This invention relates generally to a method for reducing dilution effects in fluid treatment vessels.
Ion Exchange Resins are regenerated with a chemical solution once they are exhausted. The volume of regeneration liquid depends in part on the concentration of the liquid. Free water present in a vessel will negatively influence the effectiveness of the regeneration, leading to lower operating capacity, increased chemical consumption and more waste. For example, US2014/0263069 discloses the use of filler material in the end portions of the vessel, i.e., those portions not containing a fluid treatment medium. However, this reference does not disclose an efficient method.
The present invention is directed to a fluid treatment apparatus comprising:
All percentages are weight percentages (wt %), and all temperatures are in ° C., unless otherwise indicated. Averages are arithmetic averages unless indicated otherwise. All operations are performed at room temperature (18 and 25° C.) unless specified otherwise. Weight average molecular weights, Mw, are measured by gel permeation chromatography (GPC) using polyacrylic acid standards, as is known in the art. The techniques of GPC are discussed in detail in Modern Size Exclusion Chromatography, W. W. Yau, J. J. Kirkland, D. D. Bly; Wiley-Interscience, 1979, and in A Guide to Materials Characterization and Chemical Analysis, J. P. Sibilia; VCH, 1988, p. 81-84. The molecular weights reported herein are in units of daltons. Percentages of monomer units in a polymer are based on total polymer weight (dry weight). The “harmonic mean diameter” (HMD) is defined by the following equation:
where i is an index over the individual beads; di is the diameter of each individual particle; and N is the total number of beads. A particle that is not spherical is considered to have a diameter equal to the diameter of a sphere having the same volume as the particle. “Sphericity” (Ψ) is the degree to which a particle is spherical and is characterized by using two of the three principal orthogonal axes of the object, a (longest), b (intermediate), and c (shortest), as follows: Ψ=c/ a. “Roundness” (R) is defined as the ratio of the average radius of curvature of the corners and edges of an object's silhouette to the radius of the largest circle which can be inscribed within the silhouette. Sphericity and roundness are described in more detail in H. Waddell, The Journal of Geology, vol. 41, pp. 310-331 (1933).
The volume of the end portion containing inert medium is defined by the upper boundary of the inert medium when at rest. For example, if one defines a plane touching all of the uppermost particles of inert medium, i.e., a plane defining an upper surface of the inert medium, then the volume of the end portion below this plane is the volume of the end portion containing inert medium. For clarity, this is not the total volume of the particles themselves. Preferably, the volume of the lower end portion containing inert medium is at least 30% of the volume of the lower end portion, preferably at least 35%, preferably at least 40%, preferably at least 45%, preferably at least 50%; preferably no more than 90%, preferably no more than 85%.
Preferably, the amorphous particles have an average sphericity from 0.7 to 1.0 and an average roundness from 0.4 to 1.0. Preferably, average sphericity is at least 0.75, preferably at least 0.80; preferably no more than 0.95, preferably no more than 0.92, preferably no more than 0.90. Preferably, average roundness is at least 0.45, preferably at least 0.50, preferably at least 0.55; preferably no more than 0.95, preferably no more than 0.90, preferably no more than 0.85, preferably no more than 0.80, preferably no more than 0.75, preferably no more than 0.70. Preferably, the average sphericity and the average roundness are not both greater than 0.95, preferably 0.90.
Preferably, the amorphous particles have a harmonic mean diameter no greater than 150 mm, preferably no greater than 100 mm, preferably no greater than 50 mm, preferably no greater than 25 mm, preferably no greater than 10 mm, preferably no greater than 6 mm.
Preferably, the amorphous particles have a density of at least 0.60 cm3/g, preferably at least 0.65 cm3/g, preferably at least 0.70 cm3/g, preferably at least 0.75 cm3/g, preferably at least 0.80 cm3/g, preferably at least 0.85 cm3/g. Preferably, the amorphous particles have a density no greater than 0.997 cm3/g, preferably no greater than 0.996 cm3/g.
Typical end portions (also known as dish heads) of tanks used for fluid treatment include, e.g., Klopper heads, elliptical heads and spheroid heads. Typically, dish head water volume is 15-35% of the installed resin volume in the main portion of the tank and dish head water volume is 40-100% of the resin void water in the main compartment. Preferably, the main portion of the tank is cylindrical.
Reduction of void water due to the presence of inert material in the end portions is calculated as follows for a spheroid end portion.
V
sx
′=V
s−(X*Fw)
S
x
=V
s
−V
sx′
Preferably, the fluid treatment medium in the main (center) compartment of the tank is an ion exchange resin, activated carbon, an adsorbent, a non functionalized co polymer or a zeolite. Preferably, the fluid treatment medium is an ion exchange resin, preferably in the form of spherical beads. Preferably, the beads are crosslinked polymer beads.
Inert filling in the main compartment (cylinder) depends on the system technology and is either a fixed value ranging from 10-12 cm in an Amberpack/Schwebebett or a range of heights depending on the vessel diameter. Typically <1000 mm:150 mm; <2500:200 mm and all other over 2500:300 mm
Or 15-25 cm as block layer in a blocked bed system with air hold down.
The equipment used in the present examples was as follows:
[We should describe how the PE particles are made, since this is not a commercial product]
Operating Conditions for the Tests
Regenerant Displacement (Slow Rinse)
Results
Compared to Fwr=0% (no filling), the resin operating capacity improves at 100% filling of Vs at Fwr=66.5%
Fwr=free water reduction in compartment
Vs=spheroid compartment volume
The fast rinse volume to reach 10 μS/cm is improved from 2.06 to 1.41 bed volumes.
The operating conditions and fill in the main compartment were the same as in Example 1.
Results
Operating Capacity
Displacement (BV)
Displacement performance is substantially independent of the percent of the compartment which contains fill.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/062106 | 11/19/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62771619 | Nov 2018 | US |