From Steptomyces Sp. K-288, J. Antibiotics, Ser. A. 14(3):141-146. |