The invention relates to a method for treating metal strip in a directly fired furnace through which the strip is guided. The furnace is fired directly by gas burners and has a non-fired zone ahead of the directly fired zone, when viewed in strip running direction, through which the exhaust gases from the fired zone flow and pre-heat the metal strip before it is heated further in the directly fired zone. After leaving the non-fired zone, the exhaust gases undergo post-combustion in an afterburner chamber.
A metal strip is often heat-treated in this way before galvanizing or also in annealing furnaces after a pickling line.
One heat treatment method is to use directly fired furnaces (DFF), where the burners are located directly inside the furnace.
With these furnaces, there is a pre-heating zone in which the metal strip running continuously through the furnace is pre-heated to approximately 200-300° C. with the aid of the hot exhaust gases from the directly fired furnace.
The burners of the directly fired furnaces are usually operated with gas (natural gas or coke oven gas). Nitrogen oxides (NOx) contained in the exhaust gas are released during combustion. The term nitrogen oxide (NOx) refers to the total nitrogen oxides forming during the combustion process. The most important of these compounds are usually NO and NO2.
NOx can form directly from the combustion air either during conversion of the fuel or due to the high process temperatures.
The directives relating to nitrogen oxide emissions are becoming more and more stringent. Thanks to newly developed gas burners, the nitrogen oxide emissions from directly fired furnaces for strip treatment have been substantially reduced, in addition to other measures, however a further reduction would be more than welcome.
The disclosed embodiments are thus based on the task of providing a low-cost method with which to further reduce the nitrogen oxide emissions.
In the disclosed method, methane (CH4) is injected or blown into the non-fired zone, which causes nitrogen oxides (NOx) contained in the exhaust gas to react with the methane. This reaction (reburning) results primarily in the formation of hydrogen cyanide (HCN). This area of the furnace largely contains no free oxygen.
Reburning of nitrogen oxides is known in other types of plants, such as coal-fired power stations or waste incineration plants, but the nitrogen oxide volume there is much more concentrated. For example, the 3000 mg/Nm3 of nitrogen oxide in a 100 MW coal-fired power station is reduced to 500 mg/Nm3 with appropriate reburning.
In a modern, directly fired furnace for treating metal strip, the current nitrogen oxide volume is only 120 mg/Nm3, which is relatively low anyway. With the disclosed embodiments, this figure can be reduced further to 80 mg/Nm3.
It is an advantage if air or oxygen is injected into the afterburner chamber, which degrades the hydrogen cyanide again that has formed.
Nitrogen is added to the methane preferably before it is injected into the non-fired zone. The methane can be blended into the exhaust gases more effectively by adding nitrogen. Methane and nitrogen can be blended and injected with the aid of Venturi nozzles. It is also possible to use a conventional burner for this task, replacing the combustion air with nitrogen oxide.
The ratio of methane to nitrogen can be in a range of 1:10.
The methane can be injected into the non-fired zone at several points at different distances from the nearest burner.
The non-fired zone may have nozzles through which nitrogen is blown in to cool the metal strip in the event of a fault, and methane is blown in through these nozzles to reduce the nitrogen content during normal operation.
In the following, an embodiment of the invention is described on the basis of drawings. In these drawings:
Identical reference symbols in the individual figures refer to the same plant components in each case.
The metal strip 5 is heated up in the fired zone 2 of the furnace 1 with the aid of gas burners. Here, the metal strip 5 passes first of all through a zone 3 in which “nozzle mix” type burners are mounted in the furnace wall 12 and then through a zone 4 with “premix” type burners. At the lower end of the furnace 1, the metal strip 5 is deflected with the aid of the deflector roll 11 and then fed to a radiant tube furnace (RTF), for example.
The exhaust gas 14 forming in the zone 2 fired directly by the gas burners flows upwards in the furnace 1 and is deflected there into direction 6 and fed, in a way that is known, to an afterburner chamber 9 containing an afterburner for post-combustion of the exhaust gases 14. The metal strip 5 does not pass through the afterburner chamber 9. The exhaust gases 14 also contain nitrogen oxides, mainly NO and NO2. In order to reduce this nitrogen oxide content, methane (CH4) is injected through the feed pipes 8 or blown with the aid of nitrogen into the non-fired zone 7 of the furnace 1. The methane blends with the hot exhaust gases, and the nitrogen oxides react with the methane to form hydrogen cyanide.
The amounts of methane gas required can be relatively small here. A quantity of 5 m3/h may be sufficient for a standard furnace 1. It is useful if this non-fired zone 7 is largely free of oxygen (O2 content <0.05%) so that oxygen cannot react with the methane blown in. In order to guarantee that it remains oxygen-free, at least the burners nearest to it can be operated with excess fuel so that any oxygen present is burnt off beforehand.
In order to degrade the toxic hydrogen cyanide, oxygen (O2) or air is blown into the afterburner chamber 9 through pipes 10, causing a reaction in the hydrogen cyanide to form nitrogen (N2), carbon dioxide and hydrogen and/or steam. Finally, these exhaust gases are fed to a heat recovery plant 13 after they have been used once again for strip pre-heating.
Methane gas injection can be retrofitted easily to existing plants to thus reduce nitrogen oxide emissions. With the present method, NOx values can be achieved in the region of 100 mg/Nm3 or less.
Of course, the method according to the invention can also be used in horizontal or L-shaped, directly fired furnaces.
Number | Date | Country | Kind |
---|---|---|---|
A 50583/2017 | Jul 2017 | AT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/064058 | 5/29/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/011517 | 1/17/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3081074 | Blackman | Mar 1963 | A |
7004753 | Stockhausen | Feb 2006 | B2 |
7648673 | Reiter et al. | Jan 2010 | B2 |
10352556 | Sedmak | Jul 2019 | B2 |
20130277896 | Buchet et al. | Oct 2013 | A1 |
20190119777 | Borrel et al. | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
1 059 707 | Dec 2000 | CN |
107206313 | Sep 2020 | CN |
102010010197 | Sep 2011 | DE |
102013010855 | Dec 2014 | DE |
2167695 | May 2017 | EP |
3 244 989 | Mar 2020 | EP |
02012101158 | May 2012 | JP |
WO 2012 146 462 | Nov 2012 | WO |
WO 2019011517 | Jan 2019 | WO |
Entry |
---|
International Search Report dated Jul. 6, 2018 (PCT/EP2018/064058). |
Number | Date | Country | |
---|---|---|---|
20210079494 A1 | Mar 2021 | US |