This application is related to the field of sound-source rendering, array processing, spatial audio, vibration localization in flat-panel loudspeakers.
Loudspeakers that employ bending mode vibrations of a diaphragm or plate to reproduce sound were first proposed at least 90 years ago. The design concept reappeared in the 1960's when it was commercialized as the “Natural Sound Loudspeaker,” a trapezoidal shaped, resin-Styrofoam composite diaphragm structure driven at a central point by a dynamic force transducer. In the description of that device, the inventors identified the “multi-resonance” properties of the diaphragm and emphasized that the presence of higher-order modes increased the efficiency of sound production. The Natural Sound Loudspeaker was employed in musical instruments and hi-fi speakers marketed by Yamaha, Fender, and others but it is rare to find surviving examples today. Similar planar loudspeaker designs were patented around the same time by Bertagni and marketed by Bertagni Electroacoustic Systems (BES).
The basic concept of generating sound from bending waves in plates was revisited by New Transducers Limited in the late 1990's and named the “Distributed-Mode Loudspeaker” (DML). Further research on the mechanics, acoustics, and psychoacoustics of vibrating plate loudspeakers illuminated many of the issues of such designs and provided design tools for the further development of the technology, which remains commercially available from Redux Sound and Touch, a descendant of the original New Transducers Limited by Sonance, which can be traced back to the original BES Corporation in the 1970's, and by others including Tectonic Audio Labs and Clearview Audio.
Though flat-panel loudspeakers possess clear advantages over traditional cone loudspeakers in the areas of weight, form-factor, and the potential to serve as low-cost wave field synthesis arrays, they have yet to experience any significant integration into commercial products. The boundary conditions of devices such as smartphones, tablets, and TV's can be difficult to model, as the edges of the panel are rarely fixed uniformly around the perimeter. The sound radiation qualities of localized regions of vibration can exhibit irregularities in frequency response and directivity, as no specification is made regarding the vibration amplitude or spatial response within the vibrating region.
Therefore, what are needed are devices, systems and methods that overcome challenges in the present art, some of which are described above.
Disclosed herein are systems and methods that describe ways to achieve high quality audio reproduction in a wide range of panel materials and designs. The systems and methods employ a frequency crossover network in combination with an array of force drivers to enable selective excitation of different panel mechanical modes. This system allows different frequency bands of an audio signal to be reproduced by selected mechanical modes of a panel.
The methods described herein demonstrate that localized vibration regions may be rendered on the surface of a panel using filters designed using empirical measurements of the panel's vibration profile. This source rendering technique gives the potential to localize vibrations on the surfaces of displays such as laptop screens, televisions, and tablets, where the boundary conditions make the vibration profile of the system difficult to model in practice. These localized vibrations may serve as primary audio sources on the display screen and dynamically moved to new locations with their respective images, or held stationary on opposite sides of the panel to implement basic stereo imaging.
An aspect of this application is a method for using an array of force actuators to render a desired vibration profile on a panel, comprising the steps of: determining by empiric measurement a vibration profile for the panel in response to excitation of each actuator individually, wherein the measurements are obtained at frequencies within the audio bandwidth; selecting a target spatial vibration profile for the panel; computing a filter for each actuator on the panel, wherein each filter governs the magnitude and phase response of the actuator versus frequency; optimizing each filter for each actuator so that the superposition of the individual actuator responses best approximate the target spatial vibration profile; generating the target spatial vibration profile on the panel by passing an audio signal through the optimized filters to each actuator in the array.
In certain embodiments, the empiric measurement of a vibration profile is obtained by use of a laser vibrometer. In further embodiments, the optimization minimizes the mean-square error or other perceptually weighted error metrics, between the target spatial vibration profile and the vibration profile generated by the superposition of the filtered individual actuator responses. In some embodiments, the actuators are located on a smartphone screen.
In other embodiments, the audio signal is spatially tied to one or more selected from the group consisting of a portion of an image associated with a display and a portion of a video associated with a display. In further embodiments, a frequency crossover network is used to separate the audio signal into different frequency bands, with each frequency band simultaneously reproduced through different target spatial vibration profiles. In specific embodiments, the actuators are located on the back of a monolithic display stack such as an organic light emitting diode (OLED), quantum-dot based light emitting diode such as QLED, e-paper, or other monolithically constructed display. In other embodiments, at least a portion of the plurality of actuators are transparent to a visible part of the electromagnetic spectrum. In additional embodiments, further comprising positioning the plurality of actuators on the panel in a predetermined arrangement, wherein the predetermined arrangement comprises the actuators being arranged around the perimeter of the panel. In other embodiments, actuators are positioned underneath a bezel associated with the perimeter of the panel.
Another aspect of the application is a system for rendering localized vibrations of a panel, comprising: a functional portion of a display; a panel comprising a plurality of actuators forming an arrangement on the panel, wherein the panel is an audio layer and a functional portion of the display is proximate to the audio layer; and a processor and a memory having instructions stored thereon, wherein execution of the instructions by the processor causes the processor to receive a shape function and an audio signal; pass the audio signal through optimized filters to each actuator to generate localized vibrations in the panel, wherein the optimized filters have been determined by the method for using an array of force actuators to render a desired vibration profile on a panel described herein. In certain embodiments, wherein the panel is an audio panel on which a plurality of actuators is arranged, the audio panel being either proximate to the functional portion of the display or one in the same.
In certain embodiments, the audio layer is laminated onto at least a portion the functional portion of the display. In further embodiments, the functional portion of the display is selected from the group consisting of a liquid crystal display (LCD), a light-emitting diode display (LED), and an organic light-emitting diode display (OLED), a quantum-dot based light emitting diode (QLED), a plasma display, e-paper, or a monolithically constructed display. In other embodiments, a spacer element can exist between the audio layer and the functional portion of the display. In specific embodiments, at least a portion of the audio layer is positioned between a touch panel and at least a portion of the functional portion of the display. In additional embodiments, the plurality of actuators are positioned on the panel in a predetermined arrangement, and wherein the pre-determined arrangement comprises a uniform grid-like pattern on the panel. In specific embodiments, a confined region of the functional portion of the display is driven to vibrate and radiate sound. In other embodiments, the entire region of the functional portion of the display is driven to vibrate and radiate sound. In certain embodiments, the predetermined arrangement may exhibit translational or rotational symmetry or may be random.
Another aspect of the application is a method for the generation of an audio scene by methods such as wave field synthesis by rendering localized vibrations of a panel, comprising: receiving an audio signal; receiving one or more distance cues such as the amount of reverberant sound associated with a virtual acoustic source, wherein the virtual acoustic source is representative of an acoustic source behind a panel; computing one or more acoustic wave fronts at one or more predetermined locations on the panel; determining optimized filters for an array of actuators forming an arrangement on a panel according to the method for using an array of force actuators to render a desired vibration profile on a panel described herein; generating localized vibrations in the panel by passing an audio signal through the optimized filters to each actuator in the array. In certain embodiments, the audio signal is spatially tied to one or more portions of at least portion of an image and video associated with a display.
Additional advantages will be set forth in part in the description which follows or may be learned by practice. The advantages will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments and together with the description, serve to explain the principles of the methods and systems:
While the present disclosure will now be described in detail, and it is done so in connection with the illustrative embodiments, it is not limited by the particular embodiments illustrated in the figures and the appended claims.
Reference will be made in detail to certain aspects and exemplary embodiments of the application, illustrating examples in the accompanying structures and figures. The aspects of the application will be described in conjunction with the exemplary embodiments, including methods, materials and examples, such description is non-limiting and the scope of the application is intended to encompass all equivalents, alternatives, and modifications, either generally known, or incorporated herein. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. One of skill in the art will recognize many techniques and materials similar or equivalent to those described herein, which could be used in the practice of the aspects and embodiments of the present application. The described aspects and embodiments of the application are not limited to the methods and materials described.
As used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the content clearly dictates otherwise.
Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that when a value is disclosed that “less than or equal to “the value,” greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “10” is disclosed the “less than or equal to 10” as well as “greater than or equal to 10” is also disclosed.
Before the present methods and systems are disclosed and described, it is to be understood that the methods and systems are not limited to specific synthetic methods, specific components, or to particular compositions. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
Throughout the description and claims of this specification, the word “comprise” and variations of the word, such as “comprising” and “comprises,” means “including but not limited to,” and is not intended to exclude, for example, other additives, components, integers or steps. “Exemplary” means “an example of” and is not intended to convey an indication of a preferred or ideal embodiment. “Such as” is not used in a restrictive sense, but for explanatory purposes.
Disclosed are components that can be used to perform the disclosed methods and systems. These and other components are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these components are disclosed that while specific reference of each various individual and collective combinations and permutation of these may not be explicitly disclosed, each is specifically contemplated and described herein, for all methods and systems. This applies to all aspects of this application including, but not limited to, steps in disclosed methods. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the disclosed methods.
The present methods and systems may be understood more readily by reference to the following detailed description of preferred embodiments and the Examples included therein and to the Figures and their previous and following description.
As will be appreciated by one skilled in the art, the methods and systems may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the methods and systems may take the form of a computer program product on a computer-readable storage medium having computer-readable program instructions (e.g., computer software) embodied in the storage medium. More particularly, the present methods and systems may take the form of web-implemented computer software. Any suitable computer-readable storage medium may be utilized including hard disks, CD-ROMs, optical storage devices, or magnetic storage devices.
Embodiments of the methods and systems are described below with reference to block diagrams and flowchart illustrations of methods, systems, apparatuses and computer program products. It will be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create a means for implementing the functions specified in the flowchart block or blocks.
These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including computer-readable instructions for implementing the function specified in the flowchart block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer-implemented process such that the instructions that execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart block or blocks.
Accordingly, blocks of the block diagrams and flowchart illustrations support combinations of means for performing the specified functions, combinations of steps for performing the specified functions and program instruction means for performing the specified functions. It will also be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, can be implemented by special purpose hardware-based computer systems that perform the specified functions or steps, or combinations of special purpose hardware and computer instructions.
Background and Theory
Disclosed herein are systems and methods that describe effecting spatial and temporal control of the vibrations of a panel, which in turn can enable control of the radiated sound. The Rayleigh integral can be employed to compute the sound pressure p, t) measured at a point in space , distant from the panel,
where {umlaut over (Z)}s(Xs, Ys, t−R/c) is the acceleration of the panel normal to its surface at a point (xS, ys) (χs in the plane of the panel, R is the distance from (Xs, Ys) to a point in space, =(x, y, z), at which the sound pressure is measured, ρ is the density of air, and c is the speed of sound in air.
The collection of sources may be represented by a panel acceleration function {umlaut over (Z)}s(xS,yS,t) that can be factored into functions of space, a0,k(xs, ys) and functions of time, sk(t). The sum of the individual sources, assuming that there are K sources, gives the overall panel acceleration normal to its surface:
In the following a single audio source is considered so the subscript k is not included. Thus,
{umlaut over (z)}s(xs,ys,t)=a0(xs,ys)s(t), (3)
where a0(xs,ys) is the “shape function” corresponding to the desired spatial pattern of the panel vibrations.
The shape function may be a slowly changing function of time, e.g., an audio source may move in the plane of the audio display. If the audio source is assumed to be moving slowly, both in comparison to the speed of sound and to the speed of the propagation of bending waves in the surface of the plate, then in the moving source case a0(xs,ys,t) can be a slowly varying function of time. The rapid, audio-frequency, time dependence can then be represented by the function s(t). This is analogous to the well-known rotating-wave approximation. However, in order to simplify the following discussion, a0(xs,ys) is treated as time-independent.
Any shape function can be represented by its two-dimensional Fourier series employing the panel's bending normal modes as the basis functions. In practice, the Fourier series representation of a panel's spatial vibration pattern will be band-limited. This means that there can be a minimum (shortest) spatial wavelength in the Fourier series. To force the panel to vibrate (in time) in accordance with a given audio signal, s(t), while maintaining a specified shape function can require that the acceleration of each normal mode in the Fourier series follow the time dependence of the audio signal. Each of the panel normal modes may be treated as an independent, simple harmonic oscillator with a single degree-of-freedom, which may be driven by an array of driver elements (also interchangeably referred to as force actuators herein). The driver elements can be distributed on the panel to drive the acceleration of each mode, making it follow the audio signal s(t). A digital filter for computing the modal forces from the audio signal is derived below as well.
To independently excite each panel normal mode can require the collective action of the array of driver elements distributed on the panel. The concept of modal drivers where each panel normal mode may be driven independently by a linear combination of individual driver elements in the array will be discussed in more detail below. A review of the bending modes of a rectangular panel is first provided.
Normal Modes and Mode Frequencies of a Rectangular Plate
It is assumed that the panel comprises a rectangular plate with dimensions Lx and Ly in the x and y directions. The equation governing the bending motion of a plate of thickness h may be found from the fourth-order equation of motion:
in which D is the plate bending stiffness given by,
In the above equation, b is the damping constant (in units of Nt/(m/sec)/m2), E is the elastic modulus of the plate material (Nt/m2), h is the plate thickness (m), ρ is the density of the plate material (kg/m3), and ν is Poisson's ratio for the plate material. When the edges of the plate are simply supported, the normal modes are sine waves that go to zero at the plate boundaries. The normalized normal modes are given by,
φmn(x
The normalization of the modes can be such that, for a plate of uniform mass density throughout,
where M is the total mass of the plate, M=ρhLxLy=ρhA, where A=LxLy is the plate area.
The speed of propagation of bending waves in a plate may be found from (4). Ignoring damping for the moment, the solution of (4) shows that the speed of propagation of a bending wave in the plate is a function of the bending wave frequency, f:
This expression may be rewritten as,
where c0 is the bending wave speed at a reference frequency f0.
As an example, aluminosilicate glass has the following physical parameters: E=7.15×1010Nt/m2, ν=0.21, and ρ=2.45×103 kg/m3 (all values approximate). Assuming a panel thickness of approximately 0.55 mm, c0=74.24 m/sec at f0=1000 Hz (all values approximate), the bending wave speed can then be found at any frequency using (9).
For example, considering an approximately 20,000 Hz bending wave traversing a panel at a speed of about 332 m/sec; the wavelength of an approximately 20 kHz bending wave (the upper limit of the audio range) is then ν=c/f=0.0166 m (1.66 cm). To excite an approximately 20 kHz bending wave in the plate, the Nyquist sampling criterion requires that there be two force actuators per spatial wavelength. In this example the force actuator array spacing required to drive modes at approximately 20 kHz would be about 0.8 cm. It can be possible to drive lower frequency modes above their resonant frequencies to generate high frequency sound radiation; however, if the force actuator spacing is larger than the spatial Nyquist frequency for the highest audio frequency there can be uncontrolled high frequency modes.
The frequency of the (m,n) mode is given by,
however, since the speed of a bending wave is frequency dependent substituting (9) into (10) this can be rewritten as,
Equations (6) and (11) give the mode shapes and mode frequencies for the normal modes of a rectangular plate with simply supported edges.
Control of the Panel Shape Function
The truncated two-dimensional Fourier series using the panel normal modes as the basis functions provides a spatially band-limited representation of a panel shape function,
where amn is the amplitude of the (m,n) panel normal mode. As discussed above, the Fourier series is truncated at an upper limit (M,N) which can determine the spatial resolution in the plane of the panel of the shape function. A specific shape function can be created on the plate and then be amplitude modulated with the audio signal. According to the Rayleigh integral, (1), the acoustic sound pressure is proportional to the normal acceleration of the plate, so the acceleration of each mode follows the time-dependence of the audio signal,
ümn(t)=amns(t). (13)
To find the equation of motion for the mode amplitudes, the plate normal displacement can be first written in terms of time dependent mode amplitudes,
This can then be substituted into the equation for the bending motion of a plate with an applied force:
where P(xs, ys, t) is the normal force per unit area acting on the plate. The force can also be expanded in a Fourier series:
Substituting into the equation of motion, equation (15), the frequency domain plate response function is:
where Umn(ω) and Pmn(ω) are the frequency domain normal mode amplitude and the force per unit area acting on the mode, ωmn=2πfmn is the angular frequency of the (m,n) mode, and Qmn=ωmn M/b is the quality factor of the (m,n) plate mode. This can be re-written in terms of the force acting on the (m,n) mode, Fmn(ω)=APmn(ω), as
To find the discrete time filter equivalent for this system, the system response can be represented in the Laplace domain (where jω→s) and a bilinear transformation can be employed to transform to the z-domain. Because the force required to give a target modal acceleration is desired, (18) can be re-written in the Laplace domain and rearranged to find the force required to achieve a target modal acceleration,
where Amn(s)=s2Umn(s), and M=ρhA is the panel mass as before. Then, making the substitution
using T for the discrete time sampling period, the z-domain system response can be defined by
Fmn(z)=Hmn(z)Amn(z). (20)
The system response is second order and may be written as,
where the coefficients are given by the following expressions. Note that the mode number notation in the coefficients can be suppressed, but there is a unique set of coefficients for each mode:
The system then may be represented by a second order, infinite impulse response filter as follows,
a0f(k)=b0a(k)+b1a(k−1)+b2a(k−2)−a1f(k−1)−a2f(k−2) (23)
where f(k) represents the discrete time sampled modal force and a(k) is the discrete time sampled target modal acceleration; once again the (m,n) mode indices are suppressed to unclutter the notation.
One aspect of the above filter is that the system transfer function as defined in (21) and (22) has a pair of poles at z=1, and thus diverges at zero frequency. That is, the force required to produce a static acceleration goes to infinity. Since the audio frequency range is of interest, and it does not extend below 20 Hz, the problem can be addressed by introducing a high-pass filter into the system response. In practice this can be achieved simply by replacing the two poles at z=1 with a complex conjugate pair of poles slightly off the real axis and inside of the unit circle.
Application of Modal Forces
The last step is to find the individual forces that must be applied by the force actuator array to obtain the required modal drive forces. Assuming that there is a set of force actuators distributed on the plate at locations, {xr, ys} where r=1 . . . R, and s=1 . . . S. There are R actuators in the x-dimension and S actuators in the y-dimension, and because rectangular plates are being considered, R and S will be, in general, different. The total discrete time force that should be applied at each actuator location (xr,ys) is given by,
In the notation introduced f(xr, ys, k) refers to the force applied at location (xr,ys) at the discrete time k. This can be computed by summing over the modal contributions, fmn(k), each one weighted by the (m,n) normal mode amplitude at the location (xr,ys) on the plate.
The preceding discussion is a general description of the computational steps required to effect spatial and temporal control of a plate employing an array of force actuators coupled to the plate. The method is summarized in the flowchart of
More specifically, first, in 201 and 203, a shape function and an audio signal is received; next, a band-limited Fourier series representation of the shape function 205 is determined. Next, one or more modal accelerations from the audio signal and the band-limited Fourier series representation of the shape function 210 are computed. Then, one or more modal forces needed to produce the one or more modal accelerations 215 is computed. The computation of the one or more modal forces can include using a frequency domain plate-bending mode response. Next, a response associated with a discrete-time filter corresponding to the frequency domain plate bending mode response 220 is determined. The one or more modal forces to determine a force required at each driver element in a plurality of driver elements 225 is summed. Finally, a multichannel digital to analog conversion and amplification of one or more forces required at each driver element in the plurality of driver elements 230, and drive a plurality of amplifiers with the converted and amplified electrical signals required at each driver element in the plurality of driver elements 240 is performed.
Moreover, a portion of the plurality of driver elements 1005 can be transparent or substantially transparent to the visible part of the electromagnetic spectrum. Moreover, a portion of the driver elements can be fabricated using a transparent piezoelectric material such as PVDF or other transparent piezoelectric material. In various aspects, the driver elements comprising piezoelectric force actuators can be piezoelectric crystals, or stacks thereof. For example, they can be quartz or ceramics such as Lead Zirconate Titanate (PZT), piezoelectric polymers such as Polyvinylidene Fluoride (PVDF), and/or similar materials. The piezoelectric actuators may operate in both extensional and bending modes. They can furthermore feature transparent electrodes such as Indium Tin Oxide (ITO) or conductive nanoparticle-based inks. The driver elements may be bonded to a transparent panel such as glass, acrylic, or other such materials.
In another aspect,
A bezel (not shown) can moreover cover a portion of the perimeter of the panel 1010. In that regards, the driver elements 1005 can be positioned underneath the bezel associated with the perimeter of the panel 1010. Such driver elements 1005 positioned underneath the bezel can include a dynamic magnet driver element, a coil driver element, and the like. They, moreover, do not have to be transparent to the visible portion of the electromagnetic spectrum, since they are underneath the bezel.
In one aspect, the piezoelectric material can be polarized so that an electric potential difference applied across the thickness of the material causes strain in the plane of the material. If the driver elements comprising the piezoelectric actuators are located away from the neutral axis of the composite structure, a bending force component perpendicular to the plate can be generated by the application of a voltage across the thickness of the actuator film. In another configuration, piezoelectric force transducers may be mounted on both sides of the plate either in aligned pairs or in different array layouts.
As shown in
In another aspect, the plurality of driver elements can comprise an array in which the actuators are located at selected anti-nodes of the plate panel vibrational modes. In the case in which the panel is simply supported, the mode shapes are sinusoidal. The actuator locations can then be at the following fractional distances (taking the dimension of the plate to be unity): n/m where m=1, 2, 3, . . . , and n=1, . . . m−1; for example {(½), (⅓, ⅔), (¼, 2/4, ¾), (⅕, ⅖, ⅗, ⅘), . . . }. Ratios formed according this rule can be referred to as Farey fractions. Repeated fractions can be removed and any subset of the full sequence can be selected.
In other embodiments, the array of electrodes (e.g., 1420) is formed on one side of a sheet of non-polarized piezoelectric material (e.g., 1412) prior to it being bonded to the plate 1415. The top electrode (shown as 1420a) is then deposited to the outer surface of the film 1412. The piezoelectric material (e.g., 1412) is then “poled” (see 1410) to make regions of the film where the electrodes are located piezoelectrically active, and the sheet of piezoelectric material (e.g., 1412) is then bonded on the plate 1415.
In yet other embodiments, the electrodes (e.g., 1420a and 1420) are formed on both side of the sheet of non-polarized piezoelectric material (e.g., 1412) prior to it being bonded to the plate 1415. The piezoelectric material (e.g., 1412) is then “poled” (see 1410) to make regions of the film where the electrodes are located piezoelectrically active, and the sheet of partially-polarized piezoelectric material (e.g., 1412) is then bonded on the plate 1415.
In various aspects, the driver elements comprising piezoelectric force actuators can be piezoelectric crystals, or stacks thereof. For example, they can include quartz, ceramics such as Lead Zirconate Titanate (PZT), lanthanum doped PZT (PLZT), piezoelectric polymers such as Polyvinylidene Fluoride (PVDF), or similar materials. The piezoelectric force actuators may operate in both extensional and bending modes.
The LCD display 1510 can include some or all of the following layers: a protective cover 1512 of glass or a polymer material, a polarizer 1514, a color filter array 1516, liquid crystal 1518, thin-film transistor backplane 1520, and back-light plane 1522. Optional spacers, 1524, may be used to support the audio layer on top of the LCD display layer.
In an aspect, the display 1510 can comprise a light-emitting diode (LED), organic light emitting diode (OLED), and/or a plasma display. In another aspect, the audio layer can be laminated onto the LCD display using standard lamination techniques that are compatible with the temperature and operational parameters of the audio layer 1505 and display 1510. The layers of the audio layer can be deposited by standard techniques such as thermal evaporation, physical vapor deposition, epitaxy, and the like. The audio layer 1505 can alternatively be positioned below the display 1510. The audio layer 1505 can moreover be positioned over a portion of the display 1510, for example, around the perimeter of the display 1510.
In various aspects, the audio layer 1505 can moreover be overlain on a display such as a smart phone, tablet computer, computer monitor, or a large screen display, so that the view of the display is substantially unobstructed.
The touch panel can include an over layer 1622 that provides protection against detrimental environmental factors such as moisture. It can further include a front panel 1524 that contributes to the structural integrity for the touch panel. The touch panel can include top and bottom electrodes (in a 2-dimensional array) 1626 and 1630 separated by an adhesive layer 1628. As mentioned, a backing surface (alternatively called a back panel) 1632 can offer further structural rigidity.
In one aspect, the relative positioning of the audio layer 1605, touch panel 1620, and/or the display 1610 can be adjusted (for example, the audio layer 1605 may be positioned below the display 1610) based on preference and/or other manufacturing restrictions.
Example—Audio Display for Video Projection System
Example—Phase Array Sound Synthesis
Example—Audio OLED Display
The continued development of OLED display technology has led to monolithic displays that are very thin (as thin as 1 mm or less) and flexible. This has created the opportunity to employ the display itself as a flat-panel loudspeaker by exciting bending vibrations of the monolithic display via an array of force driving elements mounted to its back. The displays often are not flat, being curved, in some embodiments, to achieve a more immersive cinematic effect. The methods described here will work equally well in such implementations. Actuating the vibrations of a display from its back eliminates the need to develop a transparent over-layer structure to serve as the vibrating, sound emitting element in an audio display. As described above, such structures could be fabricated employing transparent piezoelectric bending actuators using materials such as PLZT (Lanthanum-doped lead zirconate titonate) on glass or PVDF (Polyvinylidene fluoride) on various transparent polymers.
Both voice-coil type actuators (magnet and coil) and piezo-electric actuators, as discussed in relation to
Audio-Source Rendering on Flat-Panel Loudspeakers with Non-Uniform Boundary Conditions
Devices from smartphones to televisions are beginning to employ dual purpose displays, where the display serves as both a video screen and a loudspeaker. Described herein is a method to generate localized sound-radiating regions on a flat panel that may be aligned with corresponding image features. An array of force actuators is affixed to the back of a panel. The response of the panel to each actuator is initially measured via a laser vibrometer, and the required actuator filters for each source position are determined by an optimization procedure that minimizes the mean squared error (MSE) between the reconstructed and targeted acceleration profiles. The array pf actuators is driven by appropriately filtered audio signals so the combined response of the actuator array approximates a target spatial acceleration profile on the panel surface. Since the single-actuator panel responses are determined empirically, the method does not require analytical or numerical models of the system's modal response, and thus is well-suited to panels having the complex boundary conditions typical of television screens, mobile devices, and tablets.
The method is demonstrated on two panels with differing boundary conditions. When integrated with display technology, the localized audio source rendering method may transform traditional displays into multimodal audio-visual interfaces by colocating localized audio sources and objects in the video stream.
Theory for Method for Localizing Sound-Sources to Specific Vibrating Regions of a Panel
In this analysis, the moving coil actuators are assumed to approximate point forces on the panel. Let a panel of surface area S, thickness h, and density p have a complex spatial acceleration response {tilde over (φ)}i(x, y, ω) when a complex excitation signal {tilde over (F)}ejωt is applied to an actuator located at position (xi; yi).
Following Fuller (C. Fuller, S. Elliott, and P. Nelson, Active Control of Vibration. Associated Press, 1996), each spatial acceleration response is decomposed as a weighted superposition of resonant modes,
where r(x, y) is the spatial response of each resonant mode, and {tilde over (α)}ir is the frequency dependent amplitude of each mode. As the boundary conditions of the system are unknown in the analysis, the spatial response of each mode may not be further specified. From Fahy (F. Fahy and P. Gardonio, Sound and Structural Vibration: Radiation, Transmission and Response 2nd Edition. Elsevier, Science, 2007), the amplitude of each mode may be expressed in terms of the actuator location, the resonant frequency of the mode ωr, and the quality factor of each mode Qr as,
The total response {tilde over (φ)}(x, y, ω) of a panel excited by an array of N actuators, is given by the superposition of the responses to each actuator individually,
The modal amplitudes Ar of a specified target spatial acceleration profile Ψ(x, y) may be determined by Fourier series expansion,
From (27), the total response of a panel excited by an array of N actuators may be expressed as a sum of the modal excitations due to each actuator individually. A filter {tilde over (H)}i(ω) with magnitude |{tilde over (H)}i(ω)| and phase θi may be applied to the signal sent to each force actuator so that the weighted sum of the modal amplitudes of the panel's spatial acceleration profile match the modal amplitudes of Ψ(x, y),
In reality, a finite number of N actuators can physically be employed on the panel surface. This means that the reconstruction of Ψ(x, y) given in (29) is spatially band-limited to N modes, and thus, some reconstructed mode amplitudes are an approximation of Ar.
Combining (27) and (29) gives the spatial response of the reconstructed acceleration profile.
The filters for each actuator {tilde over (H)}i(ω) are determined so that the MSE between the acceleration response magnitudes |{tilde over (φ)}(x, y, ω)| and Ψ(x, y) is minimized for all frequencies. Each spatial response was discretized into M subregions, each with area ΔxΔy. The MSE is given by,
This approach does not merely infer information about a sound source from a measured acoustic response, instead, a specified vibration response is determined from a set of measured vibration responses. This allows for easy integration of visual/audio image pairing by directly controlling the vibrating surface itself. The reconstructed vibration response remains localized to a particular region of the panel where the in-phase motion of the vibrating region was shown to have uniform radiation properties below the spatial Nyquist frequency of the actuator array.
The present application is further illustrated by the following examples that should not be construed as limiting. The contents of all references, patents, and published patent applications cited throughout this application, as well as the Figures and Tables, are incorporated herein by reference.
The vibration localization method presented discussed above was tested on two small panels with differing material properties and boundary conditions. The panels were made of 1 mm thick aluminum and 3 mm thick acrylic. Optimization of the panel materials and dimensions to maximize acoustic performance will be the subject of a different study. Both panels have dimensions Lx=113 mm, Ly=189 mm, and are excited by eight 3 W Dayton Audio DAEX13CT-8 audio exciters.
The aluminum panel was constructed to approximate clamped boundary conditions, where the spatial response of each mode is nearly sinusoidal [A. K. Mitchell and C. R. Hazell, “A simple frequency formula for clamped rectangular plates,” J. Sound Vib., vol. 118, no. 2, pp. 271-281, October 1987.]. The acrylic panel was supported by four standoffs, where each standoff is fixed approximately 2 cm in from each corner of the panel, and has a diameter of 1 cm. The boundary conditions in this case are not easily approximated analytically. The aluminum panel and the acrylic panel are shown with their corresponding actuator array layouts in
Filter Parameters
The vibration profile {tilde over (φ)}i(x, y) in response to excitation by each actuator individually was measured using a Polytec PSV-500 scanning laser vibrometer. The aluminum panel was measured over a frequency bandwidth of 4,000 Hz, to span the spatial Nyquist frequency of the driver array previously determined in [D. A. Anderson, M. C. Heilemann, and M. F. Bocko, “Optimized driver placement for array-driven flat-panel loudspeakers,” Archives of Acoustics, vol. 42, no. 1, pp. 93-104, 2017]. The 2,000 Hz bandwidth used for the acrylic panel was determined empirically to span the spatial Nyquist frequency for the given driver array. Each actuator was powered by an independent Texas Instruments TPA3110D2 class-D amplifier channel.
The target acceleration profiles for the panels are shown in
Following (31) the magnitudes and the phases of {tilde over (H)}i(ω) needed to render the target acceleration profile for the acrylic panel is shown in
The filters resulting from the optimization exhibit an observable magnitude and phase variability at low frequency, as the optimization routine compensates for the high variability in {tilde over (φ)}i(x, y, ω) due to the internal resonances of the actuators themselves, which couple the bending modes of the panel. The mass loaded resonances of these actuators is approximately 130 Hz. In practice, care may be taken when designing panels to ensure that the bending modes resonate above the resonant frequencies of the actuators to minimize actuator-mode coupling and reduce the effects of uncontrolled resonances [J. Audio Eng. Soc., vol. 65, no. 9, pp. 722-732, 2017].
Results
The audio signal was filtered by {tilde over (H)}i(ω) and sent to the respective actuators. The response of each panel was measured at different excitation frequencies using the scanning laser vibrometer. The acceleration responses of both panels are shown in
For both the aluminum and acrylic panels, the rendered audio source holds its position at all frequencies below the spatial Nyquist frequency of the array. The MSE between the target response Ψ(x, y) and the rendered spatial response is evaluated using (31), with the results shown in Table 1. In Table 1, MSE from (31) for each spatial response presented in dB relative the average acceleration of Ψ(x, y) at frequencies fi shown in
The MSE for the acrylic panel remains consistent for the excitation frequencies presented in this study, and increases when the excitation frequency exceeds the spatial Nyquist frequency of the actuator array as shown in
It is important to note that the spatial Nyquist frequency of the actuator array places a limit on the operational frequency bandwidth of this method. However, in an effect similar to the Schroeder frequency in room acoustics, vibrating panels undergo a transition in behavior from a low-frequency region to a high-frequency region. A crossover network may be utilized to ensure that low frequency audio sources are localized using the method described above, while high-frequency audio sources are localized naturally around a single force actuator due to high modal overlap in this region. This will allow sources encoded in an object-based format such as MPEG-H 3D to be rendered at their full bandwidth.
Tests employing the methods described above demonstrate that localized vibration regions may be rendered on the surface of a panel using filters designed using empirical measurements of the panel's vibration profile. This source rendering technique gives the potential to localize vibrations on the surfaces of displays such as laptop screens, televisions, and tablets, where the boundary conditions make the vibration profile of the system difficult to model in practice. These localized vibrations may serve as primary audio sources on the display screen and dynamically moved to new locations with their respective images, or held stationary on opposite sides of the panel to implement basic stereo imaging.
Localized Vibration Control Application to Smartphones
In a particular embodiment, a device is built by computing the filters for a select set of target vibration profiles (speaker mode, handset mode, stereo mode, etc) and then a choice is made which target vibration profiles are used for each audio object given the situation. In certain embodiments, a look-up table of precomputed drive filters for a number of given vibration profiles is provided, which can then be superimposed.
It is possible to switch quickly between the handset and media modes, or among multiple modes with different display vibration profiles. This may be either by the user making a selection via the smartphone interface or switching could occur automatically by employing the smartphone camera (on the display side of the phone), the touchscreen of the phone, or any other means available on the smartphone to sense the proximity of the user's face to the phone, to select the appropriate mode.
While various embodiments have been described above, it should be understood that such disclosures have been presented by way of example only and are not limiting. Thus, the breadth and scope of the subject compositions and methods should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
The above description is for the purpose of teaching the person of ordinary skill in the art how to practice the present invention, and it is not intended to detail all those obvious modifications and variations of it which will become apparent to the skilled worker upon reading the description. It is intended, however, that all such obvious modifications and variations be included within the scope of the present invention, which is defined by the following claims. The claims are intended to cover the components and steps in any sequence which is effective to meet the objectives there intended, unless the context specifically indicates the contrary.
This application is a Continuation-in-part of application Ser. No. 16/292,836, filed on Mar. 5, 2019, which is a Continuation of application Ser. No. 15/778,797, filed on May 24, 2018, now U.S. Pat. No. 10,271,154, which is a 371 application of PCT Application No. PCT/US2016/063121, filed on Nov. 21, 2016, which claims priority of Provisional Application No. 62/259,702, filed on Nov. 25, 2015. The entirety of the aforementioned applications is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4328569 | Trott et al. | May 1982 | A |
5104817 | Scott | Apr 1992 | A |
5533132 | Button | Jul 1996 | A |
6332029 | Azima et al. | Dec 2001 | B1 |
8879766 | Zhang | Nov 2014 | B1 |
20040240697 | Keele | Dec 2004 | A1 |
20050013453 | Cheung | Jan 2005 | A1 |
20090060245 | Blanchard et al. | Mar 2009 | A1 |
20110062888 | Bondy et al. | Mar 2011 | A1 |
20120033837 | Mitsui et al. | Feb 2012 | A1 |
20120232780 | Delson | Sep 2012 | A1 |
20120243719 | Franklin et al. | Sep 2012 | A1 |
20130148827 | Cohen | Jun 2013 | A1 |
20140140551 | Ramstein | May 2014 | A1 |
20150086048 | Brown et al. | Mar 2015 | A1 |
20160073215 | De Bruijn et al. | Mar 2016 | A1 |
20160119712 | Tzirkell-Hancock et al. | Apr 2016 | A1 |
20170180855 | Lee et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
9709842 | Mar 1997 | WO |
0033612 | Jun 2000 | WO |
0213574 | Feb 2002 | WO |
2008090077 | Jul 2008 | WO |
2015119612 | Aug 2015 | WO |
Entry |
---|
PCT/US16/63121, Nov. 21, 2016, Expired. |
U.S. Appl. No. 15/778,797, filed May 24, 2018, Patented. |
U.S. Appl. No. 16/292,836, filed Mar. 5, 2019, Pending. |
International Search Report and Written Opinion dated Nov. 15, 2016, from International Application No. PCT/US2016/047768, 10 pages. |
Anderson, D. et al. A Model for the Impulse Response of Distributed-Mode Loudspeakers and Multi-Actuator 1 Panels:, AES Conference Paper 9409, Oct. 29, 2015. nttp:/lwww.aes.org/e-lib/browse.cfm?elib=17966. |
International Search Report and Written Opinion dated Feb. 14, 2017, from International Application No. PCT/US2016/063131, 15 pages. |
File history of U.S. Appl. No. 16/292,836, filed Mar. 5, 2019. |
File history of U.S. Appl. No. 15/778,797, filed May 24, 2018. |
Number | Date | Country | |
---|---|---|---|
20200196082 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62259702 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15778797 | US | |
Child | 16292836 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16292836 | Mar 2019 | US |
Child | 16799286 | US |