The present invention relates to the recycling of insulating cured foam material having an internal cell/bubble structure for re-use in combination with an expandable liquid foam insulation material.
Household and commercial appliances that either heat or cool a medium, such as a refrigerator or a water heater, require insulation to increase their energy efficiency. Originally, fiberglass type insulations were used to insulate these appliances. In the 1970's polyurethane foam type insulation was introduced and rapidly replaced fiberglass insulation due to advantages related to manufacturing processes and energy efficiency. Generally, two liquid chemicals are mixed together as they are injected into an empty cavity of the appliance. The chemical reaction causes the materials to expand in volume and fill the empty cavity prior to solidifying. It also creates an extremely small bubble structure within itself which acts as the insulator. Some of the drawbacks of this type of technology are that it is a one-time reaction that cannot be reversed. Other problems associated with this is that the material cannot he re-used in another appliance which means insulation scraps generated during the manufacturing process as well as the waste generated at the end of the product's life end up in landfills since generally these materials cannot be recycled. This is a critical issue since environmental problems are on the rise and the cost and availability of the raw materials for the fabrication of these types of products will become more and more restrictive since they are derived from petroleum sources.
It is a feature of the present invention to provide a means of recycling cured foam insulation material to overcome the deficiencies of the prior art as disclosed herein.
According to a broad aspect of the present invention there is provided a method of recycling cured foam insulation having an internal cell/bubble structure is described. The method comprises cutting the cured foam cell insulation into foam pieces of predetermined sizes dependent on the dimensions of cavities to be insulated and incorporating the foam pieces therein. A predetermined volume of the cavities is filled with the foam pieces and a predetermined quantity of an expandable liquid foam insulation is injected into the cavities containing the foam pieces and caused to expand to fill voids in the cavities with the foam pieces forming a homogeneous insulating foam body throughout the cavities while retaining substantially their internal cell/bubble structure.
The invention will now be described with the accompanying drawings in which:
Referring to
The scope of this patent application pertains to a method developed and tested for the recycling of cured and/or older recuperated foam insulation in water heaters, or any other type of appliance that uses such foam insulation. The primary obstacle to this concept is that older/aged foams, as well as plant reprocessed foam, can have a lower insulating performance compared to 100% new foam coating. Furthermore, the new foam coating, when injected as a liquid, completely fills the empty voids and adheres to the appliance surfaces as it reacts to form a perfect insulator. If one was to simply wrap or fill the empty appliance cavity with used insulation, this type of system would not fill all the voids and hence create thermal bridges that would waste energy.
The proposed principal for this patent application is to combine a calculated and/or ratio of reacted/solidified/used foam insulation with new foam insulation. In other words, a portion of used rigid foam is placed in the empty appliance cavity that needs to be filled. Then, the liquid foam is poured into the cavity. This latter application fills all of the voids left over by the rigid insulation and assimilates it into the new foam structure as the chemicals react.
The key for this principal to work is that the used insulation must have a defined size and shape. Otherwise, instead of contributing to the insulation performance of the overall system, it will cause it to deteriorate. This was determined by experimentation when solid cured foam was ground-up into a fine powder and mixed with new foam. It was quickly realized that that technique was not feasible as energy performance levels for the insulated experimental water heaters showed far worse results than those insulted strictly with new foam.
Another experimental technique was to cut pieces of cured foam into small cubes, 2″×2″×2″, and dropped into the empty cavity around the inner tank and the outer jacket of a water heater prior to the new foam injection. The cavity was then injected with the remaining requirement of foam to fill the void, i.e., if you need a total of 5 pounds of cured foam to fill the void of a given water heater size and you put 1 pound of cured foam into the void, you need only to add 4 pounds of new foam.
These prototypes where then tested for energy performance and revealed to be just as good as units with new foam. In other words, lab results could not tell the units apart in regards to their respective energy performance numbers.
In order to verify our findings, we then proceeded with a second series of tests with cubes of 1″×1″×1″. These units also revealed that energy performance numbers could be just as good with a small amount of recycled foam mixed with new foam versus only new foam.
What can be deducted from these findings is that the key to this recycling of cured foam lies in the integrity of the foam structure of the pieces of cured foam. In other words, it is crucial that the foam pieces contain a cell structure in order to have them retain their insulating properties.
From our experimental findings, we can conclude that contrary to the claims of foam systems providers, used/cured foam can be efficiently recycled. The principle is that pieces of cured foam placed in the fillable void need to retain their internal bubble (cell) structure to allow them to retain their insulating properties. Care must be taken in the cutting/dismantling process in order to avoid damaging the bubble structure of the cured foam. The size of the pieces should be close to yet below the actual finished foam cavity for ease of assembly and proper mixing of the two foam mediums (liquid and solid), i.e., if a water heater requires 2″ of cured foam for proper insulation, 1″ thick pieces of cured foam gives exceptionally good results. Our experiments show that we can combine up to about 10% to 12% by foam weight of cured foam in a new appliance insulating cavity. However, these results were obtained with cured foam derived from the same foam system used at a designated plant. If one was to combine other types of foam, such as recuperated from older defective units, caution must be taken as aged foam or foam made from a different system may have less insulating properties than the one in use at the plant. Therefore, the quantity of used foam should be reduced accordingly in order to minimize the negative effect such lower quality foam may have on the energy performance numbers of an appliance. One can therefore significantly reduce its carbon footprint and overall consumption of petroleum-made raw materials by recycling cured foams. Also, this results in a significant reduction of land fill waste produced by cured foam derived from production chain rejected units, warranty defective units and obsolete/end-of-life units, since their insulation can be re-used in new products instead of being discarded and shipped to waste management sites. It is further pointed out that this method can he applied to numerous processes not limited to water heaters or appliances. It is important to note that in recycling the foam, there is substantially no alteration of the cured foam bubble structure.
Although the insulating foam used in the experimentation was a rigid polyurethane foam as used to insulate hot water heaters, the present invention is not intended to be restricted to such foams and other expandable insulating foam types are intended to be covered. Further, although the cured foam insulating pieces are shown as being of cubic form, they could also be of any other shape provided an internal cell/bubble structure is maintained to provide the insulating properties. For example, recycled foam may be broken down into nugget shapes of sufficient dimension to retain its cell/bubble structure in its mass. It is further pointed out that when the liquid foam is injected into the cavity it does not melt the cured foam pieces but merely integrates them into the newly formed rigid foam structure with the new foam filling all of the voids about these foam cubes.
Number | Date | Country | Kind |
---|---|---|---|
2,706,263 | Jun 2010 | CA | national |