The present disclosure relates to the recycling of lithium battery materials, and in particular to a method for recovering lithium from a waste lithium iron phosphate (LFP) material.
With the increasing demand for lithium, the recovery of lithium from waste lithium battery materials has become an important research topic. LFP is currently the most widely used lithium-ion battery (LIB) material. After thousands of cycles, an LFP battery shows a declining battery capacity and is finally scrapped, resulting in a waste LFP battery material. Waste LFP battery materials, if not effectively recycled, will accumulate in large quantities, pollute the environment, and result in waste of precious lithium resources. Therefore, the recovery of metal elements in waste LFP batteries, especially the recovery of lithium, has some environmental significance and high economic value.
The present disclosure is intended to overcome the shortcomings in the prior art and provide a method for recovering lithium from a waste LFP material.
To achieve the above objective, the present disclosure adopts the following technical solution: A method for recovering lithium from a waste LFP material is provided, including the following steps:
In step S1, water is added to the waste LFP material to prepare a slurry, and a pH of the slurry is controlled at 0.5 to 2.0 and an ORP of the slurry is controlled at 0.05 V to 1.2 V to obtain an aluminum-containing solution and an aluminum-free LFP powder (material A). In step S2, sulfuric acid is added to the LFP powder (material A) and a resulting mixture is heated at 100° C. to 400° C. in the air or an oxygen atmosphere to obtain a mixture of iron phosphate and lithium sulfate (material B). In step S3, water is added to the mixture of iron phosphate and lithium sulfate (material B), and a resulting mixture is filtered to obtain a lithium sulfate solution (material C) (mechanism: lithium sulfate is soluble in water, but iron phosphate is insoluble). In step S4, pH of the lithium sulfate solution (material C) is controlled at 9 to 11 to further remove the impurity of iron phosphate, such that a purified lithium sulfate solution (material D) is obtained. In step S5, the purified lithium sulfate solution (material D) is passed through an ion-exchange resin such that calcium impurities can be thoroughly removed to obtain a further-purified lithium sulfate solution (material E). In step S6, the further-purified lithium sulfate solution (material E) is added to a sodium carbonate solution to react, and a lithium carbonate insoluble substance is obtained. The method of the present disclosure has the advantages of easy industrialization, simple operation, and low cost. The method of the present disclosure can achieve a lithium recovery rate of more than 99%, has high recovery efficiency, and can lead to battery-grade lithium carbonate.
As a preferred implementation of the method of the present disclosure, in S1, the ORP may be 0.2 V to 0.5 V. This potential allows excellent aluminum removal effect.
As a preferred implementation of the method of the present disclosure, in S1, the ORP may be controlled by adding sodium chlorate and/or hydrogen peroxide. The sodium chlorate and/or hydrogen peroxide can be added in a manner of continuous feeding.
As a preferred implementation of the method of the present disclosure, in S1, the pH may be controlled by adding a sulfuric acid solution and/or a hydrochloric acid solution. The sulfuric acid solution and/or hydrochloric acid solution can be added in a manner of continuous feeding.
As a preferred implementation of the method of the present disclosure, in S2, the sulfuric acid may have a mass concentration of 10% to 98%. More preferably, in S2, the sulfuric acid may have a mass concentration of 50% to 98%. This sulfuric acid concentration allows high reaction rate and energy conservation.
As a preferred implementation of the method of the present disclosure, in S2, the sulfuric acid may be added at an amount such that a molar ratio of hydrogen ion to lithium in the resulting mixture is 1.0 to 1.5.
As a preferred implementation of the method of the present disclosure, in S2, the heating may be conducted for 1 h to 5 h.
As a preferred implementation of the method of the present disclosure, in S2, the heating may be conducted at 150° C. to 250° C. Reaction at this temperature can achieve both prominent reaction efficiency and large energy conservation.
As a preferred implementation of the method of the present disclosure, in S4, the pH may be adjusted by adding lithium carbonate and/or sodium carbonate.
Beneficial effects of the present disclosure: The method of the present disclosure has the advantages of easy industrialization, simple operation, and low cost. The method of the present disclosure can achieve a high lithium recovery rate of more than 99%, and can lead to battery-grade lithium carbonate.
Unless otherwise specified, the materials and reagents used in the examples all are purchased from the market. In order to well illustrate the objectives, technical solutions, and advantages of the present disclosure, the present disclosure will be further described below in conjunction with specific examples.
An implementation of the method for recovering lithium from a waste LFP material according to the present disclosure was provided in this example, and the method included the following steps:
As calculated, the method in this example can lead to a lithium yield of 99.9%, and a calculation formula of lithium yield is as follows: amount of lithium in material C/amount of lithium in waste LFP material x 100%.
An implementation of the method for recovering lithium from a waste LFP material according to the present disclosure was provided in this example, and the method included the following steps:
As calculated, the method in this example can lead to a lithium yield of 99.0%, and a calculation formula of lithium yield is as follows: amount of lithium in material C/amount of lithium in waste LFP material x 100%.
An implementation of the method for recovering lithium from a waste LFP material according to the present disclosure was provided in this example, and the method included the following steps:
As calculated, the method in this example can lead to a lithium yield of 99.3%, and a calculation formula of lithium yield is as follows: amount of lithium in material C/amount of lithium in waste LFP material x 100%.
An implementation of the method for recovering lithium from a waste LFP material according to the present disclosure was provided in this example, and the method included the following steps:
As calculated, the method in this example can lead to a lithium yield of 99.8%, and a calculation formula of lithium yield is as follows: amount of lithium in material C/amount of lithium in waste LFP material x 100%.
Finally, it should be noted that the above examples are provided only to illustrate the technical solutions of the present disclosure, rather than to limit the protection scope of the present disclosure. Although the present disclosure is described in detail with reference to preferred examples, a person of ordinary skill in the art should understand that modifications or equivalent replacements may be made to the technical solutions of the present disclosure without departing from the spirit and scope of the technical solutions of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202110885754.X | Aug 2021 | CN | national |
The present application is a continuation application of PCT application No. PCT/CN2022/095684 filed on May 27, 2022, which claims the benefit of Chinese Patent Application No. 202110885754.X filed on Aug. 3, 2021. The contents of all of the aforementioned applications are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2022/095684 | May 2022 | US |
Child | 18212713 | US |