The above mentioned and other features of this invention will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
The invention will now be described in the following detailed description with reference to the drawings, wherein preferred embodiments are described in detail to enable practice of the invention. Although the invention is described with reference to these specific preferred embodiments, it will be understood that the invention is not limited to these preferred embodiments. But to the contrary, the invention includes numerous alternatives, modifications and equivalents as will become apparent from consideration of the following detailed description.
Referring now to the drawings,
Suitable filter media are described in commonly assigned U.S. Pat. No. 5,374,357 entitled FILTER MEDIA TREATMENT OF A FLUID FLOW TO REMOVE COLLOIDAL MATTER, which is hereby incorporated by reference in its entirety. Suitable materials for the media particles 16 of the media filtration unit 14 include, but is not limited to 0.2 mm diameter glass beads. The ability of the glass bead media to remove particulate matter is enhanced by the use of a polymer compound 20 which is provided in a form that can adsorb onto the surface of the filter media substrate 18. The preferred polymer compounds 20 are cationic polymers including poly(diallyl-dimethyl ammonium chloride) (DADMAC) type coagulants, such as Magnifloc 591C available commercially from American Cyanamid and as Filtermate 150 available commercially from GE Betz. It is noted that while cationic polymers are preferred, the invention is not to be limited to cationic polymers (e.g. anionic polymers may be used)
The filtrate stream 24 from the media filtration unit 14 is then passed to a staged reverse osmosis (RO) system 30. The filtrate stream 24 is now suitable for removal of dissolved solids using techniques such as reverse osmosis, with substantially reduced likelihood of fouling of the RO system 30. It is desirable that the filtrate stream 24 contains substantially all of the originally dissolved materials but little or no particulate matter to reduce the likelihood of fouling of the RO system 30. The RO system 30 splits the filtrate stream 24 into a concentrate and a permeate containing water that is suitable for reuse as will now be discussed below.
A first stage 36 of the RO system 30 comprises a first reverse osmosis filter 38 designed to concentrate the dissolved materials in the filtrate stream 24 from the media filtration unit 14. The first stage 36 can be of any conventional design known to those skilled in the art of RO systems. Permeate 39 from the first stage can be reused as wash water elsewhere in the manufacturing process. A reject stream 40 from the first stage 36 may be collected in a holding tank 42, or it may be directly introduced into subsequent RO units as feed. Desirably, the system recovery (for example, recovery of a desired dissolvent component such as a surfactant) is between about 70% and 95% and more desirably between about 85% and 90% through the first stage of the RO system 30. The first stage of the RO system 30 achieves about a ten-fold increase in the dissolved solids concentration. There is a corresponding recovery of water as the permeate stream.
The reject stream 40 from the tank (if used) 42 is then processed through a second stage 44 of the RO system 30 via feed line 70. Permeate 46 from this RO can be combined with the permeate from the first RO and reused elsewhere in the manufacturing process. The reject stream 48 from this second RO may be recycled back to a holding tank (if used) 42, or recycled into the feed line of the first RO skid, or subsequently processed through other RO units connected in series or in parallel in a manner known to those skilled in the art of designing and installing RO units. In this way, the concentration of the dissolved solids in the reject stream is ultimately increased over time. In effect, the media filtration unit 14 removes particulate without removing surfactant and thereby enables the RO membrane system 30 to concentrate the surfactant stream while providing a water stream as permeate that can be reused in the manufacturing process.
Desirably, at least 95% of the particles are removed by the filtration unit 14, and more desirably, at least 98% of the particles are removed, and in one preferable embodiment, 100% of the particles are removed. The compound 20 adsorbed onto the substrate surface 18 of the filter media 16 aids in removing the particles so that they are trapped by the filtration unit. Desirably, at least 95% of the dissolved matter passes through the media filtration unit 14 with the filtrate stream 24, more desirably, at least 98% of the dissolved matter pass through the filtration unit, and in one preferable embodiment, 100% of the dissolved matter passes through the filtration unit.
The first stage of the RO system 30 splits the media filter effluent stream into a surfactant bearing concentrate and a permeate. Permeate from the first stage RO unit 36 contains water suitable for reuse. Desirably, the system recovery for this first stage is between about 70% and 95% and more desirably between about 85% and 95% in terms of recovery of dissolved materials relative to the concentration of dissolved materials originally in the wastewater. The reject stream from the first stage may be passed through line 24 and collected in the holding tank 42 or processed through additional RO units as previously described.
Permeate from line 46 may be reused as wash water for the polymerization process. The reject stream from unit 44 may be recycled to the holding tank 42 (if used) or processed directly into subsequent RO units until the reject stream reaches a final desired concentration. When the desired concentration is achieved, the final reject stream is disposed of using conventional thermal or other environmentally acceptable means 118. Alternately, the dissolved materials in the reject stream may be reused in the process. Disposition of the reject stream will depend on the process in question.
The invention is the combination of a specialized media filtration unit with membranes to accomplish particulate separation to subsequently allow surfactant concentration, and water reuse via a membrane system. For example the technology may be generally used to recover and concentrate particulate laden waters containing surfactants (or other dissolved materials) wherein the surfactant (or other material) may either be concentrated for reuse or disposal while providing a means for recovering water for reuse.
One unexpected result from this test (and hence the novelty of the invention over treatment contemplated with the media of aforesaid U.S. Pat. No. 5,374,357) was that the media was very effective in allowing a majority of a negatively charged surfactant to pass through the media column in spite of the fact that the media was coated with a cationic polymer. It is speculated that the interaction of the cationic media polymer with theses anionic surfactants created an intricate web within the filter that facilitated particulate removal. Once the anionic surfactant demand for the cationic polymer was satisfied, all remaining anionic surfactant passed through the column without interacting in any way with the media.
While the disclosure has been illustrated and described in typical embodiments, it is not intended to be limited to the details shown, since various modifications and substitutions can be made without departing in any way from the spirit of the present disclosure. As such, further modifications and equivalents of the disclosure herein disclosed may occur to persons skilled in the art using no more than routine experimentation, and all such modifications and equivalents are believed to be within the scope of the disclosure as defined by the following claims.