1. Field of the Invention
The present invention generally relates to methods for enhancing the response speed of liquid crystal displays, and more particularly to such methods which employ multiple times of scanning.
2. The Prior Arts
Liquid crystal displays (LCDs) have become the mainstream technology for computer monitors and TVs. However, due to their physical characteristics, the slower response time of the LCDs compared to the conventional cathode-ray-tube typed displays has been a spirited research topic both in the industry and in the academic arena.
Among the approaches of improving LCD's response time, one such approach that is proven to be effective and has been put into practical use is the one that employs overdriving with double frame rate. For this approach, assuming a pixel (P) has a target voltage level (code 30) in frame (N−1) for the desired grey scale level and a target voltage level (code 120) in frame N, the data driver for the pixel (P) would first apply a larger, overdriving voltage (code 200) in the first half of the frame time of frame (N) and, then in the second half of the frame time, apply the same driving voltage as the target voltage level (code 120). As such, the trajectory of voltage variation of the pixel (P) would reach the target voltage level much faster than when the pixel (P) is applied with the target voltage level (code 120) during the entire frame time. A faster response time is thereby achieved without the penalty of excessive overdriving.
Despite of its proven effectiveness in enhancing the LCD's response time, the foregoing approach still has rooms for further improvement. Using any pixel in
Another similar approach for enhancing the LCD's response time is to generate an entire black frame during the first pass (whose scan line enablement trajectory is as line (1) of
To further improve the approaches of doubling frame rate with overdriving or black insertion, a novel scanning method is provided herein, which also performs two passes of scanning within the same frame time as conventional approaches. The present invention, however from the viewpoint of a pixel, reduces the lapse of time between the pixel's two consecutive scans so that the pixel could approach its target voltage level much faster. The present invention therefore significantly increases a LCD's response speed.
The present invention horizontally divides the total (n) scan lines of a display into (k) non-overlapping regions having (m1, m2, . . . , mk) scan lines respectively (i.e., m1+m2+. . . +mk=n; m1, m2, . . . , mk>0; k>1). The present invention then completes the two passes of scanning by scanning the regions one at a time in an order and, for each region, the present invention scans twice of its scan lines. As such, using a region () as example, the time lapse of a pixel in region (j) between the pixel's two consecutive scans would be (mj/2n) of a standard frame time, or (mj/n) of the time lapse of a conventional double-frame-rate approach.
Besides reducing the time lapse of a pixel's consecutive scans, another characteristic of the present invention is that the horizontal division of regions is not limited by the number and configuration of the gate drivers of the LCD. With such a flexibility, the present invention could be tuned to fit the physical characteristic of the particular material used by the LCD. In addition to LCDs, the present invention could also be applied to plasma displays, organic light emitting displays (OLEDs), or other displays with similar driving mechanism.
The foregoing and other objects, features, aspects and advantages of the present invention will become better understood from a careful reading of a detailed description provided herein below with appropriate reference to the accompanying drawings.
a is a schematic diagram showing the scanning performed by a first embodiment of the present invention.
b is a timing diagram of various voltage waveforms in connection with a pixel at the intersection of the scan line (G1) and the data line (D1) of
The following descriptions are exemplary embodiments only, and are not intended to limit the scope, applicability or configuration of the invention in any way. Rather, the following description provides a convenient illustration for implementing exemplary embodiments of the invention. Various changes to the described embodiments may be made in the function and arrangement of the elements described without departing from the scope of the invention as set forth in the appended claims.
a is a schematic diagram showing the scanning performed by a first embodiment of the present invention. As illustrated, the LCD has (2n) scan lines numbered from top to bottom as G1˜G2n and driven by a number of gate drivers 10. The driving voltages to the pixels of the scan lines G1˜G2n are supplied by (m) data lines numbered as D1˜Dm. The location of a pixel is defined by the intersection of a scan line and a data line and, therefore, there are totally (2n×m) pixels. The total (2n) scan lines are partitioned into an upper region containing the scan lines G1˜Gn and a lower region containing the scan lines Gn+1˜G2n. Within a standard frame time of 1/60 sec., the present embodiment completes two passes of scanning of an entire frame according to the scan line enablement trajectories (1)˜(4) and retrace trajectories (12), (23), and (34). As shown, the present embodiment first enables the scan lines G1˜Gn of the upper region sequentially from top to bottom following the enablement trajectory (1) and then enables the scan lines G1˜Gn again following the retrace trajectory (12) and the enablement trajectory (2). The present embodiment then enables the scan lines Gn+1˜G2n of the lower region sequentially from top to bottom following the retrace trajectory (23) and the enablement trajectory (3), and then scans the lower region again following the retrace trajectory (34) and the enablement trajectory (4).
Comparing to the conventional approaches which scan all (2n) scan lines of the entire frame and then retrace to scan all over again, the present embodiment first only scans a part of the frame and then immediately retraces to scan the part again. The present embodiment starts from the upper region and then continues to the lower region. In an alternative embodiment, the order could also be reversed to start from the lower region and then continue to the upper region. Please note that, in the present embodiment, a gate driver of the LCD actually controls scan lines of both upper and lower regions. In other words, the partition of the scan lines has nothing to do with the number and configuration of the gate drivers of the LCD.
When performing the two passes of scanning of a region, there are three types of driving voltage applications to the pixels which are summarized in the following table:
More specifically, for a region under type 1 driving which utilizes overdriving to increase response speed, overdriving voltage is applied during the first pass and the target voltage level during the second pass. For a region under type 2 driving which utilizes black insertion to increase response speed, black insertion is performed during the first pass and the target voltage level is applied during the second pass. Type 3 driving is a variation of the type 2 driving.
b assumes that the pixel (P) has a target voltage level (code 32) in frame (N−1) and a target voltage level (code 120) in frame N. The voltage waveforms annotated as G1˜G2n are the enablement voltages applied to the scan lines G1˜G2n. During the frame time of the frame (N), the scan lines G1˜Gn are enabled sequentially as also depicted by the enablement trajectory (1) of
The lower half of
The partitioned regions are not required to contain identical number of scan lines. For example,
Please note that, no matter how the scan lines are divided, the two passes of scanning of each region could be conducted according to any one of the three driving types described above. If overdriving is adopted, an overdriving voltage is applied during the first pass and the target voltage level is applied during the second pass. If black insertion is employed, there are two variants. One is to perform black insertion during the first pass and to apply the target voltage level during the second pass. The other one is to apply the target voltage level first and then to perform black insertion.
Although the present invention has been described with reference to the preferred embodiments, it will be understood that the invention is not limited to the details described thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.
| Number | Date | Country | Kind |
|---|---|---|---|
| 94108386 A | Mar 2005 | TW | national |
| Number | Name | Date | Kind |
|---|---|---|---|
| 6903716 | Kawabe et al. | Jun 2005 | B2 |
| 7133015 | Yoshida et al. | Nov 2006 | B1 |
| 7161575 | Ham | Jan 2007 | B2 |
| 20030043103 | Yoshihara et al. | Mar 2003 | A1 |
| 20070057904 | Huang et al. | Mar 2007 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| 20070075945 A1 | Apr 2007 | US |