The present invention relates to a removal procedure for hardware pressed into a bore.
Hardware is often installed in a component for attachment of that component to an anchoring structure. The hardware may be manufactured of one material type while the component may be manufactured of another material.
One type of hardware often utilized in aerospace components is a stud which may thread into the structure then be locked into position with a locking ring which is pressed into the structure around the stud. The locking ring often includes serrations which facilitate cold flow of the component material so as to secure the locking ring and thereby retain the stud against rotation.
Removal of hardware from the component during overhaul and repair may be a time consuming, difficult and costly process. The conventional industry standard of machining the hardware out of the bore requires dedicated cutter tools that may risk damage to the hardware and components.
A method of removing hardware from a bore according to an exemplary aspect of the present invention includes welding at least one sacrificial tab to the hardware while the hardware is within a bore of a component, the bore defined along an axis; and axially forcing the hardware from the bore along the axis.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently disclosed embodiment. The drawings that accompany the detailed description can be briefly described as follows:
Referring to
The component 32 may be manufactured of one material such as magnesium while the hardware 34 may be manufactured of a different material such as titanium. Although a transmission housing is illustrated in the non-limiting embodiment of
Referring to
The locking ring 44 includes internal serrations 46 about an inner diameter (ID) which are arranged to engage the serrated section 40 of the stud 36 and external serrations 48 which facilitate engagement with the counter bore 42 (
The external serrations 48 are designed to be pressed into and thereby anti-rotationally secured into the counter bore 42. That is, the external serrations 48 allow the locking ring 44 to be swaged, interference fit, cut into or plastically deform the counter bore 42. Alternative and additional anti-rotational locking structure including locking plates and other threaded or splined components are contemplated herein including, but not limited to, mating keys, corresponding serration or serrations on one of either or both the ID or OD of the various components.
Depth alignment of the stud may be achieved through threading of the stud 36 into the threaded bore 38. The locking ring 44 is then pressed into the counter bore 42 to secure the stud 34 into the component 32 to prevent rotation therebetween.
Referring to
Referring to
Each of a set of contacts 106 includes an interface 106I, such that the interfaces 106I are mounted around the sacrificial tabs 102 and engage the respective flanges 102F. The set of contacts 106 may include at least two contacts 106 to provide for a high current low voltage power attachment and a ground contact. The contacts 106 may be at least partially arcuate in lateral cross-section (
The retaining sleeve 108 and the contacts 106 may then removed such that a slide hammer 110 (
In another non-limiting embodiment, the contacts 106 may form a portion of the slide hammer 110′ (
The tool assembly increases overhaul and repair cycle time; eliminates damage to the high value component; and prevents damage to the studs such that the studs may be reinstalled. Furthermore, the ability to readily remove the studs facilitates more robust repair procedures to the high value base structure when the studs and inserts are removed.
It should be understood that relative positional terms such as “forward,” “aft,” “upper,” “lower,” “above,” “below,” and the like are with reference to the normal operational attitude of the vehicle and should not be considered otherwise limiting.
It should be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit from the instant invention.
Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present invention.
The foregoing description is exemplary rather than defined by the limitations within. Many modifications and variations of the present invention are possible in light of the above teachings. The disclosed embodiments of this invention have been disclosed, however, one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.