METHOD FOR RESCUING AND PRODUCING A VIRUS IN AVIAN CELLS

Abstract
The present invention relates to methods of rescue and/or propagation of paramyxovirus species, particularly wherein both rescue and propagation are carried out in the same cell type; i.e., without the use of helper cells for viral rescue. The paramyxoviruses produced by the disclosed methods may encompass wild-type viruses, chimeric viruses, recombinant viruses or engineered viral products such as virus like particles (VLP). Viruses and/or viral products produced in the method according to the current invention are suitable for medical or veterinary use in such applications as treating or preventing infectious diseases, particularly avian paramyxovirus and human respiratory virus infections, and cancer treatment.
Description
FIELD OF THE INVENTION

The present invention relates to methods of rescue and/or propagation of paramyxovirus species, particularly wherein both rescue and propagation steps are carried out in the same cell type; i.e., without the use of helper cells for virus rescue. The paramyxoviruses produced by the disclosed methods may be selected from wild-type viruses, chimeric viruses, recombinant viruses or engineered virus products such as, e.g., virus like particles (VLP). Viruses and/or virus products produced in the method according to the current invention are suitable for diverse medical and/or veterinary uses, such as, for example, in such applications as treating or preventing infectious diseases, particularly avian paramyxovirus and human respiratory virus infections, and cancer treatment.


BACKGROUND OF THE INVENTION

Paramyxoviruses, family Paramyxoviridae, are single-stranded non-segmented negative-sense RNA viruses belonging to the order Mononegavirales. Avian paramyxoviruses (genus Avulavirus) comprise at least 13 species, the best characterized of which is Newcastle Disease virus (NDV), also known as avian paramyxovirus serotype 1 (APMV-1; Murphy F. A., et al., 1995, Virus Taxonomy). NDV is the major cause of respiratory and neurologic disease in birds and poultry. The severity of Newcastle disease in poultry ranges from asymptomatic to deadly, depending on the NDV pathotype (Kumar, S., et al., 2011, J. Virol. (85)13:6521-6534) and can result in losses of up to 90% of infected flocks. Even in geographical areas where NDV is well-controlled, it remains an economic burden due to the need to vaccinate and maintain strict biosecurity measures (Alexander, D J, 2000, Rev. sci. tech. Off. int. Epiz. 19(2):443-462). Naturally occurring low virulent NDV strains, such as LaSota and Hitchner B1 strains, are widely used as live-attenuated vaccines to control Newcastle disease in poultry.


Medical applications of NDV include human and veterinary vaccines and uses in cancer therapy. In contrast to other replicating virus vectors, NDV has several advantages as a vaccine vector. For example, there is generally no pre-existing immunity to NDV in humans. Humans and other mammals are largely unaffected by NDV due to natural host range restriction, although exposure to NDV can result in conjunctivitis and/or mild flu-like symptoms in humans. This RNA virus replicates in the cytoplasm, does not integrate into host cell DNA, and does not establish persistent infection, making NDV very safe. Additionally, recombination involving NDV is extremely rare. Also advantageous with regard to immunogenicity, NDV delivery via the intranasal route induces humoral and cellular immune responses both at the mucosal and systemic levels in avian, murine and non-human primate models (Nakaya et al., 2001, J. Virol., 75(23):11868-11873; Bukreyev et al., 2005, J. Virol., 79(21):13275-13284; DiNapoli et al., 2010, Vaccine 29(1):17-25; Ge et al., 2007, J. Virol., 81(1):150-158). NDV is additionally a potent inducer of virus-specific immune responses and dendritic cell maturation (Qian, et al., 2017, Virus Genes, 53(4):555-564).


Newcastle Disease virus selectively replicates in and lyses tumorigenic cells, due at least in part to a dysfunctional type-I interferon (IFN) cascade in tumorigenic cells (Fiola, et al., 2006, Int. J. Cancer: 119:328-338). NDV has been used in numerous studies as an oncolytic agent, as it fulfills criteria in this capacity including efficient oncolysis, strong immunogenicity and tumor selectivity (Kalyanasundram, et al., 2018, Acta Tropica 183:126-133). The oncolytic effects of NDV include the triggering of apoptosis selectively in tumor cells. Subsequently, tumor cell debris, in combination with NDV components (pathogen-associated molecular patterns; PAMP), has been shown to stimulate a tumoricidal immune cascade (Kalyanasundram, et al., supra). Thus, NDV has usefulness both as a directly oncolytic agent and in anti-cancer vaccines prepared from NDV-infected whole cancer cells or cell lysates (PubMed Health “Newcastle Disease Virus (PDQ®) Health Professional Version”; published online Nov. 2, 2016; https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0032658/accessed May 15, 2018).


The NDV genome is a non-segmented single-stranded negative-sense RNA with a length of 15,186, 15,192 or 15,198 nucleotides (Miller and Koch, 2013, Newcastle disease. In: Swayne, D. E., Glisson, J. R., McDougald, L. R., Nolan, L. K., Suarez, D. L., Nair, V. (Eds.), Diseases of Poultry. John Wiley & Sons, pp. 89-138). The NDV genome contains six genes which encode nucleocapsid protein (NP), phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin protein (HN) and large protein (L). Additionally, V and W proteins are produced by RNA editing during P gene transcription (Millar and Emmerson, 1988; Steward et al., 1993). It has been demonstrated that a foreign gene can be inserted as an autonomous transcription unit in NDV genome, allowing expression of the foreign gene in NDV-infected cells (Zhao et al., 2015, J. Gen. Virol., 96:40-45). Furthermore, delivery of a foreign gene to host cells by NDV can be accomplished without resulting in virus spread and infection (Kim and Samal, 2016, Viruses 8:183). NDV is thus promising as a recombinant vector for experimental vaccines against infectious diseases. It has been demonstrated that foreign genes can be inserted at different positions throughout the NDV genome without severely affecting replication efficiency or virus yield (Zhao and Peeters, 2003, J. Gen. Virol., 84:781-788). The NDV genome can be modified in various ways; for example, to contain additional elements, modified genes and/or heterologous coding sequences, such as sequences encoding antigens from other viral pathogens. Because of the ease of modifying the NDV genome, a recombinant NDV expression vector can be readily produced.


In particular, a recombinant NDV vector may be used for the delivery of antigens from other viral pathogens, such as respiratory viral pathogens, e.g. human metapneumovirus (hMPV) and/or respiratory syncytial virus (RSV). Human metapneumovirus (hMPV), discovered in 2001, is one of the most common causes for upper and lower respiratory tract infections in young children. Currently no vaccines against hMPV are available. Antigens derived from both hMPV and RSV include, e.g., fusion glycoprotein (F protein) and matrix (M) protein. An hMPV vaccine comprising a recombinant antigenic protein(s)—and in particular combined with a similar vaccine against Respiratory Syncytial Virus (RSV)—appears as an attractive medical and commercial option, particularly in light of the fact that whole virus vaccines for hMPV/RSV carry significant safety risks. Early studies with inactivated RSV, for example, showed that natural infection with RSV following vaccination of infants with no prior exposure to the virus could result in enhanced respiratory disease (ERD), in some cases leading to death (Kim, et al., 1969, American J. of Epidem. 89(4):422-434). Since that study, it has been shown that vaccination with inactivated hMPV can likewise result in ERD in experimental animals (Yim, et al., 2007, Vaccine, 25(27):5034-5040), with a similar Th2 response as observed in earlier RSV studies. The causes for enhanced disease following vaccination with inactivated RSV are thought to be Th2-biased T-cell-memory responses, formaldehyde hypersensitivity and/or immature antibody production and its associated weak recognition of hRSV epitopes from natural infections (Ren, et al., 2015, J Gen. Virol. 96(Pt 7):1515-1520). Therefore, a vaccine against hMPV should ideally not only elicit strong mucosal and systemic immune responses, including the production of neutralizing antibodies and a CD8 T cell response (IFN response), but also a balanced Th1/Th2 immune response.


One well-known challenge to producing negative-strand RNA viruses, including NDV, is that naked viral RNA alone is not infectious. Expression of components of the viral ribonucleoprotein complex (RNP), namely N (alternatively referred to as “NP”), P, and L proteins of the virus, is essential to initiate the first round of RNA synthesis leading to packaging of infectious viral particles (“viral rescue”) and for establishment of infection in the host cell. Mammalian cells may be used as host cells for NDV rescue; however, following rescue, the virus is generally unable to replicate in mammalian cells or replicates only at very low levels. This is due, at least in part, to the strong interferon response in normal (non-tumor) cells, resulting in death of the infected cells (Krishnamurthy S., et al., 2006, J. Virol. 80(11):5145-5155). For production of the virus, therefore, a second cell type is often included for propagation of the rescued virus.


The first reported rescue of a Mononegavirales from full-length cDNA was done with rabies virus (Schnell, et al., 1994, EMBO J. 13:4195-4203). Following that report, similar techniques were used to recover vesicular stomatitis virus, measles virus, respiratory syncytial virus (RSV) and Sendai virus (Inoue et al., 2003, J. Virolog. Methods 107:229-236). The technique consists of providing individual plasmids encoding each of the three proteins forming the viral polymerase complex (i.e., N, P and L) and a plasmid encoding the full-length viral cDNA, with all plasmids under the control of a T7 promoter. The required T7 RNA polymerase may be supplied in the host cell, e.g., by infection of the host cell with recombinant vaccinia virus, vTF7-3, or by transfecting cells with a T7 expression vector under constitutive expression (e.g., with a CMV immediate-early promoter). While an efficient way of providing T7 polymerase, the presence of the vaccinia virus is not desirable in the production of drug products. Furthermore, the vaccinia virus may interfere with rescue of the virus of interest (see, e.g., WO2004/113517) and has a cytopathic effect that may obscure detection of the CPE of the rescued virus. An alternative method of providing T7 is to use a host cell line which constitutively expresses T7 RNA polymerase, e.g., BHKT7 or BSR-T7/5. These T7-expressing host cells lines (or “helper cells”) are transfected together with the three helper plasmids and the viral expression plasmid under T7 promoter control to rescue infectious viral particles. Constitutive expression of T7 is generally lower, however, which reduces rescue efficiency.


Although T7-expressing helper cells are useful for viral rescue, they are generally not susceptible to viral infection, but must be co-cultured with permissive host cells, also referred to as “plaque expansion cells”. Co-culture with cells susceptible to virus infection facilitates amplification of the extremely low numbers of viral particles produced by the helper cells and allows propagation of a titer useful for many applications.


The rescue of Paramyxoviruses is known in the art to be of very low efficiency and often complex, requiring large numbers of transfected cells and repeated attempts, making the study and use of these viruses challenging (Beatty, et al., 2017, mSphere 2:e00376-16. https://doi.org/10.1128/mSphere.00376-16). While more efficient methods of rescue are regularly reported, these methods are generally optimizations of the above-described method; particularly with regard to requiring two cell types. The use of one cell type for both rescue and propagation has been described for paramyxoviruses; however, efficiency and reproducibility are poor, making the method unsuitable for industrial application (see, e.g., WO2004/113517). Furthermore, many reported rescue protocols require additional steps, such as a heat shock step to increase efficiency of transfection (e.g., WO2004/113517) or multiple freeze-thaw cycles to release the vanishingly small numbers of viral particles obtained by rescue (e.g., Schnell, et al., 1994, supra). These steps are disadvantageous for inclusion in an industrial process, as they require significant time and energy input.


The current invention provides simple and efficient methods for both rescue and propagation of viral particles in a single cell type. The herein disclosed methods comprise co-transfecting a recombinant paramyxovirus expression vector and three helper plasmids under T7 or CMV control, respectively, along with a constitutive T7 polymerase expression vector, into a paramyxovirus-susceptible avian cell line which is competent for propagation of the rescued virus particles. The process does not require the use of helper cells such as BHKT7, which are not desirable for production of products for use in humans. Additionally, the disclosed rescue method is highly efficient and reproducible. An additional advantage is the short time needed from transfection to harvest of a high-titer master virus seed bank, which can be reduced from several weeks, using prior art methods, to less than one week. The herein disclosed invention is rapid, reproducible and provides a high virus titer.


In sum, previously-reported methods of virus rescue and propagation for paramyxoviruses are not optimal for industrial application. As disclosed herein, the current invention provides a robust and reproducible method of propagating viral particles in the same avian cell line as used for viral rescue. This method has the advantages of being simple, efficient, reliable and lacking various undesirable products from the use of helper cells, vaccinia virus, etc. Disclosed herein are steps for the cloning of a recombinant NDV full length genome and helper plasmids necessary for NDV rescue using the methods of the invention. In addition, the expression of foreign proteins by insertion of heterologous coding sequences into the recombinant NDV genome is demonstrated, illustrating the suitability of the methods of the current invention for the production of vaccines for the prevention of diverse diseases.


SUMMARY OF THE INVENTION

The present invention relates to improved methods for producing infectious paramyxovirus particles. Furthermore, the invention provides a recombinant paramyxovirus nucleic acid which is useful for production of wild-type paramyxovirus particles as well as for the co-expression of heterologous proteins by reverse genetics. The invention further provides infectious virus particles and/or virus like particles, particularly for the preparation of pharmaceutical compositions or vaccines for use in methods of treating or preventing paramyxovirus infections or other viral infections in a subject.


Accordingly, it was an aim of the current invention to provide an improved method of rescue and propagation of paramyxoviruses. Preferably, the method is highly reproducible, simpler and more efficient than current methods and does not require the presence of products undesirable in a preparation for medical use. Furthermore, the method should minimize alteration of viral characteristics such as sequence, host infectivity and immunogenicity which can occur during adaptation to a heterologous host cell (such as a mammalian cell).


The problem underlying the current invention is solved by a method comprising a transfection step for virus rescue and a culturing step for virus propagation, both carried out in the same virus-susceptible cell line. The one-cell methods disclosed herein simplify and accelerate the production of high titers of infectious paramyxovirus particles by reverse genetics. The methods disclosed herein not only eliminate the need for the use of helper cells for paramyxovirus production, but also substantially reduce the time needed from rescue to drug product compared with state of the art methods. In sum, these improvements allow efficient production of a purer drug product in a shorter timeframe.


In the course of the current invention, it was found that the use of a virus-susceptible cell line increased the efficiency of virus rescue compared with previously-disclosed methods and substantially reduced the time needed from transfection of cells to obtaining high viral titers. As shown in the Examples, the rescue of an infectious Newcastle Disease virus (NDV) from a recombinant genomic vector (rNDV) in an avian cell line was highly efficient and reproducible, allowing subsequent rapid propagation of high titers of infectious NDV. Additionally, insertion of coding sequences of heterologous proteins into rNDV was easily performed, and viral rescue with these recombinant vectors resulted in high levels of expression of the heterologous proteins.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is further illustrated by the following Figures, Tables, Examples and the Sequence listing, from which further features, embodiments and advantages may be taken. As such, the specific modifications discussed are not to be construed as limitations on the scope of the invention. It will be apparent to the person skilled in the art that various equivalents, changes, and modifications may be made without departing from the scope of the invention, and it is thus to be understood that such equivalent embodiments are to be included herein.


In connection with the present invention



FIG. 1 Map of the modified plasmid of the invention: “pBR322Mod” (pVVS01858). The low-copy-number plasmid pBR322 (SEQ ID NO: 24) was modified by insertion of a linker containing six restriction enzyme sites necessary for NDV genome cloning (Sse232I, FseI, Pacd, SbfI, AflII, AsiSI), with half restriction sites on the ends for insertion into pBR322 double digested with EcoRI and HindIII. The linker was constructed by annealing nucleic acid oligomers oVVS01279 and oVVS01278 (SEQ ID NOs: 9 and 10, respectively) and inserted into EcoRI/HindIII double-digested pBR322.



FIG. 2 Recombinant NDV genomic coding sequence for rescue of infectious NDV particles also allowing insertion of heterologous coding sequences. (A) Construction of a recombinant NDV cDNA clone encoding the complete 15,186 nucleotide (nt) genome of the LaSota NDV strain with inserted restriction sites was performed by synthesis of five individual DNA fragments (GeneArt), which were cloned into pBR322Mod (pVVS01858) using standard cloning procedures: Fragment 1 (FGT1) (A-1-3238 nt; SEQ ID NO: 11); FGT2 (3213-6242 nt; SEQ ID NO: 12); FGT3 (6243-9327 nt; SEQ ID NO: 13); FGT4 (9328-11351 nt; SEQ ID NO: 14) and FGT5 (11352-15186-B; SEQ ID NO: 15). The sequence of T7 polymerase promoter (SEQ ID NO: 6) was added at the 5′ terminus of FGT1 (“A” element in FGT1) and the sequences of the hepatitis delta virus ribozyme (HDV Rz; SEQ ID NO: 8) and T7 terminator (SEQ ID NO: 7) were added at the 3′ terminus of FGT5 (“B” element in FGT5). (B) Mutations were introduced into each intergenic region to create restriction enzyme sites (RE) between NDV protein coding sequences, allowing the insertion of coding sequences of foreign antigens into any desired intergenic region. The indicated RE sites within the NDV L protein coding region mark the ends of FGT4 and FGT5, which were used for cloning purposes. (C) Restriction enzyme sites in the constructed rNDV genome for cloning of inserts between NDV protein coding sequences. The table shows the identity and relative position of each restriction site as well as the mutations introduced for their insertion. (D) A frameshift mutation identified in the NDV L-protein coding sequence following splicing of FGTs 1-5 into pBR322Mod and also in the NDV L protein helper plasmid. The constructed helper L protein coding sequence “pVVS01861-Helper-prot. L NDV” is aligned with the correct nucleotide and amino acid sequences of “PVVS01927-pCIneo-L_(LS)”). The frameshift resulted in failed rescue due to a 30 amino acid mutation introduced in the L protein by the frameshift mutation. To correct the frameshift in the rNDV and the NDV L protein helper plasmid, a 525 bp fragment (SEQ ID NO: 36) containing a frame shift correction, was inserted between KpnI-KpnI restriction sites of the constructs. The resulting rNDV sequence (also referred to herein as “rNDV-FL”) is provided by SEQ ID NO: 16. (E) Schematic illustration of two possible alternatives for introduction of foreign antigen coding sequences into the engineered rNDV vector, allowing production of a bivalent vaccine or VLPs. In the first example, Antigen 1 and Antigen 2 are inserted between coding sequences for NDV proteins NP and P (using the introduced AscI restriction site) and between proteins P and M (using the introduced FseI restriction site), respectively. In the second example, Antigen 1 and Antigen 2 are inserted between coding sequences for NDV proteins P and M (using the introduced FseI restriction site) and proteins M and F (using the introduced MluI restriction site), respectively, each foreign antigen being preceded by an internal ribosome entry site (IRES) for multicistronic translation.



FIG. 3 Schematic comparison of conventional viral rescue and propagation with the process of the current invention using rNDV as an example. (A) Viral rescue from conventional BHK-derived cells stably expressing T7 polymerase (BSR T7/5) by transfection with rNDV and three helper plasmids, followed by viral propagation in EB66® cells; and (B) Viral rescue directly in EB66 cells by transfection with an rNDV expression vector, three helper plasmids and the addition of T7 RNA expression vector, followed by viral propagation in EB66 cells. T7-RNAP: T7 RNA polymerase under CMV promoter; NP: Nucleoprotein of NDV; P: Phosphoprotein of NDV; L: Polymerase of NDV; rNDV: recombinant NDV in pBR322Mod; MVSB: Master virus seed bank. The latter rescue protocol can facilitate the production of an rNDV master virus seed bank in as little as one week; i.e., transfection on day 0; co-culture with fresh EB66 cells at day 3 or 4 and harvest of MVSB on day 2 or 3 after infection (co-culture).



FIG. 4 Standard virus propagation process in EB66 cells grown in CDM4Avian® chemically-defined medium. In Phase I, the EB66 cells are amplified; in Phase II, the cells are diluted, infected with virus and expanded.



FIG. 5 Cloning of foreign genes into the rNDV genomic coding sequence. (A) Autonomous transcription unit (ATU). Each foreign sequence is constructed as an ATU, which comprises a gene-end NDV sequence, a start-end NDV sequence, a kozak sequence and the foreign gene. Conserved nucleotide sequence motifs define the transcriptional gene start with addition of a cap structure to the mRNA and conserved nucleotide sequence motifs that define the gene end and cause the addition of poly(A) to the mRNA in all families. A region of genomic RNA between the gene-end and gene-start sequences, the intercistronic region, is not transcribed into mRNA and can range from two nucleotides to hundreds of nucleotides. For correct and efficient NDV virus replication, the design of the ATU necessarily follows the “rule of 6”, based on the observation that efficient replication of NDV RNA requires that the genome size is a multiple of six nucleotides (Peeters, et al., 2000, Archives of Virology, 145(9):1829-1845). (B) An example of an rNDV vector containing an ATU with the coding sequence for a full-length F protein from a B2 strain of hMPV inserted between coding sequences for NDV proteins P and M (using inserted restriction site FseI).



FIG. 6 Proof of principle of rNDV cloning platform for foreign gene expression. (A) An ATU containing a green fluorescent protein coding sequence (GFP; SEQ ID NO: 33) is inserted between P and M (rNDV-GFP) and an ATU containing an hMPV matrix protein (M protein; SEQ ID NO: 34) coding sequence is inserted between NP and P of rNDV (rNDV-M); (B) Expression of proteins in EB66 cells as measured by flow cytometry in fixed EB66 cells on d2 after infection. M protein was detected with anti-hMPV Matrix-protein-mouse IgG2a at 2 μg/mL (Genetex GTX36792).



FIG. 7 Low expression of hMPV F protein following insertion of the native coding sequence into rNDV. Insertion of the full-length wild-type F protein coding sequence of A1 hMPV between P and M of rNDV LaSota (rNDV-FA1) resulted in high NDV titers following rescue and propagation in EB66 cells (˜108-8.5 TCID50/mL; data not shown), but low expression of hMPV F protein overall (10-15%) and essentially no presentation on the surface of the infected cells (˜3%) as measured by flow cytometry on permeabilized (“intracellular”) and non-permeabilized cells (“cell surface”). The full-length hMPV F protein coding sequence (FA1Native) is provided by SEQ ID NO: 27. F protein antibodies used were DS7, which binds to both pre- and post-fusion forms of hMPV F protein and MPE8, which is specific for the pre-fusion form (antibodies produced in-house).



FIG. 8 Propagation of NDV in EB66 cells following viral rescue in BSR-T7/5 cells (A) rNDV-GFP propagation in EB66 cells: Transfection was done in 6-well plates using helper plasmids and the rNDV-GFP plasmid (GFP insert between P and M NDV protein coding sequences). 0.5 mL of supernatant from the co-culture step (EB66 cells added on BSR-T7/5 transfected cells) was used to infect 15×106 EB66 cells/well in 6-well plates. The infection kinetics were monitored post-infection (d1, d2 and d3 post-infection) by visualizing GFP expression via UV microscopy. (B) Kinetics of viral production of rNDV-FL (rNDV without heterologous insert); rNDV-GFP (P/M) and rNDV-FA1 (hMPV F protein native nt sequence) in EB66 cells. A LaSota NDV positive control was also used. Two multiplicities of infection (MOIs) were compared for each experimental construct: 10−2 and 10−4, calculated based on a theoretical titer of 1×106 log 10 TCID50/mL. The TCID50 was determined on HeLa cells according to standard protocols. Immunostaining of HN protein was done for the conditions rNDV-FL and rNDV-FA1. Titers were calculated according the Reed-Muench method (Reed, L. J.; Muench, H. (1938) American Journal of Hygiene 27:493-497) and are expressed as Log TCID50/mL. (C) Visualization of NDV NP protein and hMPV F protein by immunostaining: EB66 cells infected with either the rNDV-FL or the rNDV-FA1 were stained with antibodies against NP protein of NDV (Abcam; Ab138719) or FA1 protein of hMPV (Abcam; Ab94800).



FIG. 9 Optimization of hMPV F protein nucleotide sequence inserted into rNDV between the P and M protein coding sequences promotes expression in EB66 cells. (A) Comparison of total expression of hMPV F protein from different coding sequences (FNative and Fopt1-5) in permeabilized EB66 cells following virus rescue. (B) Comparison of intracellular and surface expression of hMPV F protein on d3 of passage 1 following infection of EB66 cells with NDV comprising FNative and FOpt1-5. (C) Comparison of total and surface expression of hMPV F protein on d3 of passage 3. The native hMPV F protein coding sequence (FNative) is provided by SEQ ID NO: 27 and the optimized F protein sequences (FOpt1-Opt5) are provided by SEQ ID NOs: 28-32, respectively.



FIG. 10 Post-transfection kinetics and yield of rNDV-GFP with F protein mutations in EB66 cells. Comparison of NDV-GFP production with a wild-type NDV F protein cleavage site (trypsin; SEQ ID NO: 1), with introduced furin cleavage sites (furin sites 2, 3, 5 and 6; SEQ ID NOs: 2-5, respectively) or with a Y527A point mutation. The GFP-coding nucleotide sequence (SEQ ID NO: 33) was inserted between the P and M NDV proteins using the FseI restriction enzyme. (A) Kinetics of virus rescue from day 2 to day 5 post-transfection as assessed by GFP expression and cytopathic effect. Titers (TCID50, indicated in log scale) were determined by measuring cytopathic effect (CPE) under visible light and by GFP production under UV light. Control constructs were rNDV-GFP with a wild-type (trypsin) cleavage site, the test constructs were rNDV-GFP vectors with four different furin cleavage site variations (2, 3, 5, 6) replacing the trypsin cleavage site or a Y527A point mutation. (B) Table showing TCID50 on days 3 and 6 post-infection under white light and UV light. (C) TCID50 curves of NDV-GFP (trypsin) and NDV-GFP with insertion of furin site 5 with and without daily addition of Trypzean at 0.75 USP/mL after infection.



FIG. 11 The rNDV platform of the invention offers a rapid process from recombinant sequence generation to obtaining an infectious titer of 109.5 to 1010.5 TCID50/mL rNDV. (A) Schematic of production timeline; (B) Viral titers observed at day 2 following infection of EB66 cells with rNDV rescued from several of the herein disclosed constructs (see table) and representative coomassie and silver staining of the harvested virus. NDV proteins L, HN, F, P, M and V (a product of editing during P gene transcription) are indicated by arrows.





DETAILED DESCRIPTION OF THE INVENTION

Accordingly, in one aspect, it was an object of the present invention to provide an improved method for production of paramyxoviruses. In a first aspect, the present invention relates to a method of producing infectious paramyxovirus particles comprising the steps of (a) transfecting an avian cell line with a vector comprising a paramyxovirus nucleic acid sequence under T7 control, a T7 RNA polymerase expression vector and three helper expression vectors comprising, respectively, paramyxovirus phosphoprotein (P), nucleoprotein (N) and polymerase (L) coding sequences under T7 control; and (b) culturing said transfected avian cell line under conditions favorable for virus propagation. In one aspect, the T7 RNA polymerase expression vector is under the control of a constitutive promoter; e.g., under CMV promoter control. In one aspect, the CMV promoter comprises an enhancer region, such as, e.g., the CMV promoter and enhancer sequence as provided by SEQ ID NO: 35.


In one aspect, the vector comprising a paramyxovirus nucleic acid sequence under T7 control further comprises a T7 promoter sequence and a T7 terminator sequence. In one aspect, the T7 promoter sequence is positioned 5′ from the start of the paramyxovirus nucleic acid sequence, particularly immediately 5′ from the start of the paramyxovirus nucleic acid sequence. In one aspect, the T7 terminator sequence is positioned 3′ from the end of the paramyxovirus nucleic acid sequence, particularly immediately 3′ from the end of the paramyxovirus nucleic acid sequence. In a preferred aspect, the T7 promoter sequence has a sequence as defined by SEQ ID NO: 6 and the T7 terminator sequence has a sequence as defined by SEQ ID NO: 7. In a preferred aspect, the vector comprising a paramyxovirus nucleic acid sequence under T7 control further comprises a ribozyme sequence, especially a Hepatitis delta virus ribozyme sequence (HDV Rz) as defined by SEQ ID NO: 8. In one aspect, the HDV Rz sequence is positioned 3′ from the end of the paramyxovirus nucleic acid sequence. In a preferred aspect, the HDV Rz sequence is positioned 3′ to the end of the paramyxovirus nucleic acid sequence and 5′ from the start of the T7 terminator sequence. In one aspect, the vector comprising a paramyxovirus nucleic acid sequence under T7 control comprises 2 G residues or 3 G residues inserted 5′ to the paramyxovirus coding sequence.


In one aspect, the transfection step (a) of the invention includes an electroporation step. Electroporation, also known as electropermeabilization, is a technique known in the art of applying electrical pulses to cells to allow the introduction of genetic material, such as DNA, to the inside of the cell. This process of introducing genetic material is referred to as “transfection” when applied to eukaryotic cells and “transformation” when applied to prokaryotic cells. Electroporation of mammalian cells for transfection purposes can be accomplished in a variety of different ways with readily available protocols and devices, typically by the use of purpose-built electroporators, such as, e.g., the MaxCyte STX® Scalable Transfection System (MaxCyte, Inc.). Electroporators are devices which allow the application of an electrostatic field to a cell solution, typically cells in aqueous solution mixed with the genetic material for transfection of the cell. The mixture is placed into electroporation cuvettes and subject to electrical pulses in the electroporator.


In one aspect, the transfection step (a) of the invention includes the use of chemical transfection reagents. Chemical transfection reagents include positively charged compounds or molecules which complex with the negatively charged nucleic acids to be transfected and which are also attracted to the negatively charged cell membrane. Through a process involving endocytosis and phagocytosis, the complexes pass through the eukaryotic cell membrane and into the nucleus. In a preferred embodiment, the transfection reagents for use in methods of the invention include cationic liposome formulations, such as, e.g., lipofectamine reagents (Invitrogen), or calcium phosphate.


In one aspect, said favorable conditions in the culturing step (b) of the method of the current invention include the addition of trypsin to the culture at regular intervals, for example every few hours, twice or three times per day, once daily, every other day, preferably once daily. Trypsin cleavage sites are commonly present in viral proteins, particularly in viral fusion glycoproteins (F proteins). The presence of trypsin during propagation of viruses can facilitate the efficient formation of infectious virus particles by aiding in virus protein processing, particularly processing of viral F proteins, and subsequent assembly of the particles, significantly increasing yields. In some cases, as outlined below, mutation of the trypsin cleavage site in F proteins can eliminate the need for added trypsin during propagation. In a preferred aspect, favorable conditions for virus propagation in the culturing step (b) of the method of the current invention do not include the addition of trypsin to the culture.


In one aspect, transfection step (a) and culturing step (b) of the methods of the invention are carried out fully or in part in a chemically-defined (CD) cell culture medium. Chemically-defined culture media contain defined, highly-controlled and thus traceable components, virtually eliminating inconsistencies between batches that are related to media variability. Chemically-defined culture media are thus desirable for industrial processes, increasing production reliability and improving end-product quality. These advantages can also help reduce regulatory hurdles. In a preferred embodiment, the media for use in the methods of the invention are free from animal-derived components, e.g., sera. An absence of animal-derived components also improves product consistency and can simplify regulatory processes for new pharmaceutical products derived from cultured cells. In one embodiment, the chemically-defined medium is specially formulated for culturing of eukaryotic cell types, especially avian cell types. In a preferred embodiment, the chemically-defined medium is HyClone™ CDM4Avian medium (GE Healthcare Life Sciences).


In one aspect, the method of the current invention, particularly both the transfection (a) and culturing (b) steps, is carried out in one eukaryotic cell type, such as a primary eukaryotic cell or a cell line. In one aspect, the eukaryotic cell may be a yeast cell. In one aspect, the primary eukaryotic cell may be an embryonic cell. In one aspect, the eukaryotic cell may be a mammalian, avian or insect cell line, e.g., a mammalian cell line, such as, e.g. an HEK293 cell line or a Vero cell line. In a preferred aspect, the method of the current invention is carried out in an avian cell line; in particular, in the same avian cell line for both transfection (a) and culturing (b) steps of the methods of the invention. Avian cells are permissive to infection by avian viruses, including avian paramyxoviruses. Susceptibility of the cell line to infection by avian paramyxoviruses is an important feature of the methods disclosed herein. In one aspect, the avian cell line is derived from chicken, turkey, quail, pheasant or duck cells. In one aspect, the cell line is a primary cell line. In one aspect, the cell line is derived from stem cells. In one aspect, the cell line is an immortalized cell line.


In a preferred aspect, the avian cell line is a duck cell line. In one aspect, the duck cell line is an immortalized duck cell line. In a preferred embodiment, the duck cell line of the invention is a continuous diploid cell produced from embryonated duck eggs, such as an EBx cell line as described in WO03/076601A1 and WO08/129058A1, which are incorporated herein by reference in their entirety. Briefly, EBx cell lines are continuous diploid duck cells which are obtained by isolation, culture and expansion of embryonic stem cells from birds free from complete endogenous proviral sequences or fragments thereof. In a first step, the cells are cultured in complete culture medium containing all factors to support cell growth and in the presence of a feeder layer, supplemented with animal serum and any additional additives as needed. In a second step, the culture medium is modified gradually to finally obtain complete withdrawal of the feeder layer, sera and any additives. This gradual withdrawal “weans” the cells, finally resulting in an adherent or suspension avian cell line which does not produce replication-competent endogenous retrovirus particles and which is capable of proliferating over a long period of time in a basal medium in the absence of endogenous growth factors, feeder cells and serum. Most preferably, the avian cell line is an EB66® cell line, a cell line which is particularly useful for the production of vaccines (Brown and Mehtali, 2010, PDA J Pharm Sci Technol. 64(5):419-25).


In one embodiment, the duck cells are derived from duck retina or embryonic fibroblasts, such as those described in WO2005/042728, which is incorporated herein by reference in its entirety. In a preferred embodiment, the duck cells are an immortalized duck cell line, particularly an AGE1.CR cell line, i.e., AGE1.CR.pIX, or a DuckCelt®-T17 cell line. Particularly, the DuckCelt®-T17 cell line is a cell line with ECACC accession numbers of 09070701, 09070702, 009070703, 08060501 or 08060502.


In one aspect, the paramyxovirus nucleic acid sequence is a genomic nucleic acid sequence; e.g., an entire genomic sequence, such as a wild-type genomic sequence. As used herein, the terms “recombinant paramyxovirus nucleic acid sequence” and “paramyxovirus nucleic acid sequence” are used interchangeably and may refer to a paramyxovirus nucleic acid sequence that has been modified to encode an altered (mutated) protein, a paramyxovirus nucleic acid sequence which has been altered for improved expression (“optimized”) or a wild-type paramyxovirus nucleic acid sequence which has been artificially constructed. In one aspect, the paramyxovirus nucleic acid sequence is a partial genomic nucleic acid sequence. In one aspect, the paramyxovirus nucleic acid sequence is an engineered genomic nucleic acid sequence or partial genomic nucleic acid sequence; i.e., a recombinant nucleic acid sequence. In one aspect, the nucleic acid sequence encodes a chimeric paramyxovirus; i.e., a virus comprising components from two or more viruses in part or in whole. A preferred example is replacement of a native virus gene for the gene of a heterologous virus. As used herein, genomic sequence shall mean a sequence containing adequate genetic information to generate and pack infectious paramyxovirus particles; i.e., a wild-type or engineered genomic nucleic acid. In one aspect, the nucleic acid sequence may be a wild-type sequence or, alternatively, a sequence which is optimized for improved expression. Optimization of a nucleic acid sequence may include, but is not limited to, alteration of codons for improved expression in a particular species (e.g., humans or E. coli) and/or inclusion of particular promoter or enhancer sequences. In a preferred aspect, the nucleic acid sequences are optimized for expression in a preferred or target recipient, wherein said preferred or target recipient is a human subject or an animal subject, such as e.g., a bird or mammal.


In one aspect, the engineered genomic nucleic acid sequence or partial genomic nucleic acid sequence allows the production of infectious paramyxovirus particles, live-attenuated paramyxovirus particles and/or virus-like particles (VLPs). In one aspect, the VLPs are paramyxovirus VLPs. In a preferred aspect, the VLPs are heterologous VLPs, e.g., VLPs of human metapneumovirus and/or respiratory syncytial virus.


In one aspect, the paramyxovirus nucleic acid sequence used in the methods of the current invention, particularly in transfection step (a), comprises a paramyxovirus genomic coding sequence in whole or in part. As used herein, a “genomic sequence” or “genomic coding sequence” can be used interchangeably. Also as used herein, “paramyxovirus genomic coding sequence” and “paramyxovirus nucleic acid sequence” can be used interchangeably. These terms refer to a DNA or a cDNA sequence which contains sufficient genetic information to allow packing of an infectious paramyxovirus particle under rescue conditions as described herein. It should be noted that a viral genome may contain, in addition to protein-coding regions, intervening non-coding regions, e.g., introns. In one aspect, the infectious paramyxovirus encoded by the paramyxovirus genomic coding sequence is a wild-type paramyxovirus, a chimeric paramyxovirus or a recombinant paramyxovirus. In one aspect, the paramyxovirus nucleic acid sequence of the invention is at least 50% identical, 60% identical, 70% identical, 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, especially at least 96%, at least 97%, at least 98%, at least 99% or 100% identical to the wild-type paramyxovirus genomic nucleotide sequence or, preferably, to a paramyxovirus genomic nucleotide sequence which is optimized for expression in a cell and/or host of choice.


In one aspect, the paramyxovirus nucleic acid sequence encodes proteins which are at least 85%, at least 86%, at least 87%, at least 88%, or at least 89% identical to the wild-type paramyxovirus proteins, more preferably at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95% identical to the wild-type paramyxovirus proteins, even more preferably at least 96%, at least 97%, at least 98%, most preferably at least 99% or especially 100% identical to the wild-type paramyxovirus proteins. In particular, the paramyxovirus F protein may deviate from the wild-type F protein sequence, particularly with regard to the trypsin cleavage site.


In a preferred aspect, the paramyxovirus nucleic acid sequence contains introduced mutations between the protein-coding regions of the viral genome. In one aspect, the paramyxovirus nucleic acid sequence is modified to contain one or more sites for insertion of heterologous coding sequences, i.e., restriction enzyme sites. In one aspect, the one or more sites for insertion of heterologous coding sequences are located before, after or between the paramyxovirus protein coding sequences. In one aspect, the one or more sites for insertion of heterologous coding sequences are located within the paramyxovirus coding sequences. In a preferred aspect, the sites for insertion of heterologous coding sequences are located between the NP and P coding sequences and/or the P and M coding sequences. In one aspect, the restriction enzyme sites are included between one or more of the protein coding sequences of the paramyxovirus; i.e., between NP and P, between P and M, between M and F, between F and HN and/or between HN and L. In a preferred aspect, the restriction enzyme sites are included between each of the protein coding sequences of the paramyxovirus; i.e., between NP and P, between P and M, between M and F, between F and HN and between HN and L. In one aspect, the modified paramyxovirus nucleic acid sequence contains a sequence for enhancement of translation of inserted heterologous coding sequences, e.g., an internal ribosome entry site (IRES). An internal ribosome entry site (IRES) enables the translation machinery, i.e., the ribosome complex, to initiate translation at sites other than the viral initiation site.


In one aspect, the modified paramyxovirus nucleic acid sequence contains one or more heterologous coding sequences; i.e., coding sequences for one or more foreign (e.g., heterologous) antigens or proteins (e.g., foreign genes), particularly antigens from viral pathogens, oncolytic proteins and/or immunomodulatory proteins. In a preferred aspect, the heterologous coding sequences from a viral pathogen encode hMPV and/or RSV antigens. In one aspect, the hMPV or RSV antigen is an F protein or an M protein. In one aspect, heterologous coding sequences expressing F and M proteins are contained in the modified paramyxovirus nucleic acid sequence and can assemble to produce virus like particles; i.e., hMPV or RSV virus like particles (VLPs). In a preferred aspect, the heterologous protein is an hMPV or RSV fusion protein (F protein). In one aspect, the F protein is from an hMPV virus, particularly an A1, A2, B1 or B2 strain of hMPV virus. In a preferred aspect, the hMPV F protein is selected from the group consisting of SEQ ID NOs: 17-20, or an immunogenic protein with at least 95% sequence identity to any one of the amino acid sequences provided by SEQ ID NOs: 17-20. In a preferred aspect, the hMPV F protein is a soluble F protein, particularly a soluble F protein modified to be stabilized in a pre-fusion or post-fusion configuration, especially a pre-fusion configuration. In one aspect, the RSV F protein is selected from any strain of RSV. In a preferred aspect, the F protein is a protein with the amino acid sequence as provided by SEQ ID NOs: 21, or a protein with at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 21.


In one aspect, the heterologous protein is an hMPV or RSV matrix protein (M protein). In one aspect, the M protein is from an hMPV virus, particularly an A1, A2, B1 or B2 strain of hMPV virus. In a preferred aspect, the hMPV M protein comprises the amino acid sequence as provided by SEQ ID NO: 22, or an immunogenic variant with at least about 95% sequence identity to SEQ ID NO: 22. In one embodiment, the M protein is from an RSV virus. In a preferred aspect, the RSV M protein comprises the amino acid sequence as provided by SEQ ID NO: 23, or an immunogenic variant with at least about 95% sequence identity to SEQ ID NO: 23.


In one aspect, the modified paramyxovirus nucleic acid sequence contains coding sequences for both hMPV and RSV F proteins. In one aspect, the heterologous F protein is a wild-type F protein. In one aspect, the heterologous F protein is a soluble F protein; i.e., modified to omit at least the transmembrane region and cytoplasmic tail of the F protein. In one aspect, the F protein or soluble F protein is modified to express a stabilized post-fusion conformation. In a preferred aspect, the F protein or soluble F protein is modified to form a stabilized pre-fusion conformation. In a preferred aspect, the F protein or modified F protein is an hMPV F protein. In a preferred aspect, the foreign coding sequences are inserted into the paramyxovirus nucleic acid sequence as additional transcriptional units (ATU). In one aspect, an ATU according to the invention comprises or consists of a gene start sequence (GS) the foreign gene coding sequence, and the paramyxovirus gene end (GE) sequence. In a preferred aspect, the ATU is inserted into a multicistronic system which allows the independent expression of the foreign gene(s) by the use of Internal Ribosome Entry Site(s) (IRES) or other such expression systems.


In one aspect, the one or more heterologous coding sequences are for oncolytic proteins. In one aspect, the oncolytic proteins promote selective targeting of tumor cells in vivo or in vitro. In one aspect, the oncolytic proteins reduce viral clearance from the body, e.g., the body of a mammalian or avian subject, especially a human subject. In one aspect, the oncolytic proteins enhance tumor cell killing. In a preferred aspect, the oncolytic proteins are proteins known in the art to enhance tumor cell killing; i.e., apoptosis, e.g., an inducible heat shock protein (hsp), such as, e.g., hsp-70 or gp96. In one aspect, the oncolytic proteins are secreted toxins or prodrug convertases. In one aspect, the one or more heterologous coding sequences are selected from immunomodulating proteins. Immunomodulation is a strategy used in cancer therapy as a way of harnessing the immune system to attack and weaken the defenses of malignant cells.


In this regard, preferred immunomodulating proteins are, for example, interferons (IFN), such as type I, type II or type III interferons and interleukins, such as especially IL-2. In one aspect, the foreign protein may be a protein which can inhibit tumor cell checkpoint inhibitors such as PD-1, PD-L1 or CTLA-4. In one aspect, the foreign protein is an antibody or an antibody fragment having an anti-tumor effect.


In one aspect, the avian paramyxovirus of the invention is selected from any of avian paramyxoviruses (APMV) 1 to 13, also known as Avian avulaviruses 1 to 13. In a preferred aspect, the avian paramyxovirus is a Newcastle Disease Virus (NDV; APMV-1); i.e., the paramyxovirus nucleic acid sequence is an NDV nucleic acid sequence. In one aspect, the NDV is a lentigenic strain of NDV, especially a LaSota or Hitchner B1 strain. A lentigenic strain is defined as having relatively low virulence in birds. In one aspect, the NDV genomic coding sequence is from a moderate to highly virulent strain of NDV, i.e., a mesogenic or velogenic strain, such as, e.g., AF2240. In one aspect, the NDV strain is an oncolytic strain; i.e., a strain with capacity to selectively induce apoptosis in tumors or cancer cells in vivo or in vitro. In one aspect, the oncolytic strain is a LaSota strain of NDV. In a preferred aspect, the oncolytic strain is the highly virulent AF2240 strain of NDV. In one aspect, the F protein of the recombinant paramyxovirus nucleic acid sequence is modified to enhance tumorigenicity; e.g., to comprise a furin cleavage site instead of a trypsin site. In one aspect, the F protein of the recombinant paramyxovirus nucleic acid comprises a mutation of a conserved tyrosine residue, especially an alanine substitution. In one aspect, the paramyxovirus nucleic acid sequence is genetically modified to increase virus thermostability. In one embodiment, the NDV nucleic acid sequence of the invention encodes a wild-type NDV genome, a chimeric NDV genome, a recombinant NDV genome or a virus-like particle comprising NDV elements; especially a recombinant NDV (rNDV or rNDV-FL) as defined by SEQ ID NO: 16.


In one aspect, the NDV obtainable by the method of the invention is used as a virotherapeutic agent for cancer treatment; i.e., is oncolytic. In one aspect, the oncolytic NDV has a direct role in tumor cell killing. In one aspect, the oncolytic NDV has a mode of action including selective targeting of tumor cells, reduction of virus clearance from the subject's body and/or improved tumor cell killing. In one aspect, the oncolytic NDV is engineered to have enhanced therapeutic activity. In one aspect, the enhanced therapeutic activity of the oncolytic NDV includes expression of secreted toxins, prodrug convertases and/or proteins activating antitumor immunity. In one aspect, the anti-tumor effect of the NDV may be potentiated by the route of administration of the NDV particles (e.g., intratumoral, intravenous, etc.) or by co-administration with other agents.


In one aspect, the recombinant NDV of the invention comprises an NDV F protein with a modified protease cleavage site. The presence of a furin site (instead of a trypsin site) in the F protein of some NDV strains correlates with higher virulence. This effect is likely due to more favorable processing of viral proteins for assembly of infectious particles. This modification in a recombinant NDV F protein serves to facilitate the cleavage of the NDV F protein, which optimizes virus release from cells and can substantially increase virus yields during production. Additionally, this feature eliminates the need for trypsin during production, which must otherwise be removed during manufacture. The improved cleavage of the F protein containing an introduced furin site also serves to facilitate TCID50 reading (visible CPEs).


In one embodiment, the wild-type protease (trypsin) cleavage site of the recombinant NDV F protein (SEQ ID NO: 1) is modified to 112 RRQKRJL 117, from Beaudette C strain (“Site 2”, SEQ ID NO: 2; Panda et al., 2004, Microbial Pathogenesis, 36(1):1-10). In one embodiment, the protease cleavage site is modified to 112 RRRRRJL 117 from avian metapneumovirus (“Site 3”, SEQ ID NO: 3; Biacchesi et al., 2006, J. Virol. 80(12): 5798-5806). In one embodiment, the protease cleavage site is modified to 112 RRQRRJF 117 from virulent and mesogenic NDV strains (“Site 5”, SEQ ID NO: 4; de Leeuw et al., 2003, J. Gen. Virol. 84:475-484). In one embodiment, the protease cleavage site is modified to 112 KKRKRJL 117, which is derived from the furin cleavage site of RSV (“Site 6”, SEQ ID NO: 5; Rawling, et al., 2008, J. Virol. 82(12):5986-5998). In a preferred aspect, the trypsin cleavage site of NDV (SEQ ID NO: 1) is replaced with a furin cleavage site, particularly a furin cleavage site selected from the group consisting of SEQ ID NOs: 2-5.


In one embodiment, the F protein of the recombinant NDV virus of the invention comprises a Y527A mutation. Tyrosine 527 is a highly conserved amino acid in the cytoplasmic domain of the NDV F protein. A single Y527A point mutation, when introduced into the F protein of LaSota NDV, resulted in a hyperfusogenic virus with increased replication and immunogenicity (Manoharan, et al., 2016, J. Gen. Virol. 97:287-292). In a preferred embodiment, the Y527A mutation is effected by replacing the codon TAC (Tyr) by GCC (Ala) in the position corresponding to amino acid 527 in the NDV F protein coding sequence.


In one aspect of the invention, the NDV nucleic acid sequence further comprises at least one nucleic acid sequence encoding at least one heterologous antigen. In one embodiment, the heterologous antigen is a wild-type or modified antigen from a human pathogen. In one aspect, the human pathogen is a respiratory pathogen, particularly a respiratory virus. In a preferred aspect, the human pathogen is a human metapneumovirus (hMPV) or a respiratory syncytial virus (RSV), most preferably an hMPV, especially an A1, A2, B1 or B2 strain of hMPV. In one aspect, the heterologous antigen is an F protein, preferably an hMPV or RSV F protein, especially an hMPV F protein. In one aspect, the F protein is a full-length wild-type F protein. In one aspect, the F protein is a soluble mutant lacking at least the transmembrane and cytoplasmic portions. In one aspect, the soluble F protein mutant is further modified to form a stabilized pre-fusion or post-fusion form. In one aspect, the heterologous antigen is an M protein from hMPV or RSV. In a preferred aspect the heterologous antigen is selected from the group comprising or consisting of hMPV F proteins, e.g., as provided by SEQ ID NO: 17-20, RSV F proteins, e.g., such as provided by SEQ ID NO: 21, hMPV M proteins, e.g., as provided by SEQ ID NO: 22 and RSV M proteins, e.g., as provided by SEQ ID NO: 23. In a preferred aspect, the nucleic acid sequence encoding the at least one heterologous antigen is optimized for expression in the final host, e.g., a bird or a mammal, such as a human host.


Optimization of the nucleic acid sequence can include the substitution of preferred codons which are more efficient in a specific host (codon optimization), the inclusion of particular enhancing or promoter sequences and/or the insertion of IRES sequences. In general, codon optimization refers to the use of the degeneracy of the genetic code to change bases within codons in a given nucleic acid sequence such that protein expression is more favorable (e.g., in a particular cell type), while still maintaining the original amino acid sequence of the protein. Codon optimization addresses one or more parameters that are critical to transcription, translation and/or protein folding. In one aspect, the nucleic acid sequences provided by the invention, i.e., the paramyxovirus nucleic acid sequences and/or the nucleic acid sequences encoding heterologous proteins, are codon optimized. In one aspect, the nucleic acid sequence is optimized by the use of an algorithm, e.g., such as those provided by GenScript (GS) or GeneArt (GA). In one aspect, the optimized nucleic acid sequence is modified to contain more CG (also referred to a CpG) dinucleotide pairs than the wild-type sequence; e.g., more than 20% CG dinucleotide pairs in the modified sequence, more than 25%, more than 30%, especially at least 33%. In one aspect, the optimized nucleic acid sequence is modified to contain less CG nucleotide pairs than the wild-type sequence; e.g., less than 20% CG dinucleotide pairs in the modified sequence, less than 10%, less than 5%, especially less than 1%, preferably 0%. In one aspect, the optimized nucleic acid sequence contains a substitute element from a heterologous protein. In a preferred aspect, the substitute element is a signal peptide.


In one aspect, the nucleic acid sequence encoding the heterologous protein is placed between the coding sequences for NDV NP and P proteins, between the coding sequences for NDV P and M proteins, between the coding sequences for NDV M and F proteins, between the coding sequences for NDV F and HN proteins or between the coding sequences for NDV HN and L proteins. In one aspect, the nucleic acid sequence encoding the heterologous protein is placed in the recombinant NDV genome vector by use of restriction sites introduced into the recombinant NDV vector, preferably the recombinant NDV defined by SEQ ID NO: 16, i.e., restriction sites AscI (NP/P), FseI (P/M), MluI (M/F), PacI (F/HN) and SfiI (HN/L). Restriction sites are well-known in the art and can be identified readily by reference to sources such as, e.g., Addgene, an online plasmid repository (https://www.addgene.org/mol-bio-reference/restriction-enzymes/) and a wide range of restriction enzymes are commercially available.


In one aspect, the method of the invention also comprises at least one purification step following culturing step (b). In a preferred aspect, the at least one purification step comprises a filtration step. In a preferred embodiment, the filtration step removes larger viral particles while retaining smaller viral particles. Such filtration steps are outlined, for example, in WO2016/156613A1, which is incorporated herein in its entirety by reference.


In one aspect, the method of the invention is followed by an inactivation step, preferably a formaldehyde inactivation step. That is, following propagation of infectious viral particles, either before, during or after further purification steps, the virus particles are inactivated, i.e., rendered non-infectious. In one aspect, the inactivation step may be accomplished by any method known in the art, such as by application of heat or radiation or by chemical inactivation, e.g., by use of formaldehyde. In a preferred aspect, the inactivation is carried out with formaldehyde.


In one aspect, the method of the current invention is used for the manufacture of a composition for immunization against a virus infection. In one aspect, the virus infection is caused by an avian paramyxovirus, especially a Newcastle Disease virus. In one aspect, the virus infection may be caused by any viral pathogen, preferably a pathogen infecting birds, mammals or, most preferably, humans. In a further aspect, the virus infection is caused by a human respiratory viral pathogen. In a preferred aspect, the virus infection is caused by an hMPV virus or an RSV virus, most preferably an hMPV virus.


In one aspect, the current invention provides a pharmaceutical composition comprising the virus particles obtainable or obtained by the methods disclosed herein for treating and/or preventing an infection, such as e.g. an NDV, hMPV or RSV infection. As used herein, the term “preventing” shall mean “protecting from”, e.g., completely eliminating the development of signs and symptoms of disease following exposure to a pathogen or greatly reducing the severity, duration or serious sequelae of the disease. A pharmaceutical composition is a composition intended for use in the pharmaceutical field or as pharmaceutic. It may optionally contain any pharmaceutically acceptable carrier or excipient, such as buffer substances, stabilizers or further active ingredients, especially ingredients known in connection with pharmaceutical compositions and/or vaccines. In general, the nature of the excipients will depend on the particular mode of administration being employed. Such carriers may include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol and combinations thereof. In a preferred aspect, the pharmaceutically acceptable carrier or excipient is an adjuvant as outlined in greater detail below. The formulation should suit the mode of administration. For instance, parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. In addition to biologically neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like.


In a preferred embodiment the pharmaceutical composition is a vaccine composition, e.g., a vaccine. Preferably, such vaccine composition is conveniently in injectable form. Conventional adjuvants may be employed to enhance the immune response. The pharmaceutical composition or vaccine of the present invention may be used to protect a bird or a mammal, especially a human, susceptible to infection, by means of administering said pharmaceutical composition or vaccine via a systemic or mucosal route. These administrations may include injection via the intramuscular, intravenous, intraperitoneal, intradermal or subcutaneous routes; or via mucosal administration to the oral/alimentary, respiratory or genitourinary tracts. Although the vaccine of the invention may be administered as a single dose, components thereof may also be co-administered together at the same time or at different times. In the case of flock vaccination (i.e., to poultry), the vaccine of the invention may be administered in a variety of ways, e.g., in ovo; through intramuscular or subcutaneous injection; by wing stab; by feather follicle introduction; by nasal, ocular, cloacal or oral routes; by introduction to drinking water, or by spray, e.g., using an atomizer. In one aspect, the pharmaceutical composition comprises at least 101 viral particles, at least 102, at least 103, at least 104, at least 105, at least 106, at least 107, at least 108, at least 109, at least 1010, at least 1011, at least 1012, at least 1013, at least 1014, at least 1015 viral particles, preferably between 106 and 1014 viral particles. In one aspect, the final dose administered to a subject is about 106 particles/kg body weight of subject, about 107 particles/kg, about 108 particles/kg, about 109 particles/kg, about 1010 particles/kg, about 1011 particles/kg, about 1012 particles/kg, about 1013 particles/kg body weight of subject, preferably between about 109 and 1012 particles/kg body weight of subject.


In one embodiment, the pharmaceutical composition further comprises an adjuvant or immunostimulatory compound or substance. Adjuvants are substances that stimulate, enhance or enable a protective immune response against an antigen. The choice of a suitable adjuvant to be mixed with the viral particles made using the methods of the invention is within the knowledge of the person skilled in the art. Suitable adjuvants include an aluminium salt such as aluminium hydroxide or aluminum phosphate, but may also include other metal salts such as those of calcium, magnesium, iron or zinc, or may be an insoluble suspension of acylated tyrosine, or acylated sugars, cationically or anionically derivatized saccharides, or polyphosphazenes. The use of an aluminium hydroxide and/or aluminium phosphate adjuvant is particularly preferred, and antigens are generally adsorbed to these salts. Preferably, aluminium hydroxide is present at a final concentration of 0.15%. A useful aluminium phosphate adjuvant is amorphous aluminium hydroxyphosphate with PO4/Al molar ratio between 0.84 and 0.92. Another adjuvant useful in the current invention is an aluminium salt that is able to provide an aqueous composition having less than 350 ppb heavy metal based on the weight of the aqueous composition, particularly an aluminium hydroxide containing less than 1.25 ppb Cu based on the final pharmaceutical composition comprising the virus, according to WO2013/083726A1, which is incorporated herein by reference in its entirety. The purity of alum adjuvant can influence the stability of viral vaccine compositions (Schlegl, et al., 2015, Vaccine 33:5989-5996). A further useful aluminium-based adjuvant is ASO4, a combination of aluminium hydroxide and monophosphoryl lipid A (MPL).


Immunostimulatory compounds or substances (e.g., adjuvants) may be used in compositions of the invention. In a preferred embodiment, the immunostimulatory compound in pharmaceutical compositions according to the present invention is selected from the group of polycationic substances, especially polycationic peptides, immunostimulatory nucleic acid molecules, preferably immunostimulatory deoxynucleotides, especially oligo(dIdC)13 (SEQ ID NO: 25), peptides containing at least two LysLeuLys motifs, especially peptide KLKLLLLLKLK (SEQ ID NO: 26), neuroactive compounds, especially human growth hormone, aluminium hydroxide, aluminium phosphate, Freund's complete or incomplete adjuvants, or combinations thereof. Preferably, the immunostimulatory substance is a combination of either a polycationic polymer (such as e.g., polyarginine) and immunostimulatory deoxynucleotides or of a peptide containing at least two LysLeuLys motifs and immunostimulatory deoxynucleotides, preferably a combination of KLKLLLLLKLK (SEQ ID NO: 26) and oligo(dIdC)13 (SEQ ID NO: 25); i.e., IC31®. In one aspect, the immunostimulatory substances are oil-in-water or water-in-oil emulsions, MF59, aluminium salts, Freund's complete adjuvant, Freund's incomplete adjuvant, neuroactive compounds, especially human growth hormone, or combinations thereof.


In one embodiment, the pharmaceutical composition may comprise a stabilizer. The term “stabilizer” refers to a substance or vaccine excipient which protects the immunogenic composition of the vaccine from adverse conditions, such as those which occur during heating or freezing, and/or prolongs the stability or shelf-life of the immunogenic composition in a stable and immunogenic condition or state. Examples of stabilizers include, but are not limited to, sugars, such as sucrose, lactose and mannose; sugar alcohols, such as mannitol; amino acids, such as glycine or glutamic acid; and proteins, such as human serum albumin or gelatin.









TABLE A-1





Terms and abbreviations


















aa
Amino acid



ATU
Autonomous Transcriptional Unit



CB
Cell Boost



CD Avian
CDM4 defined avian medium (Hyclone)



Cfu
colony forming units



CMV
Cytomegalovirus



CPE
Cytopathic effect



DNA
Deoxyribonucleic acid



Dpi
Day post infection



DS
Drug substance



FBS
Fetal bovine serum



FGT
fragment



GFP
Green Fluorescent Protein



Gln
Glutamine



GMEM
Glasgow's Minimal Essential medium



GRO-I
EX-CELL EBx-GRO-I



hMPV
human Metapneumovirus



IC
Internal control



LB
Luria-Bertani medium



MOI
Multiplicity of infection



MVC/ml
Million viable cells per mL



MVSB
Master virus seed bank



NDV
Newcastle Disease Virus



NDV FL
NDV full length recombinant plasmid aka rNDV



Nt
nucleotide



PCR
Polymerase Chain Reaction



PD
Process development



Pfu
Plaque forming unit



PRO-I
EX-CELL EBx-PRO-I



PS
Protamine sulfate



RE
Restriction enzyme



RNA
ribonucleic acid



RSV
Respiratory Syncytial virus



TB
Terrific-Broth



TCID50
50% tissue culture infectious dose



TOI
Time of infection



TPCK
N-tosyl-L-phenylalanine chloromethyl ketone



USP
Upstream process



WCB
Working cell bank



WVSB
Working virus seed bank



WP
Work package










EXAMPLES
Example 1 Generation of a Recombinant NDV Full-Length Genomic Plasmid and Helper Plasmids for Viral Rescue

The NDV genome is a single-stranded negative-sense (anti-sense) RNA, which is non-segmented; i.e., follows a sequential pattern of gene expression. The genome of NDV is 15,186 nucleotides long (Krishnamurthy and Samal, 1998, J Gen Virol 79:2419-2424 and de Leeuw and Peeters, 1999, J Gen Virol 80:131-136) and contains six genes which encode nucleocapsid protein (NP), phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin protein (UN) and large protein (L). Additionally, V and W proteins can be produced by RNA editing during P gene transcription (Steward et al., 1993, J Gen Virol 74:2539-2547).


One aspect of NDV and other negative-sense RNA viruses is that naked RNA alone is not infectious. In order to “rescue” infectious viral particles from a host cell transfected with a recombinant virus expression vector, the presence of components of the viral ribonucleoprotein complex (RNP), namely NP, P, and L proteins, is essential to initiate the first round of RNA synthesis. Therefore, the current technique of virus rescue for negative-sense RNA viruses by reverse genetics involves co-transfection into permissive cells of a vector containing the viral genome (rNDV) under the control of a T7 promoter, along with helper plasmids expressing NP, P, and L proteins. The T7 RNA polymerase is provided herein by an expression plasmid (also a helper plasmid) under constitutive expression which is transfected together with the other plasmids into the host cell. This co-transfection results in reconstitution of the RNP complex inside the cell, viral RNA genome transcription and translation and the recovery (“rescue”) of the full virus. From this step onwards, the viral cycle can proceed naturally, i.e., by infection of the host cell, and recombinant virions, encapsidating the modified genome, can be propagated and purified, if desired.


The aim of the work described in this example was to provide a vaccine platform based on an exemplary avian paramyxovirus, Newcastle Disease virus (NDV). Following is described the steps for cloning the NDV LaSota full-length genome into a single plasmid and the helper plasmids necessary for NDV rescue. Briefly, herein were generated 1) a plasmid carrying a recombinant NDV full-length genome under T7 control modified by the insertion of unique restriction sites between each gene-coding sequence, 2) helper plasmids necessary to start the virus replication cycle, i.e., NP, P and L proteins of NDV and 3) a helper expression plasmid constitutively expressing T7 polymerase. The expression system described herein comprises a modified recombinant NDV nucleic acid sequence which allows insertion of foreign genes of interest in different positions in rNDV nucleic acid. The rNDV may be used to rescue wild-type NDV virus particles or to express or deliver foreign proteins or antigens of interest. The expression of heterologous proteins of interest as vaccine antigens is enabled by insertion of nucleic acid sequences encoding them. The level of expression of heterologous proteins may be modulated depending on their position within the rNDV vector and the insertion of optional expression-enhancing sequences such as, e.g., IRES sequences.


Materials and Methods









TABLE 1







Enzymes, buffers, media and reagents









Enzyme
Provider
Ref#





T4 DNA Ligase (HC) 500 u
Promega
M1794


Buffer Cut smart
New England Biolabs (NEB)
B7204S


Buffer 1.1
NEB
B7201S


Buffer 2.1
NEB
B7202S


Buffer 3.1
NEB
B7203S


Buffer tango
Thermo Scientific
BY5


AsiSI
NEB
R0630L


AflII
NEB
R0520L


SbfI
NEB
R3642S


PacI
NEB
R0547L


FseI
NEB
R0588L


MluI-HF
NEB
R3198S


SfiI
NEB
R0123S


AscI
NEB
R0558S


MreI (Sse232I)
Thermo Scientific
ER2021


(10 U/pL)




Platinum Tag Hifi
Life Technologies
11304011


Prime star Max
NEB
TAKR045A


Shrimp Alkaline
NEB
M0371


Phosphatase (rSAP)




Maxcyte EP buffer
Maxcyte, Inc.
B201-100


Hyclone CDM4Avian
GE Healthcare Life Science
SH31036.01


L-Glutamine (200 mM)
Ozyme
BE17-605E


Trypzean
Sigma-Aldrich
T3568









Bacterial Strains Used for Plasmid Construction and Amplification


One Shot® MAX Efficiency® DH5a™-T1R Competent Cells (Life Technologies, catalog number: 12297016), F φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rk−, mk+) phoA supE44 relA1 tonA (confers resistance to phage T1).


JM110 Competent Cells (Agilent Technologies, Catalog #200239), JM110 Genotype: rpsL (Strr) thr leu thi-1 lacY galK galT ara tonA tsx dam dcm supE44 Δ(lac-proAB) [F′ traD36 proAB lacIqZΔM15]. (Genes listed signify mutant alleles. Genes on the F′ episome, however, are wild-type unless indicated otherwise).


Techniques for Plasmid Generation and Sequence Verification


All restriction enzyme digestions and ligations, as well as sequencing for control purposes, were done using techniques well-known in the art and enzymes and buffers as listed in Table 1. Primers used for sequencing are provided by SEQ ID NOs: 43-136. Plasmids were amplified by transforming competent cells using manufacturers' protocols and purification was done using kits. All plasmids generated were checked for sequence correctness by both restriction mapping and sequencing using standard protocols.


Construction of a Modified pBR322 Vector with a Multiple Cloning Site (pBR322Mod a.k.a. pVVS01858) The cloning vector pBR322 (SEQ ID NO: 24) was modified by insertion of a double-stranded nucleotide linker carrying all RE sites necessary for NDV genome cloning including Sse232I, FseI, Pacd, SbfI, AflII and AsSI. The linker was constructed by annealing primers oVVS01279 and oVVS01278 (SEQ ID NOs: 9 and 10, respectively) and inserting the resulting double-stranded nucleotide into the EcoRI/HindIII double-digested pBR322 plasmid (4330 bp) by virtue of half EcoRI and HindIII sites at the ends of the annealed linker. The resulting pBR322Mod plasmid is shown schematically in FIG. 1, with the inserted MCS at the top left, indicating the relative positions of the restriction sites.


Design and Construction of a Recombinant NDV Full Length (NDV-FL a.k.a. rNDV and rNDV-FL) Genome Expression Vector with Sites for Insertion of Heterologous Coding Sequences


Construction of an NDV cDNA clone encoding the complete 15,186 nucleotide NDV genome was undertaken using the published sequence of LaSota strain (Accession No: AF077761) as a reference. In the final rNDV expression vector, as shown in FIG. 2A, the NDV coding sequence contained introduced restriction sites, the T7 polymerase promoter sequence was added at the 5′ terminus of the NDV genome and the hepatitis delta virus ribozyme (HDV Rz) and T7 terminator sequences were added at the 3′ terminus of the NDV sequence (Nakaya et al., 2001, supra). The full-length recombinant NDV expression plasmid (rNDV) was obtained by the digestion, ligation and insertion into pBR322Mod of five individual DNA fragments (FGT1-5; synthesized by GeneArt as follows: FGT1 (T7 promoter sequence plus 1-3209nt of NDV; “A-3209”; SEQ ID NO: 11), FGT2 (3210-6242nt of NDV; SEQ ID NO: 12), FGT3 (6243-9323 nt of NDV; SEQ ID NO: 13), FGT4 (9324-11355 nt of NDV; SEQ ID NO: 14) and FGT5 (11356-15186 of NDV plus HDV-Rz plus T7 terminator; “11356-15186-B”; SEQ ID NO: 15). The restriction sites, which facilitate insertion of heterologous coding sequences into the NDV genome, were inserted between the coding sequences of each of the NDV proteins; i.e., between NP and P, P and M, F and HN and HN and L coding sequences by design of synthetic nucleotide sequences, as shown in FIG. 2B. FIG. 2C shows the placement of the five inserted restriction sites (RET-RE5) relative to the protein coding sequences of the NDV genome and the introduced sequence mutations for each one. FIG. 2E provides two possible constructs containing coding sequences for heterologous antigens, either without or with an internal ribosome entry site (IRES).


Construction of Helper Plasmids for Virus Rescue


Briefly, the helper plasmids were constructed by insertion of coding sequences for NP, P and L proteins of NDV (SEQ ID NOs: 39, 40 and 41, respectively) or T7 RNA polymerase (SEQ ID NO: 42) into pCIneo (SEQ ID NO: 38). The plasmid pCIneo (Promega) is a constitutive mammalian expression vector for transient or stable transfection, which comprises the human cytomegalovirus (CMV) immediate-early enhancer/promoter region (SEQ ID NO: 38).


Sequence Analysis and Correction


Sequence analysis of the full-length cDNA rNDV as constructed above and the NDV L protein helper plasmid both showed 100% identity with the reference sequence (AF077761); however, virus rescue attempts using the rNDV were not successful. When the sequence of the recombinant L-protein helper (see FIG. 2D: “pVVS1861-Helper-prot L NDV”) was compared with the sequence of a reference helper plasmid containing an L-protein coding sequence (FIG. 2D: “pVVS01927-pCIneo-L_(LS)”; kindly provided by Ben Peeters), it was determined that the full-length cDNA rNDV (as well as the L protein in the helper plasmid) had a double frameshift in the coding sequence for the L protein, resulting in a 30 amino acid section of the L-protein being erroneous (FIG. 2D). This discrepancy in the published LaSota sequence has been noted by others in the field (Römer-Oberdörfer, et al., 1999, J Gen Virol 80:2987-2995). The frameshift is not present in the LaSota clone 30 (Accession No.: Y18898.1) or in many other published available sequences of NDV strains (e.g., Hitchner B1, Accession No.: AF375823). Because a fully-functional L protein in both the rNDV genome and the helper plasmid used for rescue is essential for initiation and maintenance of the virus replication cycle, the frameshift was corrected using LaSota clone 30 as a reference sequence, by replacing the portion of the L protein coding sequence with the error with a corrected nucleotide sequence (SEQ ID NO: 36). The sequence of the new, corrected vector was validated by restriction profile and sequencing. The final correct sequence of the rNDV is provided by SEQ ID NO: 16.


Example 2 Production of rNDV in EB66 Cells (Rescue and Propagation One-Step Method)

Virus Rescue in EB66 Cells


Viral rescue of RNA viruses is a method of generating viral particles by transfecting antigenomic cDNA or RNA into producing cells. As used herein, “plaque forming unit” (pfu) is used interchangeably with “viral particle”. In the case of rNDV rescue according to the current invention, the viral replication cycle is launched by the transfection of the antigenomic cDNA (rNDV in pBR322Mod) along with helper plasmids encoding viral polymerase complex cDNAs (helpers P and L) and nucleoprotein (helper NP). Further, because EB66 cells do not constitutively express T7 polymerase, an additional plasmid expressing the T7 polymerase under a CMV promoter is also co-delivered. All helper plasmids are constructed on a pCIneo plasmid (SEQ ID NO: 38) by insertion of coding sequences as provided in Table 2. A schematic comparison of a common rescue and propagation protocol using helper cells and the one-step protocol of the current disclosure is shown in FIG. 3.


The MaxCyte STX® Scalable Transfection System (MaxCyte, Inc.) was used to electroporate DNA into EB66 cells. The transfection was performed at a small scale using the OC-100 processing assembly (100 μL capacity; MaxCyte, Inc.). For each rescue, 10 μg of total DNA was transfected. The amounts and identities of the plasmids used in the transfection protocols are given in Table 2 below.









TABLE 2







Plasmids and amounts used for rNDV transfection.














SEQ ID NO




Conditions
Plasmid
of insert
μg DNA
















rNDV (FL or with
rNDV
16
3.3



heterologous insert)
P helper
40
0.7




NP helper
39
1.6




L helper
41
0.7




T7-RNA-pol
42
4










DNA Preparation

    • Thaw the DNA, homogenize by vortexing the tubes and centrifuge briefly.
    • Transfer into a 1.5 mL microtubes the needed quantity for each tested condition. DNAs must be concentrated enough (ideally 2 to 5 μg/μL) to have a maximum final volume of 10 μL.


EB66 Cell Preparation for Transfection

    • Three days prior to the transfection step (d-3), cell amplification is initiated from a seeding of 0.4×106 cells/mL in CDM4Avian medium+2.5 mM Gln.
    • Cell suspension is homogenized on d0.
    • 1 mL of cell suspension is harvested and cells are counted.


Transfection Protocol

    • Pre-warm culture medium (CDM4 Avian+2.5 mM Gln) to 37° C.
    • Homogenize the cell suspension and take the needed cell quantity for the experiment: 10×106 cells for each transfected condition.
    • Centrifuge 5 min at 1200 rpm.
    • Remove the supernatant and resuspend cells in MaxCyte buffer to a final concentration of 1×108 cells/mL.
    • Transfer 100 μL cell suspension into the respective microtubes containing the prepared DNA.
    • Homogenize cells with DNA, avoiding bubbles.
    • Distribute 100 μL of each transfection mix into OC-100 cassettes.
    • Proceed to the assembly of the OC-100 on MaxCyte device following the instructions on the computer, selecting “OC-100” and the program “OPT9”.
    • Harvest the 100 μL of transfected cells using a P200 pipet and distribute the volume into one well of a 6-well plate, stirring with the pipet tip to distribute the cells in the well.
    • Gently agitate the plate to further distribute the cells.
    • Incubate plate for 30 minutes at 37° C., 7.5% CO2 without shaking.
    • Add 2 mL per well of pre-warmed CDM4 avian+2.5 mM Gln media.
    • Incubate the cells up to 4 days, observing them daily for the appearance of CPEs.


Propagation of Virus on EB66 Cells

    • Add fresh EB66 cells to the transfected cells.
    • Add trypzean daily at 0.75 USP/MVC.
    • Allow to incubate for 2-6 days before harvest.


The above one-step protocol for rescue and propagation can be used to generate a Master Virus Seed Bank, which can in turn be used to infect EB66 cells to produce Drug Substance. An example of such virus production in EB66 cells is shown schematically in FIG. 4.


Example 3 Expression of Heterologous Proteins Inserted into the rNDV Vector

Insertion of Heterologous Coding Sequences into rNDV


Heterologous sequences for insertion into the rNDV vector were synthesized (GeneArt) as autonomous transcription units (ATU), consisting of a gene-end NDV sequence, a start-end NDV sequence, a kozak sequence and the heterologous coding sequence (see FIG. 5A). To ensure correct and efficient NDV virus replication, the ATU was designed to follow the “rule of 6”, based on the observation that efficient replication of NDV RNA is only possible if the genome size is a multiple of six nucleotides (Peeters, et al., 2000, Arch Virol 145(9):1829-45). Each ATU is flanked by a restriction enzyme site for the cloning in the correct position between each gene of NDV, according to need. In the case of cloning hMPV F protein in the NDV genome, 5 different ATUs were synthesized (GeneArt), each with a single restriction site for the insertion of the F protein coding sequence into all possible intergenic positions in the NDV genome. An additional strategy was a construct with the hMPV F protein ATU being flanked by all 5 restriction enzyme sites (SEQ ID NO: 37). In one example (FIG. 5B), the hMPV F protein ATU from the B2 strain is inserted between NDV P and M protein coding sequences using the single FseI RE site (pVVS01866).


As schematically shown in FIG. 6, a coding sequence for green fluorescent protein (GFP; SEQ ID NO: 33) was inserted into rNDV between NDV P and M protein coding sequences by use of the FseI restriction site and a coding sequence for an hMPV matrix protein (M protein; SEQ ID NO: 34) was inserted between NDV NP and P protein coding sequences by use of the AscI restriction site. Viral particles were rescued and used to infect EB66 cells. Briefly, 40 mL of EB66 amplified cells were transferred into T175 flasks, and infected with either NDV-GFP and/or NDV-M at an MOI of 103 TCID50/cell. Infected cultures were incubated at 33° C., 7.5% CO2, 135 rpm (IKA shaker) for one hour of adsorption. Infected cell cultures were then diluted with 60 mL (T175) of production media (CDM4 Avian+4 mM Gln) and re-incubated for infection kinetic. Trypzean at 0.75 USP/106 cells was added in all cultures at infection time and daily post infection.


Cells were fixed with paraformaldehyde and stained 2 days post-infection for flow cytometric analysis. For internal staining, cells were permeabilized before addition of the primary antibody with Perm/Wash buffer (Becton Dickinson). For surface staining, primary antibody was added before fixing the cells. The primary antibody was GTX36792, anti-M hMPV-mouse IgG2a (Genetex) at 2 μg/mL and the secondary antibody was Fluorescein (FITC)-AffiniPure F(ab′)2 Fragment Goat Anti-Mouse IgG+IgM (Jackson ImmunoResearch Cat. #115-096-068). Expression of both GFP and M protein was observed in virtually all infected cells.


As shown in FIG. 7, a coding sequence for full-length hMPV F protein (FhMPV; SEQ ID NO: 37) was inserted between NDV P and M protein coding sequences by use of the FseI restriction site. Resulting recombinant viral particles were rescued and used to infect EB66 cells as described above. Two days post-infection, cells were fixed and stained with anti-NP (NDV) antibodies or anti-F (hMPV antibodies DS7 or MPE8), to assess the expression of total hMPV F protein and the presence of post-fusion forms of hMPV F protein, respectively, by flow cytometry. As shown in FIG. 7, most of the infected cells expressed NDV NP protein, which was observed intracellularly and on the surface. Expression of hMPV F protein, however, was very low both intracellularly and on the surface. This observation suggested less than optimal conditions for expression of the hMPV F protein, in contrast with GFP and hMPV-M as shown in FIG. 6.


Production of rNDV with Heterologous Coding Sequence Inserts


rNDV constructs with GFP and hMPV F protein inserts were assessed for kinetics of heterologous protein production following EB66 cell infection. Transfection was done in 6-well plates using helper plasmids and the rNDV-GFP plasmid (GFP insert between P and M NDV protein coding sequences). 0.5 mL of supernatant from the co-culture step (EB66 cells added on BSR-T7/5 transfected cells) was used to infect 15×106 EB66 cells/well in 6-well plates. The infection kinetics were monitored post-infection (d1, d2 and d3 post-infection) by visualizing GFP expression under a UV microscopy. As shown in FIG. 8A, GFP production was already visible by day 1 after infection as visualized by fluorescence microscopy. Kinetics of viral production of rNDV-FL; rNDV-GFP (P/M) and rNDV-FA1 (P/M) and a LaSota NDV positive control were examined using two multiplicities of infection (MOIs): 10−2 and 10-, calculated based on a theoretical titer of 1×106 log 10 TCID50/mL. The TCID50 assay was done on HeLa cells according to standard protocols. As shown in FIG. 8B, the presence of a heterologous protein did not hinder the production of a high titer. Immunostaining of the HN protein was done for the conditions rNDV-FL and rNDV-FA1. Titers were calculated according the Reed-Muench method and are expressed as Log TCID50/mL. Furthermore, production of hMPV F protein was verified by fluorescence microscopy using antibodies against the NP protein of NDV (Abcam; Ab138719) or the F protein of hMPV (Abcam; Ab94800).


Example 4 Improvement of Heterologous Protein Expression

Codon Optimization of the FL hMPV A1 F Protein


Poor protein expression in host cells can sometimes be attributed to use of sub-optimal codons; therefore, following the observation that hMPV F protein did not express well in the rNDV system, the sequence was optimized for expression in human cells by two commercial providers; GeneArt (GA; FOpt1) and GenScript (GS; FOpt2). The GA optimized sequence was further altered as follows: 1) to have a higher CpG dinucleotide content (33%; FOpt3), 2) to contain the signal sequence from the NDV F protein instead of the hMPV F protein (FOpt4) and 3) to have a lower CpG dinucleotide content (0%; FOpt5) (see Table 3 below).









TABLE 3







Codon-optimized hMPV A1 F protein coding sequences.









Nucleic acid construct
Optimization
SEQ ID NO:





FNative (wild-type)
N/A
27


FOpt1
GeneArt (GA)
28


FOpt2
GenScript (GS)
29


FOpt3
GA + high CpG content
30


FOpt4
GA + signal peptide from
31



NDV F protein



FOpt5
GA + low CpG content
32









Comparative Expression of Optimized hMPV F Protein Coding Sequences in rNDV Following Rescue and Up to Three Passages


The codon-optimized sequences were cloned into the rNDV vector by use of RE FSEI. EB66 cells were transfected with the rNDV vectors and helper plasmids and allowed to rest 4 days after electroporation. Following that, 500 μL of the transfected cells were transferred into fresh EB66 cells and allowed to incubate for 3 days. As shown in FIG. 9A, total cellular expression of hMPV F protein (permeabilized cells) was substantial for all F protein sequences. After purification of the rescued virus, fresh EB66 cells were infected (p1) and allowed to incubate for 3 days before assessing total and cell-surface hMPV F protein expression. As shown in FIG. 9B, the wild-type hMPV F protein nucleic acid sequence resulted in the lowest expression at passage one. Finally, EB66 cells were infected with passage 3 (p3) rNDV particles with the respective hMPV F protein coding sequences. As shown in FIG. 9C, the native hMPV F protein coding sequence again resulted in very low levels of expression. The optimized sequences, however (with the exception of FOpt4), expressed high levels of the protein both internally and on the cell surface. It should be noted that day 1 antibody staining was done at 37° C. and day 3 staining at 4° C. to optimize surface staining, which may account for some increased surface staining observed in FIG. 9C. At higher temperatures, the antibody/F protein complexes may be internalized (Leemans, et al., 2017, J Virol 91(14):e00184-17).


Example 5 Modification of the NDV F Protein in rNDV-GFP

Many of the more virulent NDV strains, i.e., mesogenic and velogenic strains, possess an F protein comprising a furin cleavage site instead of trypsin site, which results in the viral particles being more readily processed in the host cell. Alteration of the trypsin site in the current rNDV vector, therefore, might be expected to improve purification yield and/or enhance replication and immunogenicity in the host. Another mutation in the NDV F protein, a Y527A point mutation, has been shown to enhance fusogenicity of the virus particles and to enhance immunogenicity (Manoharan et al., 2016, supra). As such, either of these changes in the NDV F protein may be expected to enhance production and/or immunogenicity of NDV.


The trypsin cleavage site was modified in the rNDV-GFP expression vector (GFP coding sequence inserted between NDV P and M proteins as shown in FIG. 6A) in four different ways as shown in Table 4 below and a Y527A mutation was also introduced. These modifications should facilitate the replication and assembly of NDV particles in the methods disclosed herein, providing several advantages in terms of production and also with regard to effectiveness of the final drug substance:

    • 1. Improve kinetics and efficiency of virus release from cells, increasing virus yield during production;
    • 2. Avoid the need for daily addition of trypsin and for subsequent trypsin removal during the DSP (in case of trypsin site mutations);
    • 3. Facilitate TCID50 reading due to a more pronounced CPE; and/or
    • 4. Improve viral replication in the subject to be treated.









TABLE 4







Sequence modification of the F protein of rNDV










Change

Source of



in F protein
Sequence
sequence
SEQ ID NO:





Trypsin
112 G-R-Q-G-R↓L 117
La Sota NDV
1


(wild-type)

strain






Furin site 2
112 R-R-R-R-R↓L 117
Beaudette C NDV
2




strain






Furin site 3
112 R-R-Q-R-R↓F 117
avian
3




metapneumovirus






Furin site 5
112 R-R-Q-R-R↓F 117
virulent and
4




mesogenic NDV





rains






Furin site 6
112 K-K-R-K-R↓L 117
RSV F protein
5





Y527A
Y527A
NDV F protein
-









As shown in FIG. 10, modification of the trypsin site of the F protein of rNDV resulted in kinetics of viral rescue similar to or better than kinetics of rNDV with the wild-type (trypsin) cleavage site. The furin site 5 cleavage site, present in some virulent strains of NDV, rendered NDV rescue substantially more efficient, with high levels of GFP expression by day 3 after rescue (see FIG. 10A). The furin site 5 mutant yielded about one log higher titers compared with the wild-type (trypsin) NDV at day 3 and day 6 post-infection (FIG. 10B). Furthermore, the furin site 5 mutant allowed rapid production of high NDV-GFP titers in the absence of trypsin treatment (FIG. 10C).












SEQUENCES















SEQ ID NO: 1


Trypsin cleavage site from LaSota NDV strain F protein (wild-type)


GRQGRL





SEQ ID NO: 2


Furin site from from Beaudette C NDV strain F protein (Furin site 2)


RRQKRL





SEQ ID NO: 3


Furin site from avian metapneumovirus F protein (Furin site 3)


RRRRRL





SEQ ID NO: 4


Furin site from virulent and mesogenic NDV strain F proteins (Furin site 5)


RRQRRF





SEQ ID NO: 5


Furin site from RSV F protein (Furin site 6)


KKRKRL





SEQ ID NO: 6


T7 promoter sequence


TAATACGACTACTATAGG





SEQ ID NO: 7


T7 Terminator sequence


TAAACGGGTCTTGAGGGGTTTTTT





SEQ ID NO: 8


Hepatitis delta virus ribozyme sequence (HDV Rz)


CCCAGCCGTACCGTTCTCCACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCC


ACTCGGATGGCTAAGGGAGTAGCATAACCCCTTGGGGCCTC (106 nt)





SEQ ID NO: 9


oVVS01279 for construction of linker (MCS) for pBR322Mod


AATTCTTTTCGCCGGCGTGGCCGGCCTTTAATTAATCCTGCAGGTCTTAAGTGCGATCGCTA





SEQ ID NO: 10


oVVS01278 for construction of linker (MCS) for pBR322Mod


AGCTTAGCGATCGCACTTAAGACCTGCAGGATTAATTAAAGGCCGGCCACGCCGGCGAAAAG





SEQ ID NO: 11


NDV FGT1 Sse232I-FseI (rNDV A-1-3238 nt)


CGCCGGCGTAATACGACTCACTATAGGGACCAAACAGAGAATCCGTGAGTTACGATAAAAGGCGAA


GGAGCAATTGAAGTCGCACGGGTAGAAGGTGTGAATCTCGAGTGCGAGCCCGAAGCACAAACTCGA


GAAAGCCTTCTGCCAACATGTCTTCCGTATTTGATGAGTACGAACAGCTCCTCGCGGCTCAGACTCG


CCCCAATGGAGCTCATGGAGGGGGAGAAAAAGGGAGTACCTTAAAAGTAGACGTCCCGGTATTCAC


TCTTAACAGTGATGACCCAGAAGATAGATGGAGCTTTGTGGTATTCTGCCTCCGGATTGCTGTTAGC


GAAGATGCCAACAAACCACTCAGGCAAGGTGCTCTCATATCTCTTTTATGCTCCCACTCACAGGTAAT


GAGGAACCATGTTGCCATTGCAGGGAAACAGAATGAAGCCACATTGGCCGTGCTTGAGATTGATGG


CTTTGCCAACGGCACGCCCCAGTTCAACAATAGGAGTGGAGTGTCTGAAGAGAGAGCACAGAGATT


TGCGATGATAGCAGGATCTCTCCCTCGGGCATGCAGCAACGGAACCCCGTTCGTCACAGCCGGGG


CAGAAGATGATGCACCAGAAGACATCACCGATACCCTGGAGAGGATCCTCTCTATCCAGGCTCAAGT


ATGGGTCACAGTAGCAAAAGCCATGACTGCGTATGAGACTGCAGATGAGTCGGAAACAAGGCGAAT


CAATAAGTATATGCAGCAAGGCAGGGTCCAAAAGAAATACATCCTCTACCCCGTATGCAGGAGCACA


ATCCAACTCACGATCAGACAGTCTCTTGCAGTCCGCATCTTTTTGGTTAGCGAGCTCAAGAGAGGCC


GCAACACGGCAGGTGGTACCTCTACTTATTATAACCTGGTAGGGGACGTAGACTCATACATCAGGAA


TACCGGGCTTACTGCATTCTTCTTGACACTCAAGTACGGAATCAACACCAAGACATCAGCCCTTGCA


CTTAGTAGCCTCTCAGGCGACATCCAGAAGATGAAGCAGCTCATGCGTTTGTATCGGATGAAAGGAG


ATAATGCGCCGTACATGACATTACTTGGTGATAGTGACCAGATGAGCTTTGCGCCTGCCGAGTATGC


ACAACTTTACTCCTTTGCCATGGGTATGGCATCAGTCCTAGATAAAGGTACTGGGAAATACCAATTTG


CCAGGGACTTTATGAGCACATCATTCTGGAGACTTGGAGTAGAGTACGCTCAGGCTCAGGGAAGTA


GCATTAACGAGGATATGGCTGCCGAGCTAAAGCTAACCCCAGCAGCAATGAAGGGCCTGGCAGCTG


CTGCCCAACGGGTCTCCGACGATACCAGCAGCATATACATGCCTACTCAACAAGTCGGAGTCCTCAC


TGGGCTTAGCGAGGGGGGGTCCCAAGCTCTACAAGGCGGATCGAATAGATCGCAAGGGCAACCAG


AAGCCGGGGATGGGGAGACCCAATTCCTGGATCTGATGAGAGCGGTAGCAAATAGCATGAGGGAG


GCGCCAAACTCTGCACAGGGCACTCCCCAATCGGGGCCTCCCCCAACTCCTGGGCCATCCCAAGAT


AACGACACCGACTGGGGGTATTGATGGACAAAACCCAGCCTGCTTCCACAAAAACATCCCAATGCCC


TCACCCGTAGTCGACCCCTCGATTTGCGGCTCTATATGACCACACCCTCAAACAAACATCCCCCTCT


TTCCTCCCTCCCCCTGCTGTACAACTCGGCGCGCCCTAGATACCACAGGCACAATGCGGCTCACTA


ACAATCAAAACAGAGCCGAGGGAATTAGAAAAAAGTACGGGTAGAAGAGGGATATTCAGAGATCAG


GGCAAGTCTCCCGAGTCTCTGCTCTCTCCTCTACCTGATAGACCAGGACAAACATGGCCACCTTTAC


AGATGCAGAGATCGACGAGCTATTTGAGACAAGTGGAACTGTCATTGACAACATAATTACAGCCCAG


GGTAAACCAGCAGAGACTGTTGGAAGGAGTGCAATCCCACAAGGCAAGACCAAGGTGCTGAGCGCA


GCATGGGAGAAGCATGGGAGCATCCAGCCACCGGCCAGTCAAGACAACCCCGATCGACAGGACAG


ATCTGACAAACAACCATCCACACCCGAGCAAACGACCCCGCATGACAGCCCGCCGGCCACATCCGC


CGACCAGCCCCCCACCCAGGCCACAGACGAAGCCGTCGACACACAGTTCAGGACCGGAGCAAGCA


ACTCTCTGCTGTTGATGCTTGACAAGCTCAGCAATAAATCGTCCAATGCTAAAAAGGGCCCATGGTG


GAGCCCCCAAGAGGGGAATCACCAACGTCCGACTCAACAGCAGGGGAGTCAACCCAGTCGCGGAA


ACAGTCAGGAAAGACCGCAGAACCAAGTCAAGGCCGCCCCTGGAAACCAGGGCACAGACGTGAAC


ACAGCATATCATGGACAATGGGAGGAGTCACAACTATCAGCTGGTGCAACCCCTCATGCTCTCCGAT


CAAGGCAGAGCCAAGACAATACCCTTGTATCTGCGGATCATGTCCAGCCACCTGTAGACTTTGTGCA


AGCGATGATGTCTATGATGGAGGCGATATCACAGAGAGTAAGTAAGGTTGACTATCAGCTAGATCTT


GTCTTGAAACAGACATCCTCCATCCCTATGATGCGGTCCGAAATCCAACAGCTGAAAACATCTGTTG


CAGTCATGGAAGCCAACTTGGGAATGATGAAGATTCTGGATCCCGGTTGTGCCAACATTTCATCTCT


GAGTGATCTACGGGCAGTTGCCCGATCTCACCCGGTTTTAGTTTCAGGCCCTGGAGACCCCTCTCC


CTATGTGACACAAGGAGGCGAAATGGCACTTAATAAACTTTCGCAACCAGTGCCACATCCATCTGAA


TTGATTAAACCCGCCACTGCATGCGGGCCTGATATAGGAGTGGAAAAGGACACTGTCCGTGCATTGA


TCATGTCACGCCCAATGCACCCGAGTTCTTCAGCCAAGCTCCTAAGCAAGTTAGATGCAGCCGGGTC


GATCGAGGAAATCAGGAAAATCAAGCGCCTTGCTCTAAATGGCTAATTACTACTGCCACACGTAGCG


GGTCCCTGTCCACTCGGCATCACACGGAATCTGCACCGAGTTCCCCCCCGCAGACCCAAGGTCCAA


CTCTCCAAGCGGCAATCCTCTCTCGCTTCCTCAGCCCCACTGAATGGCCGGCC





SEQ ID NO: 12


NDV FGT2 FseI-PacI (rNDV 3213-6242 nt)


GGCCGGCCAACCGTAATTAATCTAGCTACATTTAAGATTAAGAAAAAATACGGGTAGAATTGGAGTG


CCCCAATTGTGCCAAGATGGACTCATCTAGGACAATTGGGCTGTACTTTGATTCTGCCCATTCTTCTA


GCAACCTGTTAGCATTTCCGATCGTCCTACAAGGCACAGGAGATGGGAAGAAGCAAATCGCCCCGC


AATATAGGATCCAGCGCCTTGACTTGTGGACTGATAGTAAGGAGGACTCAGTATTCATCACCACCTA


TGGATTCATCTTTCAAGTTGGGAATGAAGAAGCCACTGTCGGCATGATCGATGATAAACCCAAGCGC


GAGTTACTTTCCGCTGCGATGCTCTGCCTAGGAAGCGTCCCAAATACCGGAGACCTTATTGAGCTGG


CAAGGGCCTGTCTCACTATGATAGTCACATGCAAGAAGAGTGCAACTAATACTGAGAGAATGGTTTT


CTCAGTAGTGCAGGCACCCCAAGTGCTGCAAAGCTGTAGGGTTGTGGCAAACAAATACTCATCAGTG


AATGCAGTCAAGCACGTGAAAGCGCCAGAGAAGATTCCCGGGAGTGGAACCCTAGAATACAAGGTG


AACTTTGTCTCCTTGACTGTGGTACCGAAGAAGGATGTCTACAAGATCCCAGCTGCAGTATTGAAGG


TTTCTGGCTCGAGTCTGTACAATCTTGCGCTCAATGTCACTATTAATGTGGAGGTAGACCCGAGGAG


TCCTTTGGTTAAATCTTTGTCTAAGTCTGACAGCGGATACTATGCTAACCTCTTCTTGCATATTGGACT


TATGACCACCGTAGATAGGAAGGGGAAGAAAGTGACATTTGACAAGCTGGAAAAGAAAATAAGGAGC


CTTGATCTATCTGTCGGGCTCAGTGATGTGCTCGGGCCTTCCGTGTTGGTAAAAGCAAGAGGTGCAC


GGACTAAGCTTTTGGCACCTTTCTTCTCTAGCAGTGGGACAGCCTGCTATCCCATAGCAAATGCTTCT


CCTCAGGTGGCCAAGATACTCTGGAGTCAAACCGCGTGCCTGCGGAGCGTTAAAATCATTATCCAAG


CAGGTACCCAACGCGCTGTCGCAGTGACCGCCGACCACGAGGTTACCTCTACTAAGCTGGAGAAGG


GGCACACCCTTGCCAAATACAATCCTTTTAAGAAATAAGCTGCGTCTCTGAGATTGCGCTCCGCCCA


CTCACCCAGATCATCATGACACAAAAAACTAATCTGTCTTGATTATTTACAGTTAGTTTACGCGTCTAT


CAAGTTAGAAAAAACACGGGTAGAAGATTCTGGATCCCGGTTGGCGCCCTCCAGGTGCAAGATGGG


CTCCAGACCTTCTACCAAGAACCCAGCACCTATGATGCTGACTATCCGGGTTGCGCTGGTACTGAGT


TGCATCTGTCCGGCAAACTCCATTGATGGCAGGCCTCTTGCAGCTGCAGGAATTGTGGTTACAGGA


GACAAAGCCGTCAACATATACACCTCATCCCAGACAGGATCAATCATAGTTAAGCTCCTCCCGAATCT


GCCCAAGGATAAGGAGGCATGTGCGAAAGCCCCCTTGGATGCATACAACAGGACATTGACCACTTT


GCTCACCCCCCTTGGTGACTCTATCCGTAGGATACAAGAGTCTGTGACTACATCTGGAGGGGGGAG


ACAGGGGCGCCTTATAGGCGCCATTATTGGCGGTGTGGCTCTTGGGGTTGCAACTGCCGCACAAAT


AACAGCGGCCGCAGCTCTGATACAAGCCAAACAAAATGCTGCCAACATCCTCCGACTTAAAGAGAGC


ATTGCCGCAACCAATGAGGCTGTGCATGAGGTCACTGACGGATTATCGCAACTAGCAGTGGCAGTT


GGGAAGATGCAGCAGTTTGTTAATGACCAATTTAATAAAACAGCTCAGGAATTAGACTGCATCAAAAT


TGCACAGCAAGTTGGTGTAGAGCTCAACCTGTACCTAACCGAATTGACTACAGTATTCGGACCACAA


ATCACTTCACCTGCTTTAAACAAGCTGACTATTCAGGCACTTTACAATCTAGCTGGTGGAAATATGGA


TTACTTATTGACTAAGTTAGGTGTAGGGAACAATCAACTCAGCTCATTAATCGGTAGCGGCTTAATCA


CCGGTAACCCTATTCTATACGACTCACAGACTCAACTCTTGGGTATACAGGTAACTCTACCTTCAGTC


GGGAACCTAAATAATATGCGTGCCACCTACTTGGAAACCTTATCCGTAAGCACAACCAGGGGATTTG


CCTCGGCACTTGTCCCCAAAGTGGTGACACAGGTCGGTTCTGTGATAGAAGAACTTGACACCTCATA


CTGTATAGAAACTGACTTAGATTTATATTGTACAAGAATAGTAACGTTCCCTATGTCCCCTGGTATTTA


TTCCTGCTTGAGCGGCAATACGTCGGCCTGTATGTACTCAAAGACCGAAGGCGCACTTACTACACCA


TACATGACTATCAAAGGTTCAGTCATCGCCAACTGCAAGATGACAACATGTAGATGTGTAAACCCCC


CGGGTATCATATCGCAAAACTATGGAGAAGCCGTGTCTCTAATAGATAAACAATCATGCAATGTTTTA


TCCTTAGGCGGGATAACTTTAAGGCTCAGTGGGGAATTCGATGTAACTTATCAGAAGAATATCTCAAT


ACAAGATTCTCAAGTAATAATAACAGGCAATCTTGATATCTCAACTGAGCTTGGGAATGTCAACAACT


CGATCAGTAATGCTTTGAATAAGTTAGAGGAAAGCAACAGAAAACTAGACAAAGTCAATGTCAAACTG


ACTAGCACATCTGCTCTCATTACCTATATCGTTTTGACTATCATATCTCTTGTTTTTGGTATACTTAGC


CTGATTCTAGCATGCTACCTAATGTACAAGCAAAAGGCGCAACAAAAGACCTTATTATGGCTTGGGAA


TAATACTCTAGA





SEQ ID NO: 13


NDV FGT3 PacI-SbfI (rNDV 6243-9327 nt)


TTAATTAAGTGAAAGTTCTGGTAGTCTGTCAGTTCAGAGAGTTAAGAAAAAACTACCGGTTGTAGATG


ACCAAAGGACGATATACGGGTAGAACGGTAAGAGAGGCCGCCCCTCAATTGCGAGCCAGGCTTCAC


AACCTCCGTTCTACCGCTTCACCGACAACAGTCCTCAATCATGGACCGCGCCGTTAGCCAAGTTGCG


TTAGAGAATGATGAAAGAGAGGCAAAAAATACATGGCGCTTGATATTCCGGATTGCAATCTTATTCTT


AACAGTAGTGACCTTGGCTATATCTGTAGCCTCCCTTTTATATAGCATGGGGGCTAGCACACCTAGC


GATCTTGTAGGCATACCGACTAGGATTTCCAGGGCAGAAGAAAAGATTACATCTACACTTGGTTCCA


ATCAAGATGTAGTAGATAGGATATATAAGCAAGTGGCCCTTGAGTCTCCGTTGGCATTGTTAAATACT


GAGACCACAATTATGAACGCAATAACATCTCTCTCTTATCAGATTAATGGAGCTGCAAACAACAGTGG


GTGGGGGGCACCTATCCATGACCCAGATTATATAGGGGGGATAGGCAAAGAACTCATTGTAGATGAT


GCTAGTGATGTCACATCATTCTATCCCTCTGCATTTCAAGAACATCTGAATTTTATCCCGGCGCCTAC


TACAGGATCAGGTTGCACTCGAATACCCTCATTTGACATGAGTGCTACCCATTACTGCTACACCCATA


ATGTAATATTGTCTGGATGCAGAGATCACTCACATTCATATCAGTATTTAGCACTTGGTGTGCTCCGG


ACATCTGCAACAGGGAGGGTATTCTTTTCTACTCTGCGTTCCATCAACCTGGACGACACCCAAAATC


GGAAGTCTTGCAGTGTGAGTGCAACTCCCCTGGGTTGTGATATGCTGTGCTCGAAAGTCACGGAGA


CAGAGGAAGAAGATTATAACTCAGCTGTCCCTACGCGGATGGTACATGGGAGGTTAGGGTTCGACG


GCCAGTACCACGAAAAGGACCTAGATGTCACAACATTATTCGGGGACTGGGTGGCCAACTACCCAG


GAGTAGGGGGTGGATCTTTTATTGACAGCCGCGTATGGTTCTCAGTCTACGGAGGGTTAAAACCCAA


TTCACCCAGTGACACTGTACAGGAAGGGAAATATGTGATATACAAGCGATACAATGACACATGCCCA


GATGAGCAAGACTACCAGATTCGAATGGCCAAGTCTTCGTATAAGCCTGGACGGTTTGGTGGGAAAC


GCATACAGCAGGCTATCTTATCTATCAAGGTGTCAACATCCTTAGGCGAAGACCCGGTACTGACTGT


ACCGCCCAACACAGTCACACTCATGGGGGCCGAAGGCAGAATTCTCACAGTAGGGACATCTCATTT


CTTGTATCAACGAGGGTCATCATACTTCTCTCCCGCGTTATTATATCCTATGACAGTCAGCAACAAAA


CAGCCACTCTTCATAGTCCTTATACATTCAATGCCTTCACTCGGCCAGGTAGTATCCCTTGCCAGGCT


TCAGCAAGATGCCCCAACTCGTGTGTTACTGGAGTCTATACAGATCCATATCCCCTAATCTTCTATAG


AAACCACACCTTGCGAGGGGTATTCGGGACAATGCTTGATGGTGTACAAGCAAGACTTAACCCTGCG


TCTGCAGTATTCGATAGCACATCCCGCAGTCGCATTACTCGAGTGAGTTCAAGCAGTACCAAAGCAG


CATACACAACATCAACTTGTTTTAAAGTGGTCAAGACTAATAAGACCTATTGTCTCAGCATTGCTGAAA


TATCTAATACTCTCTTCGGAGAATTCAGAATCGTCCCGTTACTAGTTGAGATCCTCAAAGATGACGGG


GTTAGAGAAGCCAGGTCTGGCTAGTTGAGTCAATTATAAAGGAGTTGGAAAGATGGCATTGTATCAC


CTATCTTCTGCGACATCAAGAATCAAACCGAATGGCCGCGCGGGCCCGAATTCCATGTTGCCAGTTG


ACCACAATCAGCCAGTGCTCATGCGATCAGATTAAGCCTTGTCATTAATCTCTTGATTAAGAAAAAAT


GTAAGTGGCAATGAGATACAAGGCAAAACAGCTCATGGTAAATAATACGGGTAGGACATGGCGAGCT


CCGGTCCTGAAAGGGCAGAGCATCAGATTATCCTACCAGAGCCACACCTGTCTTCACCATTGGTCAA


GCACAAACTACTCTATTACTGGAAATTAACTGGGCTACCGCTTCCTGATGAATGTGACTTCGACCACC


TCATTCTCAGCCGACAATGGAAAAAAATACTTGAATCGGCCTCTCCTGATACTGAGAGAATGATAAAA


CTCGGAAGGGCAGTACACCAAACTCTTAACCACAATTCCAGAATAACCGGAGTGCTCCACCCCAGGT


GTTTAGAACAACTGGCTAATATTGAGGTCCCAGATTCAACCAACAAATTTCGGAAGATTGAGAAGAAG


ATCCAAATTCACAACACGAGATATGGAGAACTGTTCACAAGGCTGTGTACGCATATAGAGAAGAAAC


TGCTGGGGTCATCTTGGTCTAACAATGTCCCCCGGTCAGAGGAGTTCAGCAGCATTCGTACGGATC


CGGCATTCTGGTTTCACTCAAAATGGTCCACAGCCAAGTTTGCATGGCTCCATATAAAACAGATCCA


GAGGCATCTGATGGTGGCAGCTAAGACAAGGTCTGCGGCCAACAAATTGGTGATGCTAACCCATAA


GGTAGGCCAAGTCTTTGTCACTCCTGAACTTGTCGTTGTGACGCATACGAATGAGAACAAGTTCACA


TGTCTTACCCAGGAACTTGTATTGATGTATGCAGATATGATGGAGGGCAGAGATATGGTCAACATAAT


ATCAACCACGGCGGTGCATCTCAGAAGCTTATCAGAGAAAATTGATGACATTTTGCGGTTAATAGAC


GCTCTGGCAAAAGACTTGGGTAATCAAGTCTACGATGTTGTATCACTAATGGAGGGATTTGCATACG


GAGCTGTCCAGCTACTCGAGCCGTCAGGTACATTTGCAGGAGATTTCTTCGCATTCAACCTGCAGG





SEQ ID NO: 14


NDV FGT4 SbfI-AflII (rNDV 9328-11351 nt)


CCTGCAGGAGCTTAAAGACATTCTAATTGGCCTCCTCCCCAATGATATAGCAGAATCCGTGACTCAT


GCAATCGCTACTGTATTCTCTGGTTTAGAACAGAATCAAGCAGCTGAGATGTTGTGTCTGTTGCGTCT


GTGGGGTCACCCACTGCTTGAGTCCCGTATTGCAGCAAAGGCAGTCAGGAGCCAAATGTGCGCACC


GAAAATGGTAGACTTTGATATGATCCTTCAGGTACTGTCTTTCTTCAAGGGAACAATCATCAACGGGT


ACAGAAAGAAGAATGCAGGTGTGTGGCCGCGAGTCAAAGTGGATACAATATATGGGAAGGTCATTG


GGCAACTACATGCAGATTCAGCAGAGATTTCACACGATATCATGTTGAGAGAGTATAAGAGTTTATCT


GCACTTGAATTTGAGCCATGTATAGAATATGACCCTGTCACCAACCTGAGCATGTTCCTAAAAGACAA


GGCAATCGCACACCCCAACGATAATTGGCTTGCCTCGTTTAGGCGGAACCTTCTCTCCGAAGACCAG


AAGAAACATGTAAAAGAAGCAACTTCGACTAATCGCCTCTTGATAGAGTTTTTAGAGTCAAATGATTTT


GATCCATATAAAGAGATGGAATATCTGACGACCCTTGAGTACCTTAGAGATGACAATGTGGCAGTAT


CATACTCGCTCAAGGAGAAGGAAGTGAAAGTTAATGGACGGATCTTCGCTAAGCTGACAAAGAAGTT


AAGGAACTGTCAGGTGATGGCGGAAGGGATCCTAGCCGATCAGATTGCACCTTTCTTTCAGGGAAAT


GGAGTCATTCAGGATAGCATATCCTTGACCAAGAGTATGCTAGCGATGAGTCAACTGTCTTTTAACAG


CAATAAGAAACGTATCACTGACTGTAAAGAAAGAGTATCTTCAAACCGCAATCATGATCCGAAAAGCA


AGAACCGTCGGAGAGTTGCAACCTTCATAACAACTGACCTGCAAAAGTACTGTCTTAATTGGAGATAT


CAGACAATCAAATTGTTCGCTCATGCCATCAATCAGTTGATGGGCCTACCTCACTTCTTCGAATGGAT


TCACCTAAGACTGATGGACACTACGATGTTCGTAGGAGACCCTTTCAATCCTCCAAGTGACCCTACT


GACTGTGACCTCTCAAGAGTCCCTAATGATGACATATATATTGTCAGTGCCAGAGGGGGTATCGAAG


GATTATGCCAGAAGCTATGGACAATGATCTCAATTGCTGCAATCCAACTTGCTGCAGCTAGATCGCAT


TGTCGTGTTGCCTGTATGGTACAGGGTGATAATCAAGTAATAGCAGTAACGAGAGAGGTAAGATCAG


ACGACTCTCCGGAGATGGTGTTGACACAGTTGCATCAAGCCAGTGATAATTTCTTCAAGGAATTAATT


CATGTCAATCATTTGATTGGCCATAATTTGAAGGATCGTGAAACCATCAGGTCAGACACATTCTTCAT


ATACAGCAAACGAATCTTCAAAGATGGAGCAATCCTCAGTCAAGTCCTCAAAAATTCATCTAAATTAG


TGCTAGTGTCAGGTGATCTCAGTGAAAACACCGTAATGTCCTGTGCCAACATTGCCTCTACTGTAGC


ACGGCTATGCGAGAACGGGCTTCCCAAAGACTTCTGTTACTATTTAAACTATATAATGAGTTGTGTGC


AGACATACTTTGACTCTGAGTTCTCCATCACCAACAATTCGCACCCCGATCTTAATCAGTCGTGGATT


GAGGACATCTCTTTTGTGCACTCATATGTTCTGACTCCTGCCCAATTAGGGGGACTGAGTAACCTTCA


ATACTCAAGGCTCTACACTAGAAATATCGGTGACCCGGGGACTACTGCTTTTGCAGAGATCAAGCGA


CTAGAAGCAGTGGGATTACTGAGTCCTAACATTATGACTAATATCTTAACTAGGCCGCCTGGGAATG


GAGATTGGGCCAGTCTGTGCAACGACCCATACTCTTTCAATTTTGAGACTGTTGCAAGCCCAAATATT


GTTCTTAAG





SEQ ID NO: 15


NDV FGT5 AflII-AsiSI (rNDV 11352-15186-B nt)


CTTAAGAAACATACGCAAAGAGTCCTATTTGAAACTTGTTCAAATCCCTTATTGTCTGGAGTGCACAC


AGAGGATAATGAGGCAGAAGAGAAGGCATTGGCTGAATTCTTGCTTAATCAAGAGGTGATTCATCCC


CGCGTTGCGCATGCCATCATGGAGGCAAGCTCTGTAGGTAGGAGAAAGCAAATTCAAGGGCTTGTT


GACACAACAAACACCGTAATTAAGATTGCGCTTACTAGGAGGCCATTAGGCATCAAGAGGCTGATGC


GGATAGTCAATTATTCTAGCATGCATGCAATGCTGTTTAGAGACGATGTTTTTTCCTCCAGTAGATCC


AACCACCCCTTAGTCTCTTCTAATATGTGTTCTCTGACACTGGCAGACTATGCACGGAATAGAAGCTG


GTCACCTTTGACGGGAGGCAGGAAAATACTGGGTGTATCTAATCCTGATACGATAGAACTCGTAGAG


GGTGAGATTCTTAGTGTAAGCGGAGGGTGTACAAGATGTGACAGCGGAGATGAACAATTTACTTGGT


TCCATCTTCCAAGCAATATAGAATTGACCGATGACACCAGCAAGAATCCTCCGATGAGGGTACCATA


TCTCGGGTCAAAGACACAGGAGAGGAGAGCTGCCTCACTTGCAAAAATAGCTCATATGTCGCCACAT


GTAAAGGCTGCCCTAAGGGCATCATCCGTGTTGATCTGGGCTTATGGGGATAATGAAGTAAATTGGA


CTGCTGCTCTTACGATTGCAAAATCTCGGTGTAATGTAAACTTAGAGTATCTTCGGTTACTGTCCCCT


TTACCCACGGCTGGGAATCTTCAACATAGACTAGATGATGGTATAACTCAGATGACATTCACCCCTG


CATCTCTCTACAGGTGTCACCTTACATTCACATATCCAATGATTCTCAAAGGCTGTTCACTGAAGAAG


GAGTCAAAGAGGGGAATGTGGTTTACCAACAGAGTCATGCTCTTGGGTTTATCTCTAATCGAATCGA


TCTTTCCAATGACAACAACCAGGACATATGATGAGATCACACTGCACCTACATAGTAAATTTAGTTGC


TGTATCAGAGAAGCACCTGTTGCGGTTCCTTTCGAGCTACTTGGGGTGGTACCGGAACTGAGGACA


GTGACCTCAAATAAGTTTATGTATGATCCTAGCCCTGTATCGGAGGGAGACTTTGCGAGACTTGACTT


AGCTATCTTCAAGAGTTATGAGCTTAATCTGGAGTCATATCCCACGATAGAGCTAATGAACATTCTTT


CAATATCCAGCGGGAAGTTGATTGGCCAGTCTGTGGTTTCTTATGATGAAGATACCTCCATAAAGAAT


GACGCCATAATAGTGTATGACAATACCCGAAATTGGATCAGTGAAGCTCAGAATTCAGATGTGGTCC


GCCTATTTGAATATGCAGCACTTGAAGTGCTCCTCGACTGTTCTTACCAACTCTATTACCTGAGAGTA


AGAGGCCTAGACAATATTGTCTTATATATGGGTGATTTATACAAGAATATGCCAGGAATTCTACTTTCC


AACATTGCAGCTACAATATCTCATCCCGTCATTCATTCAAGGTTACATGCAGTGGGCCTGGTCAACCA


TGACGGATCACACCAACTTGCAGATACGGATTTTATCGAAATGTCTGCAAAACTATTAGTATCTTGCA


CCCGACGTGTGATCTCCGGCTTATATTCAGGAAATAAGTATGATCTGCTGTTCCCATCTGTCTTAGAT


GATAACCTGAATGAGAAGATGCTTCAGCTGATATCCCGGTTATGCTGTCTGTACACGGTACTCTTTGC


TACAACAAGAGAAATCCCGAAAATAAGAGGCTTAACTGCAGAAGAGAAATGTTCAATACTCACTGAGT


ATTTACTGTCGGATGCTGTGAAACCATTACTTAGCCCCGATCAAGTGAGCTCTATCATGTCTCCTAAC


ATAATTACATTCCCAGCTAATCTGTACTACATGTCTCGGAAGAGCCTCAATTTGATCAGGGAAAGGGA


GGACAGGGATACTATCCTGGCGTTGTTGTTCCCCCAAGAGCCATTATTAGAGTTCCCTTCTGTGCAA


GATATTGGTGCTCGAGTGAAAGATCCATTCACCCGACAACCTGCGGCATTTTTGCAAGAGTTAGATTT


GAGTGCTCCAGCAAGGTATGACGCATTCACACTTAGTCAGATTCATCCTGAACTCACATCTCCAAATC


CGGAGGAAGACTACTTAGTACGATACTTGTTCAGAGGGATAGGGACTGCATCTTCCTCTTGGTATAA


GGCATCTCATCTCCTTTCTGTACCCGAGGTAAGATGTGCAAGACACGGGAACTCCTTATACTTAGCT


GAAGGGAGCGGAGCCATCATGAGTCTTCTCGAACTGCATGTACCACATGAAACTATCTATTACAATA


CGCTCTTTTCAAATGAGATGAACCCCCCGCAACGACATTTCGGGCCGACCCCAACTCAGTTTTTGAA


TTCGGTTGTTTATAGGAATCTACAGGCGGAGGTAACATGCAAAGATGGATTTGTCCAAGAGTTCCGT


CCATTATGGAGAGAAAATACAGAGGAAAGTGACCTGACCTCAGATAAAGCAGTGGGGTATATTACAT


CTGCAGTGCCCTACAGATCTGTATCATTGCTGCATTGTGACATTGAAATTCCTCCAGGGTCCAATCAA


AGCTTACTAGATCAACTAGCTATCAATTTATCTCTGATTGCCATGCATTCTGTAAGGGAGGGCGGGGT


AGTAATCATCAAAGTGTTGTATGCAATGGGATACTACTTTCATCTACTCATGAACTTGTTTGCTCCGTG


TTCCACAAAAGGATATATTCTCTCTAATGGTTATGCATGTCGAGGAGATATGGAGTGTTACCTGGTAT


TTGTCATGGGTTACCTGGGCGGGCCTACATTTGTACATGAGGTGGTGAGGATGGCAAAAACTCTGGT


GCAGCGGCACGGTACGCTCTTGTCTAAATCAGATGAGATCACACTGACCAGGTTATTCACCTCACAG


CGGCAGCGTGTGACAGACATCCTATCCAGTCCTTTACCAAGATTAATAAAGTACTTGAGGAAGAATAT


TGACACTGCGCTGATTGAAGCCGGGGGACAGCCCGTCCGTCCATTCTGTGCGGAGAGTCTGGTGA


GCACGCTAGCGAACATAACTCAGATAACCCAGATTATCGCTAGTCACATTGACACAGTTATCCGGTC


TGTGATATATATGGAAGCTGAGGGTGATCTCGCTGACACAGTATTTCTATTTACCCCTTACAATCTCT


CTACTGACGGGAAAAAGAGGACATCACTTATACAGTGCACGAGACAGATCCTAGAGGTTACAATACT


AGGTCTTAGAGTCGAAAATCTCAATAAAATAGGCGATATAATCAGCCTAGTGCTTAAAGGCATGATCT


CCATGGAGGACCTTATCCCACTAAGGACATACTTGAAGCATAGTACCTGCCCTAAATATTTGAAGGCT


GTCCTAGGTATTACCAAACTCAAAGAAATGTTTACAGACACTTCTGTATTGTACTTGACTCGTGCTCA


ACAAAAATTCTACATGAAAACTATAGGCAATGCAGTCAAAGGATATTACAGTAACTGTGACTCTTAAC


GAAAATCACATATTAATAGGCTCCTTTTTTGGCCAATTGTATTCTTGTTGATTTAATCATATTATGTTAG


AAAAAAGTTGAACCCTGACTCCTTAGGACTCGAATTCGAACTCAAATAAATGTCTTAAAAAAAGGTTG


CGCACAATTATTCTTGAGTGTAGTCTCGTCATTCACCAAATCTTTGTTTGGTGGGTCGGCATGGCATC


TCCACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCCACTCGGATGGCTAAGG


GAGTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGGCGATCGC





SEQ ID NO: 16


LaSota full-length recombinant NDV (″rNDV″ with inserted restriction sites)


ACCAAACAGAGAATCCGTGAGTTACGATAAAAGGCGAAGGAGCAATTGAAGTCGCACGGGTAGAAG


GTGTGAATCTCGAGTGCGAGCCCGAAGCACAAACTCGAGAAAGCCTTCTGCCAACATGTCTTCCGTA


TTTGATGAGTACGAACAGCTCCTCGCGGCTCAGACTCGCCCCAATGGAGCTCATGGAGGGGGAGAA


AAAGGGAGTACCTTAAAAGTAGACGTCCCGGTATTCACTCTTAACAGTGATGACCCAGAAGATAGAT


GGAGCTTTGTGGTATTCTGCCTCCGGATTGCTGTTAGCGAAGATGCCAACAAACCACTCAGGCAAGG


TGCTCTCATATCTCTTTTATGCTCCCACTCACAGGTAATGAGGAACCATGTTGCCATTGCAGGGAAAC


AGAATGAAGCCACATTGGCCGTGCTTGAGATTGATGGCTTTGCCAACGGCACGCCCCAGTTCAACAA


TAGGAGTGGAGTGTCTGAAGAGAGAGCACAGAGATTTGCGATGATAGCAGGATCTCTCCCTCGGGC


ATGCAGCAACGGAACCCCGTTCGTCACAGCCGGGGCAGAAGATGATGCACCAGAAGACATCACCGA


TACCCTGGAGAGGATCCTCTCTATCCAGGCTCAAGTATGGGTCACAGTAGCAAAAGCCATGACTGCG


TATGAGACTGCAGATGAGTCGGAAACAAGGCGAATCAATAAGTATATGCAGCAAGGCAGGGTCCAAA


AGAAATACATCCTCTACCCCGTATGCAGGAGCACAATCCAACTCACGATCAGACAGTCTCTTGCAGT


CCGCATCTTTTTGGTTAGCGAGCTCAAGAGAGGCCGCAACACGGCAGGTGGTACCTCTACTTATTAT


AACCTGGTAGGGGACGTAGACTCATACATCAGGAATACCGGGCTTACTGCATTCTTCTTGACACTCA


AGTACGGAATCAACACCAAGACATCAGCCCTTGCACTTAGTAGCCTCTCAGGCGACATCCAGAAGAT


GAAGCAGCTCATGCGTTTGTATCGGATGAAAGGAGATAATGCGCCGTACATGACATTACTTGGTGAT


AGTGACCAGATGAGCTTTGCGCCTGCCGAGTATGCACAACTTTACTCCTTTGCCATGGGTATGGCAT


CAGTCCTAGATAAAGGTACTGGGAAATACCAATTTGCCAGGGACTTTATGAGCACATCATTCTGGAG


ACTTGGAGTAGAGTACGCTCAGGCTCAGGGAAGTAGCATTAACGAGGATATGGCTGCCGAGCTAAA


GCTAACCCCAGCAGCAATGAAGGGCCTGGCAGCTGCTGCCCAACGGGTCTCCGACGATACCAGCA


GCATATACATGCCTACTCAACAAGTCGGAGTCCTCACTGGGCTTAGCGAGGGGGGGTCCCAAGCTC


TACAAGGCGGATCGAATAGATCGCAAGGGCAACCAGAAGCCGGGGATGGGGAGACCCAATTCCTG


GATCTGATGAGAGCGGTAGCAAATAGCATGAGGGAGGCGCCAAACTCTGCACAGGGCACTCCCCAA


TCGGGGCCTCCCCCAACTCCTGGGCCATCCCAAGATAACGACACCGACTGGGGGTATTGATGGACA


AAACCCAGCCTGCTTCCACAAAAACATCCCAATGCCCTCACCCGTAGTCGACCCCTCGATTTGCGGC


TCTATATGACCACACCCTCAAACAAACATCCCCCTCTTTCCTCCCTCCCCCTGCTGTACAACTCGGC


GCGCCCTAGATACCACAGGCACAATGCGGCTCACTAACAATCAAAACAGAGCCGAGGGAATTAGAA


AAAAGTACGGGTAGAAGAGGGATATTCAGAGATCAGGGCAAGTCTCCCGAGTCTCTGCTCTCTCCTC


TACCTGATAGACCAGGACAAACATGGCCACCTTTACAGATGCAGAGATCGACGAGCTATTTGAGACA


AGTGGAACTGTCATTGACAACATAATTACAGCCCAGGGTAAACCAGCAGAGACTGTTGGAAGGAGTG


CAATCCCACAAGGCAAGACCAAGGTGCTGAGCGCAGCATGGGAGAAGCATGGGAGCATCCAGCCA


CCGGCCAGTCAAGACAACCCCGATCGACAGGACAGATCTGACAAACAACCATCCACACCCGAGCAA


ACGACCCCGCATGACAGCCCGCCGGCCACATCCGCCGACCAGCCCCCCACCCAGGCCACAGACGA


AGCCGTCGACACACAGTTCAGGACCGGAGCAAGCAACTCTCTGCTGTTGATGCTTGACAAGCTCAG


CAATAAATCGTCCAATGCTAAAAAGGGCCCATGGTCGAGCCCCCAAGAGGGGAATCACCAACGTCC


GACTCAACAGCAGGGGAGTCAACCCAGTCGCGGAAACAGTCAGGAAAGACCGCAGAACCAAGTCAA


GGCCGCCCCTGGAAACCAGGGCACAGACGTGAACACAGCATATCATGGACAATGGGAGGAGTCAC


AACTATCAGCTGGTGCAACCCCTCATGCTCTCCGATCAAGGCAGAGCCAAGACAATACCCTTGTATC


TGCGGATCATGTCCAGCCACCTGTAGACTTTGTGCAAGCGATGATGTCTATGATGGAGGCGATATCA


CAGAGAGTAAGTAAGGTTGACTATCAGCTAGATCTTGTCTTGAAACAGACATCCTCCATCCCTATGAT


GCGGTCCGAAATCCAACAGCTGAAAACATCTGTTGCAGTCATGGAAGCCAACTTGGGAATGATGAAG


ATTCTGGATCCCGGTTGTGCCAACATTTCATCTCTGAGTGATCTACGGGCAGTTGCCCGATCTCACC


CGGTTTTAGTTTCAGGCCCTGGAGACCCCTCTCCCTATGTGACACAAGGAGGCGAAATGGCACTTAA


TAAACTTTCGCAACCAGTGCCACATCCATCTGAATTGATTAAACCCGCCACTGCATGCGGGCCTGAT


ATAGGAGTGGAAAAGGACACTGTCCGTGCATTGATCATGTCACGCCCAATGCACCCGAGTTCTTCAG


CCAAGCTCCTAAGCAAGTTAGATGCAGCCGGGTCGATCGAGGAAATCAGGAAAATCAAGCGCCTTG


CTCTAAATGGCTAATTACTACTGCCACACGTAGCGGGTCCCTGTCCACTCGGCATCACACGGAATCT


GCACCGAGTTCCCCCCCGCAGACCCAAGGTCCAACTCTCCAAGCGGCAATCCTCTCTCGCTTCCTC


AGCCCCACTGAATGGCCGGCCAACCGTAATTAATCTAGCTACATTTAAGATTAAGAAAAAATACGGGT


AGAATTGGAGTGCCCCAATTGTGCCAAGATGGACTCATCTAGGACAATTGGGCTGTACTTTGATTCT


GCCCATTCTTCTAGCAACCTGTTAGCATTTCCGATCGTCCTACAAGGCACAGGAGATGGGAAGAAGC


AAATCGCCCCGCAATATAGGATCCAGCGCCTTGACTTGTGGACTGATAGTAAGGAGGACTCAGTATT


CATCACCACCTATGGATTCATCTTTCAAGTTGGGAATGAAGAAGCCACTGTCGGCATGATCGATGAT


AAACCCAAGCGCGAGTTACTTTCCGCTGCGATGCTCTGCCTAGGAAGCGTCCCAAATACCGGAGAC


CTTATTGAGCTGGCAAGGGCCTGTCTCACTATGATAGTCACATGCAAGAAGAGTGCAACTAATACTG


AGAGAATGGTTTTCTCAGTAGTGCAGGCACCCCAAGTGCTGCAAAGCTGTAGGGTTGTGGCAAACAA


ATACTCATCAGTGAATGCAGTCAAGCACGTGAAAGCGCCAGAGAAGATTCCCGGGAGTGGAACCCT


AGAATACAAGGTGAACTTTGTCTCCTTGACTGTGGTACCGAAGAAGGATGTCTACAAGATCCCAGCT


GCAGTATTGAAGGTTTCTGGCTCGAGTCTGTACAATCTTGCGCTCAATGTCACTATTAATGTGGAGGT


AGACCCGAGGAGTCCTTTGGTTAAATCTTTGTCTAAGTCTGACAGCGGATACTATGCTAACCTCTTCT


TGCATATTGGACTTATGACCACCGTAGATAGGAAGGGGAAGAAAGTGACATTTGACAAGCTGGAAAA


GAAAATAAGGAGCCTTGATCTATCTGTCGGGCTCAGTGATGTGCTCGGGCCTTCCGTGTTGGTAAAA


GCAAGAGGTGCACGGACTAAGCTTTTGGCACCTTTCTTCTCTAGCAGTGGGACAGCCTGCTATCCCA


TAGCAAATGCTTCTCCTCAGGTGGCCAAGATACTCTGGAGTCAAACCGCGTGCCTGCGGAGCGTTA


AAATCATTATCCAAGCAGGTACCCAACGCGCTGTCGCAGTGACCGCCGACCACGAGGTTACCTCTA


CTAAGCTGGAGAAGGGGCACACCCTTGCCAAATACAATCCTTTTAAGAAATAAGCTGCGTCTCTGAG


ATTGCGCTCCGCCCACTCACCCAGATCATCATGACACAAAAAACTAATCTGTCTTGATTATTTACAGT


TAGTTTACGCGTCTATCAAGTTAGAAAAAACACGGGTAGAAGATTCTGGATCCCGGTTGGCGCCCTC


CAGGTGCAAGATGGGCTCCAGACCTTCTACCAAGAACCCAGCACCTATGATGCTGACTATCCGGGTT


GCGCTGGTACTGAGTTGCATCTGTCCGGCAAACTCCATTGATGGCAGGCCTCTTGCAGCTGCAGGA


ATTGTGGTTACAGGAGACAAAGCCGTCAACATATACACCTCATCCCAGACAGGATCAATCATAGTTAA


GCTCCTCCCGAATCTGCCCAAGGATAAGGAGGCATGTGCGAAAGCCCCCTTGGATGCATACAACAG


GACATTGACCACTTTGCTCACCCCCCTTGGTGACTCTATCCGTAGGATACAAGAGTCTGTGACTACA


TCTGGAGGGGGGAGACAGGGGCGCCTTATAGGCGCCATTATTGGCGGTGTGGCTCTTGGGGTTGC


AACTGCCGCACAAATAACAGCGGCCGCAGCTCTGATACAAGCCAAACAAAATGCTGCCAACATCCTC


CGACTTAAAGAGAGCATTGCCGCAACCAATGAGGCTGTGCATGAGGTCACTGACGGATTATCGCAA


CTAGCAGTGGCAGTTGGGAAGATGCAGCAGTTTGTTAATGACCAATTTAATAAAACAGCTCAGGAATT


AGACTGCATCAAAATTGCACAGCAAGTTGGTGTAGAGCTCAACCTGTACCTAACCGAATTGACTACA


GTATTCGGACCACAAATCACTTCACCTGCTTTAAACAAGCTGACTATTCAGGCACTTTACAATCTAGC


TGGTGGAAATATGGATTACTTATTGACTAAGTTAGGTGTAGGGAACAATCAACTCAGCTCATTAATCG


GTAGCGGCTTAATCACCGGTAACCCTATTCTATACGACTCACAGACTCAACTCTTGGGTATACAGGTA


ACTCTACCTTCAGTCGGGAACCTAAATAATATGCGTGCCACCTACTTGGAAACCTTATCCGTAAGCAC


AACCAGGGGATTTGCCTCGGCACTTGTCCCCAAAGTGGTGACACAGGTCGGTTCTGTGATAGAAGA


ACTTGACACCTCATACTGTATAGAAACTGACTTAGATTTATATTGTACAAGAATAGTAACGTTCCCTAT


GTCCCCTGGTATTTATTCCTGCTTGAGCGGCAATACGTCGGCCTGTATGTACTCAAAGACCGAAGGC


GCACTTACTACACCATACATGACTATCAAAGGTTCAGTCATCGCCAACTGCAAGATGACAACATGTAG


ATGTGTAAACCCCCCGGGTATCATATCGCAAAACTATGGAGAAGCCGTGTCTCTAATAGATAAACAAT


CATGCAATGTTTTATCCTTAGGCGGGATAACTTTAAGGCTCAGTGGGGAATTCGATGTAACTTATCAG


AAGAATATCTCAATACAAGATTCTCAAGTAATAATAACAGGCAATCTTGATATCTCAACTGAGCTTGG


GAATGTCAACAACTCGATCAGTAATGCTTTGAATAAGTTAGAGGAAAGCAACAGAAAACTAGACAAAG


TCAATGTCAAACTGACTAGCACATCTGCTCTCATTACCTATATCGTTTTGACTATCATATCTCTTGTTTT


TGGTATACTTAGCCTGATTCTAGCATGCTACCTAATGTACAAGCAAAAGGCGCAACAAAAGACCTTAT


TATGGCTTGGGAATAATACTCTAGATCAGATGAGAGCCACTACAAAAATGTGAACACAGATGAGGAA


CGAAGGTTTCCCTAATAGTTAATTAAGTGAAAGTTCTGGTAGTCTGTCAGTTCAGAGAGTTAAGAAAA


AACTACCGGTTGTAGATGACCAAAGGACGATATACGGGTAGAACGGTAAGAGAGGCCGCCCCTCAA


TTGCGAGCCAGGCTTCACAACCTCCGTTCTACCGCTTCACCGACAACAGTCCTCAATCATGGACCGC


GCCGTTAGCCAAGTTGCGTTAGAGAATGATGAAAGAGAGGCAAAAAATACATGGCGCTTGATATTCC


GGATTGCAATCTTATTCTTAACAGTAGTGACCTTGGCTATATCTGTAGCCTCCCTTTTATATAGCATGG


GGGCTAGCACACCTAGCGATCTTGTAGGCATACCGACTAGGATTTCCAGGGCAGAAGAAAAGATTAC


ATCTACACTTGGTTCCAATCAAGATGTAGTAGATAGGATATATAAGCAAGTGGCCCTTGAGTCTCCGT


TGGCATTGTTAAATACTGAGACCACAATTATGAACGCAATAACATCTCTCTCTTATCAGATTAATGGAG


CTGCAAACAACAGTGGGTGGGGGGCACCTATCCATGACCCAGATTATATAGGGGGGATAGGCAAAG


AACTCATTGTAGATGATGCTAGTGATGTCACATCATTCTATCCCTCTGCATTTCAAGAACATCTGAATT


TTATCCCGGCGCCTACTACAGGATCAGGTTGCACTCGAATACCCTCATTTGACATGAGTGCTACCCA


TTACTGCTACACCCATAATGTAATATTGTCTGGATGCAGAGATCACTCACATTCATATCAGTATTTAGC


ACTTGGTGTGCTCCGGACATCTGCAACAGGGAGGGTATTCTTTTCTACTCTGCGTTCCATCAACCTG


GACGACACCCAAAATCGGAAGTCTTGCAGTGTGAGTGCAACTCCCCTGGGTTGTGATATGCTGTGCT


CGAAAGTCACGGAGACAGAGGAAGAAGATTATAACTCAGCTGTCCCTACGCGGATGGTACATGGGA


GGTTAGGGTTCGACGGCCAGTACCACGAAAAGGACCTAGATGTCACAACATTATTCGGGGACTGGG


TGGCCAACTACCCAGGAGTAGGGGGTGGATCTTTTATTGACAGCCGCGTATGGTTCTCAGTCTACG


GAGGGTTAAAACCCAATTCACCCAGTGACACTGTACAGGAAGGGAAATATGTGATATACAAGCGATA


CAATGACACATGCCCAGATGAGCAAGACTACCAGATTCGAATGGCCAAGTCTTCGTATAAGCCTGGA


CGGTTTGGTGGGAAACGCATACAGCAGGCTATCTTATCTATCAAGGTGTCAACATCCTTAGGCGAAG


ACCCGGTACTGACTGTACCGCCCAACACAGTCACACTCATGGGGGCCGAAGGCAGAATTCTCACAG


TAGGGACATCTCATTTCTTGTATCAACGAGGGTCATCATACTTCTCTCCCGCGTTATTATATCCTATGA


CAGTCAGCAACAAAACAGCCACTCTTCATAGTCCTTATACATTCAATGCCTTCACTCGGCCAGGTAGT


ATCCCTTGCCAGGCTTCAGCAAGATGCCCCAACTCGTGTGTTACTGGAGTCTATACAGATCCATATC


CCCTAATCTTCTATAGAAACCACACCTTGCGAGGGGTATTCGGGACAATGCTTGATGGTGTACAAGC


AAGACTTAACCCTGCGTCTGCAGTATTCGATAGCACATCCCGCAGTCGCATTACTCGAGTGAGTTCA


AGCAGTACCAAAGCAGCATACACAACATCAACTTGTTTTAAAGTGGTCAAGACTAATAAGACCTATTG


TCTCAGCATTGCTGAAATATCTAATACTCTCTTCGGAGAATTCAGAATCGTCCCGTTACTAGTTGAGA


TCCTCAAAGATGACGGGGTTAGAGAAGCCAGGTCTGGCTAGTTGAGTCAATTATAAAGGAGTTGGAA


AGATGGCATTGTATCACCTATCTTCTGCGACATCAAGAATCAAACCGAATGGCCGCGCGGGCCCGAA


TTCCATGTTGCCAGTTGACCACAATCAGCCAGTGCTCATGCGATCAGATTAAGCCTTGTCATTAATCT


CTTGATTAAGAAAAAATGTAAGTGGCAATGAGATACAAGGCAAAACAGCTCATGGTAAATAATACGGG


TAGGACATGGCGAGCTCCGGTCCTGAAAGGGCAGAGCATCAGATTATCCTACCAGAGCCACACCTG


TCTTCACCATTGGTCAAGCACAAACTACTCTATTACTGGAAATTAACTGGGCTACCGCTTCCTGATGA


ATGTGACTTCGACCACCTCATTCTCAGCCGACAATGGAAAAAAATACTTGAATCGGCCTCTCCTGATA


CTGAGAGAATGATAAAACTCGGAAGGGCAGTACACCAAACTCTTAACCACAATTCCAGAATAACCGG


AGTGCTCCACCCCAGGTGTTTAGAACAACTGGCTAATATTGAGGTCCCAGATTCAACCAACAAATTTC


GGAAGATTGAGAAGAAGATCCAAATTCACAACACGAGATATGGAGAACTGTTCACAAGGCTGTGTAC


GCATATAGAGAAGAAACTGCTGGGGTCATCTTGGTCTAACAATGTCCCCCGGTCAGAGGAGTTCAGC


AGCATTCGTACGGATCCGGCATTCTGGTTTCACTCAAAATGGTCCACAGCCAAGTTTGCATGGCTCC


ATATAAAACAGATCCAGAGGCATCTGATGGTGGCAGCTAAGACAAGGTCTGCGGCCAACAAATTGGT


GATGCTAACCCATAAGGTAGGCCAAGTCTTTGTCACTCCTGAACTTGTCGTTGTGACGCATACGAAT


GAGAACAAGTTCACATGTCTTACCCAGGAACTTGTATTGATGTATGCAGATATGATGGAGGGCAGAG


ATATGGTCAACATAATATCAACCACGGCGGTGCATCTCAGAAGCTTATCAGAGAAAATTGATGACATT


TTGCGGTTAATAGACGCTCTGGCAAAAGACTTGGGTAATCAAGTCTACGATGTTGTATCACTAATGGA


GGGATTTGCATACGGAGCTGTCCAGCTACTCGAGCCGTCAGGTACATTTGCAGGAGATTTCTTCGCA


TTCAACCTGCAGGAGCTTAAAGACATTCTAATTGGCCTCCTCCCCAATGATATAGCAGAATCCGTGAC


TCATGCAATCGCTACTGTATTCTCTGGTTTAGAACAGAATCAAGCAGCTGAGATGTTGTGTCTGTTGC


GTCTGTGGGGTCACCCACTGCTTGAGTCCCGTATTGCAGCAAAGGCAGTCAGGAGCCAAATGTGCG


CACCGAAAATGGTAGACTTTGATATGATCCTTCAGGTACTGTCTTTCTTCAAGGGAACAATCATCAAC


GGGTACAGAAAGAAGAATGCAGGTGTGTGGCCGCGAGTCAAAGTGGATACAATATATGGGAAGGTC


ATTGGGCAACTACATGCAGATTCAGCAGAGATTTCACACGATATCATGTTGAGAGAGTATAAGAGTTT


ATCTGCACTTGAATTTGAGCCATGTATAGAATATGACCCTGTCACCAACCTGAGCATGTTCCTAAAAG


ACAAGGCAATCGCACACCCCAACGATAATTGGCTTGCCTCGTTTAGGCGGAACCTTCTCTCCGAAGA


CCAGAAGAAACATGTAAAAGAAGCAACTTCGACTAATCGCCTCTTGATAGAGTTTTTAGAGTCAAATG


ATTTTGATCCATATAAAGAGATGGAATATCTGACGACCCTTGAGTACCTTAGAGATGACAATGTGGCA


GTATCATACTCGCTCAAGGAGAAGGAAGTGAAAGTTAATGGACGGATCTTCGCTAAGCTGACAAAGA


AGTTAAGGAACTGTCAGGTGATGGCGGAAGGGATCCTAGCCGATCAGATTGCACCTTTCTTTCAGGG


AAATGGAGTCATTCAGGATAGCATATCCTTGACCAAGAGTATGCTAGCGATGAGTCAACTGTCTTTTA


ACAGCAATAAGAAACGTATCACTGACTGTAAAGAAAGAGTATCTTCAAACCGCAATCATGATCCGAAA


AGCAAGAACCGTCGGAGAGTTGCAACCTTCATAACAACTGACCTGCAAAAGTACTGTCTTAATTGGA


GATATCAGACAATCAAATTGTTCGCTCATGCCATCAATCAGTTGATGGGCCTACCTCACTTCTTCGAA


TGGATTCACCTAAGACTGATGGACACTACGATGTTCGTAGGAGACCCTTTCAATCCTCCAAGTGACC


CTACTGACTGTGACCTCTCAAGAGTCCCTAATGATGACATATATATTGTCAGTGCCAGAGGGGGTAT


CGAAGGATTATGCCAGAAGCTATGGACAATGATCTCAATTGCTGCAATCCAACTTGCTGCAGCTAGA


TCGCATTGTCGTGTTGCCTGTATGGTACAGGGTGATAATCAAGTAATAGCAGTAACGAGAGAGGTAA


GATCAGACGACTCTCCGGAGATGGTGTTGACACAGTTGCATCAAGCCAGTGATAATTTCTTCAAGGA


ATTAATTCATGTCAATCATTTGATTGGCCATAATTTGAAGGATCGTGAAACCATCAGGTCAGACACATT


CTTCATATACAGCAAACGAATCTTCAAAGATGGAGCAATCCTCAGTCAAGTCCTCAAAAATTCATCTA


AATTAGTGCTAGTGTCAGGTGATCTCAGTGAAAACACCGTAATGTCCTGTGCCAACATTGCCTCTACT


GTAGCACGGCTATGCGAGAACGGGCTTCCCAAAGACTTCTGTTACTATTTAAACTATATAATGAGTTG


TGTGCAGACATACTTTGACTCTGAGTTCTCCATCACCAACAATTCGCACCCCGATCTTAATCAGTCGT


GGATTGAGGACATCTCTTTTGTGCACTCATATGTTCTGACTCCTGCCCAATTAGGGGGACTGAGTAA


CCTTCAATACTCAAGGCTCTACACTAGAAATATCGGTGACCCGGGGACTACTGCTTTTGCAGAGATC


AAGCGACTAGAAGCAGTGGGATTACTGAGTCCTAACATTATGACTAATATCTTAACTAGGCCGCCTG


GGAATGGAGATTGGGCCAGTCTGTGCAACGACCCATACTCTTTCAATTTTGAGACTGTTGCAAGCCC


AAATATTGTTCTTAAGAAACATACGCAAAGAGTCCTATTTGAAACTTGTTCAAATCCCTTATTGTCTGG


AGTGCACACAGAGGATAATGAGGCAGAAGAGAAGGCATTGGCTGAATTCTTGCTTAATCAAGAGGTG


ATTCATCCCCGCGTTGCGCATGCCATCATGGAGGCAAGCTCTGTAGGTAGGAGAAAGCAAATTCAAG


GGCTTGTTGACACAACAAACACCGTAATTAAGATTGCGCTTACTAGGAGGCCATTAGGCATCAAGAG


GCTGATGCGGATAGTCAATTATTCTAGCATGCATGCAATGCTGTTTAGAGACGATGTTTTTTCCTCCA


GTAGATCCAACCACCCCTTAGTCTCTTCTAATATGTGTTCTCTGACACTGGCAGACTATGCACGGAAT


AGAAGCTGGTCACCTTTGACGGGAGGCAGGAAAATACTGGGTGTATCTAATCCTGATACGATAGAAC


TCGTAGAGGGTGAGATTCTTAGTGTAAGCGGAGGGTGTACAAGATGTGACAGCGGAGATGAACAAT


TTACTTGGTTCCATCTTCCAAGCAATATAGAATTGACCGATGACACCAGCAAGAATCCTCCGATGAGG


GTACCATATCTCGGGTCAAAGACACAGGAGAGGAGAGCTGCCTCACTTGCAAAAATAGCTCATATGT


CGCCACATGTAAAGGCTGCCCTAAGGGCATCATCCGTGTTGATCTGGGCTTATGGGGATAATGAAGT


AAATTGGACTGCTGCTCTTACGATTGCAAAATCTCGGTGTAATGTAAACTTAGAGTATCTTCGGTTAC


TGTCCCCTTTACCCACGGCTGGGAATCTTCAACATAGACTAGATGATGGTATAACTCAGATGACATTC


ACCCCTGCATCTCTCTACAGGGTGTCACCTTACATTCACATATCCAATGATTCTCAAAGGCTGTTCAC


TGAAGAAGGAGTCAAAGAGGGGAATGTGGTTTACCAACAGATCATGCTCTTGGGTTTATCTCTAATC


GAATCGATCTTTCCAATGACAACAACCAGGACATATGATGAGATCACACTGCACCTACATAGTAAATT


TAGTTGCTGTATCAGAGAAGCACCTGTTGCGGTTCCTTTCGAGCTACTTGGGGTGGTACCGGAACTG


AGGACAGTGACCTCAAATAAGTTTATGTATGATCCTAGCCCTGTATCGGAGGGAGACTTTGCGAGAC


TTGACTTAGCTATCTTCAAGAGTTATGAGCTTAATCTGGAGTCATATCCCACGATAGAGCTAATGAAC


ATTCTTTCAATATCCAGCGGGAAGTTGATTGGCCAGTCTGTGGTTTCTTATGATGAAGATACCTCCAT


AAAGAATGACGCCATAATAGTGTATGACAATACCCGAAATTGGATCAGTGAAGCTCAGAATTCAGATG


TGGTCCGCCTATTTGAATATGCAGCACTTGAAGTGCTCCTCGACTGTTCTTACCAACTCTATTACCTG


AGAGTAAGAGGCCTAGACAATATTGTCTTATATATGGGTGATTTATACAAGAATATGCCAGGAATTCT


ACTTTCCAACATTGCAGCTACAATATCTCATCCCGTCATTCATTCAAGGTTACATGCAGTGGGCCTGG


TCAACCATGACGGATCACACCAACTTGCAGATACGGATTTTATCGAAATGTCTGCAAAACTATTAGTA


TCTTGCACCCGACGTGTGATCTCCGGCTTATATTCAGGAAATAAGTATGATCTGCTGTTCCCATCTGT


CTTAGATGATAACCTGAATGAGAAGATGCTTCAGCTGATATCCCGGTTATGCTGTCTGTACACGGTAC


TCTTTGCTACAACAAGAGAAATCCCGAAAATAAGAGGCTTAACTGCAGAAGAGAAATGTTCAATACTC


ACTGAGTATTTACTGTCGGATGCTGTGAAACCATTACTTAGCCCCGATCAAGTGAGCTCTATCATGTC


TCCTAACATAATTACATTCCCAGCTAATCTGTACTACATGTCTCGGAAGAGCCTCAATTTGATCAGGG


AAAGGGAGGACAGGGATACTATCCTGGCGTTGTTGTTCCCCCAAGAGCCATTATTAGAGTTCCCTTC


TGTGCAAGATATTGGTGCTCGAGTGAAAGATCCATTCACCCGACAACCTGCGGCATTTTTGCAAGAG


TTAGATTTGAGTGCTCCAGCAAGGTATGACGCATTCACACTTAGTCAGATTCATCCTGAACTCACATC


TCCAAATCCGGAGGAAGACTACTTAGTACGATACTTGTTCAGAGGGATAGGGACTGCATCTTCCTCT


TGGTATAAGGCATCTCATCTCCTTTCTGTACCCGAGGTAAGATGTGCAAGACACGGGAACTCCTTAT


ACTTAGCTGAAGGGAGCGGAGCCATCATGAGTCTTCTCGAACTGCATGTACCACATGAAACTATCTA


TTACAATACGCTCTTTTCAAATGAGATGAACCCCCCGCAACGACATTTCGGGCCGACCCCAACTCAG


TTTTTGAATTCGGTTGTTTATAGGAATCTACAGGCGGAGGTAACATGCAAAGATGGATTTGTCCAAGA


GTTCCGTCCATTATGGAGAGAAAATACAGAGGAAAGTGACCTGACCTCAGATAAAGCAGTGGGGTAT


ATTACATCTGCAGTGCCCTACAGATCTGTATCATTGCTGCATTGTGACATTGAAATTCCTCCAGGGTC


CAATCAAAGCTTACTAGATCAACTAGCTATCAATTTATCTCTGATTGCCATGCATTCTGTAAGGGAGG


GCGGGGTAGTAATCATCAAAGTGTTGTATGCAATGGGATACTACTTTCATCTACTCATGAACTTGTTT


GCTCCGTGTTCCACAAAAGGATATATTCTCTCTAATGGTTATGCATGTCGAGGAGATATGGAGTGTTA


CCTGGTATTTGTCATGGGTTACCTGGGCGGGCCTACATTTGTACATGAGGTGGTGAGGATGGCAAAA


ACTCTGGTGCAGCGGCACGGTACGCTCTTGTCTAAATCAGATGAGATCACACTGACCAGGTTATTCA


CCTCACAGCGGCAGCGTGTGACAGACATCCTATCCAGTCCTTTACCAAGATTAATAAAGTACTTGAG


GAAGAATATTGACACTGCGCTGATTGAAGCCGGGGGACAGCCCGTCCGTCCATTCTGTGCGGAGAG


TCTGGTGAGCACGCTAGCGAACATAACTCAGATAACCCAGATTATCGCTAGTCACATTGACACAGTT


ATCCGGTCTGTGATATATATGGAAGCTGAGGGTGATCTCGCTGACACAGTATTTCTATTTACCCCTTA


CAATCTCTCTACTGACGGGAAAAAGAGGACATCACTTATACAGTGCACGAGACAGATCCTAGAGGTT


ACAATACTAGGTCTTAGAGTCGAAAATCTCAATAAAATAGGCGATATAATCAGCCTAGTGCTTAAAGG


CATGATCTCCATGGAGGACCTTATCCCACTAAGGACATACTTGAAGCATAGTACCTGCCCTAAATATT


TGAAGGCTGTCCTAGGTATTACCAAACTCAAAGAAATGTTTACAGACACTTCTGTATTGTACTTGACT


CGTGCTCAACAAAAATTCTACATGAAAACTATAGGCAATGCAGTCAAAGGATATTACAGTAACTGTGA


CTCTTAACGAAAATCACATATTAATAGGCTCCTTTTTTGGCCAATTGTATTCTTGTTGATTTAATCATAT


TATGTTAGAAAAAAGTTGAACCCTGACTCCTTAGGACTCGAATTCGAACTCAAATAAATGTCTTAAAAA


AAGGTTGCGCACAATTATTCTTGAGTGTAGTCTCGTCATTCACCAAATCTTTGTTTGGT





SEQ ID NO: 17


F protein of the A1 hMPV isolate ″NL/1/00″ (Accession No.: AAK62968)


MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVGDVENLTCADGPSLIKTE


LDLTKSALRELRTVSADQLAREEQIENPRQSRFVLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNAL


KKTNEAVSTLGNGVRVLATAVRELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSD


NAGITPAISLDLMTDAELARAVSNMPTSAGQIKLMLENRAMVRRKGFGFLIGVYGSSVIYMVQLPIFGVI


DTPCWIVKAAPSCSGKKGNYACLLREDQGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAE


QSKECNINISTTNYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKOLNKGCSYITNQDA


DTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPVKFPEDQFNVALDQVFESIENSQALVDQSNRILSSA


EKGNTGFIIVIILIAVLGSTMILVSVFIIIKKTKKPTGAPPELSGVTNNGFIPHN





SEQ ID NO: 18


F protein of the A2 hMPV isolate ″TN/92-4″ (Accession No.: ABM67072)


MSWKVVIIFSLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVGDVENLTCSDGPSLIKTE


LDLTKSALRELKTVSADQLAREEQIENPRQSRFVLGAIALGVAAAAAVTAGVAIAKTIRLESEVTAINNAL


KKTNEAVSTLGNGVRVLATAVRELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFSD


NAGITPAISLDLMTDAELARAVPNMPTSAGQIKLMLENRAMVRRKGFGILIGVYGSSVIYMVQLPIFGVI


DTPCWIVKAAPSCSEKKGNYACLLREDQGWYCQNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAE


QSKECNINISTTNYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNRVGIIKQLNKGCSYITNQDA


DTVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFNVALDQVFENIENSQALVDQSNRILSSA


EKGNTGFIIVIILIAVLGSSMILVSIFIIIKKTKKPTGAPPELSGVTNNGFIPHN





SEQ ID NO: 19


F protein of the B1 hMPV isolate ″NL/1/99″ (Accession No.: AAQ90145)


MSWKVMIIISLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVGDVENLTCTDGPSLIKTEL


DLTKSALRELKTVSADQLAREEQIENPRQSRFVLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALK


QTNEAVSTLGNGVRVLATAVRELKEFVSKNLTSAINRNKCDIADLKMAVSFSQFNRRFLNVVRQFSDN


AGITPAISLDLMTDAELARAVSYMPTSAGQIKLMLENRAMVRRKGFGILIGVYGSSVIYMVQLPIFGVID


TPCWIIKAAPSCSEKNGNYACLLREDQGWYCKNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQS


RECNINISTTNYPCKVSTGRHPISMVALSPLGALVACYKGVSCSIGSNWVGIIKQLPKGCSYITNQDAD


TVTIDNTVYQLSKVEGEQHVIKGRPVSSSFDPIKFPEDQFNVALDQVFESIENSQALVDQSNKILNSAE


KGNTGFIIVVILVAVLGLTMISVSIIIIIKKTRKPTGAPPELNGVTNGGFIPHS





SEQ ID NO: 20


F protein of the B2 hMPV isolate ″HMPV/Yokohama.JPN/P6788/2013″ (Accession No.:


BBB35042)


MSWKVMIIISLLITPQHGLKESYLEESCSTITEGYLSVLRTGWYTNVFTLEVGDVENLTCTDGPSLIKTEL


DLTKSALRELKTVSADQLAREEQIENPRQSRFVLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALK


TTNEAVSTLGNGVRVLATAVRELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDN


AGITPAISLDLMNDAELARAVSYMPTSAGQIKLMLENRAMVRRKGFGILIGVYGSSVIYMVQLPIFGVIN


TPCWIIKAAPSCSEKDGNYACLLREDQGWYCKNAGSTVYYPNEKDCETRGDHVFCDTAAGINVAEQS


RECNINISTTNYPCKVSTGRHPISMVALSPLGALVACYKGVSCSTGSNQVGIIKQLPKGCSYITNQDAD


TVTIDNTVYQLSKVEGEQHVIKGRPVSNSFDPIRFPEDQFNVALDQVFESIENSOALVDQSNKILNSAE


KGNTGFIIVIILIAVLGLTMISVSIIIIIKKTRKPAGAPPELNGVTNGGFlPHS





SEQ ID NO: 21


F protein of an A2 RSV strain (Accession No.: AAB59858)


MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNG


TDAKVKLIKQELDKYKNAVTELQLLMQSTPPTNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRRFLG


FLLGVGSAIASGVAVSKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNK


QSCSISNIETVIEFQQKNNRLLEITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDOKKLMSNNVQI


VRQQSYSIMSIIKEEVLAYVVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSV


SFFPQAETCKVOSNRVFCDTMNSLTLPSEINLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGK


TKCTASNKNRGIIKTFSNGCDYVSNKGMDTVSVGNTLYYVNKQEGKSLYVKGEPIINFYDPLVFPSDEF


DASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNIMITTIIIVIIVILLSLIAVGLLLYCKARSTPVTLSKDQ


LSGINNIAFSN





SEQ ID NO: 22


Matrix protein from the A1 hMPV isolate ″NL/1/00″ (Accession No.: AAK62969)


MESYLVDTYQGIPYTAAVQVDLIEKDLLPASLTIWFPLFOANTPPAVLLDQLKTLTITTLYAASQNGPILK


VNASAQGAAMSVLPKKFEVNATVALDEYSKLEFDKLTVCEVKTVYLTTMKPYGMVSKFVSSAKSVGK


KTHDLIALCDFMDLEKNTPVTIPAFIKSVSIKESESATVEAAISSEADQALTQAKIAPYAGLIMIMTMNNP


KGIFKKLGAGTQVIVELGAYVQAESISKICKTWSHQGTRYVLKSR





SEQ ID NO: 23


Matrix protein from the RSV isolate ″RSV-A/US/BID-V7354/2002″ (Accession No.:


AHE57841)


METYVNKLHEGSTYTAAVQYNVLEKDDDPASLTIWVPMFQSSMPADLLIKELANVNILVKQISTPKGPS


LRVMINSRSAVLAQMPSKFTICANVSLDERSKLAYDVTTPCEIKACSLTCLKSKNMLTTVKDLTMKTLN


PTHDIIALCEFENIVTSKKVIIPTYLRSISVRNKDLNTLENITTTEFKNAITNAKIIPYSGLLLVITVTDNKGAF


KYIKPQSQFIVDLGAYLEKESIYYVTTNWKHTATRFAIKPMED





SEQ ID NO: 24


Cloning vector pBR322, complete sequence, Accession No.: J01749.1


TTCTCATGTTTGACAGCTTATCATCGATAAGCTTTAATGCGGTAGTTTATCACAGTTAAATTGCTAACG


CAGTCAGGCACCGTGTATGAAATCTAACAATGCGCTCATCGTCATCCTCGGCACCGTCACCCTGGAT


GCTGTAGGCATAGGCTTGGTTATGCCGGTACTGCCGGGCCTCTTGCGGGATATCGTCCATTCCGAC


AGCATCGCCAGTCACTATGGCGTGCTGCTAGCGCTATATGCGTTGATGCAATTTCTATGCGCACCCG


TTCTCGGAGCACTGTCCGACCGCTTTGGCCGCCGCCCAGTCCTGCTCGCTTCGCTACTTGGAGCCA


CTATCGACTACGCGATCATGGCGACCACACCCGTCCTGTGGATCCTCTACGCCGGACGCATCGTGG


CCGGCATCACCGGCGCCACAGGTGCGGTTGCTGGCGCCTATATCGCCGACATCACCGATGGGGAA


GATCGGGCTCGCCACTTCGGGCTCATGAGCGCTTGTTTCGGCGTGGGTATGGTGGCAGGCCCCGT


GGCCGGGGGACTGTTGGGCGCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGTGCTCAACG


GCCTCAACCTACTACTGGGCTGCTTCCTAATGCAGGAGTCGCATAAGGGAGAGCGTCGACCGATGC


CCTTGAGAGCCTTCAACCCAGTCAGCTCCTTCCGGTGGGCGCGGGGCATGACTATCGTCGCCGCAC


TTATGACTGTCTTCTTTATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTCTGGGTCATTTTCGG


CGAGGACCGCTTTCGCTGGAGCGCGACGATGATCGGCCTGTCGCTTGCGGTATTCGGAATCTTGCA


CGCCCTCGCTCAAGCCTTCGTCACTGGTCCCGCCACCAAACGTTTCGGCGAGAAGCAGGCCATTAT


CGCCGGCATGGCGGCCGACGCGCTGGGCTACGTCTTGCTGGCGTTCGCGACGCGAGGCTGGATG


GCCTTCCCCATTATGATTCTTCTCGCTTCCGGCGGCATCGGGATGCCCGCGTTGCAGGCCATGCTG


TCCAGGCAGGTAGATGACGACCATCAGGGACAGCTTCAAGGATCGCTCGCGGCTCTTACCAGCCTA


ACTTCGATCACTGGACCGCTGATCGTCACGGCGATTTATGCCGCCTCGGCGAGCACATGGAACGGG


TTGGCATGGATTGTAGGCGCCGCCCTATACCTTGTCTGCCTCCCCGCGTTGCGTCGCGGTGCATGG


AGCCGGGCCACCTCGACCTGAATGGAAGCCGGCGGCACCTCGCTAACGGATTCACCACTCCAAGAA


TTGGAGCCAATCAATTCTTGCGGAGAACTGTGAATGCGCAAACCAACCCTTGGCAGAACATATCCAT


CGCGTCCGCCATCTCCAGCAGCCGCACGCGGCGCATCTCGGGCAGCGTTGGGTCCTGGCCACGG


GTGCGCATGATCGTGCTCCTGTCGTTGAGGACCCGGCTAGGCTGGCGGGGTTGCCTTACTGGTTAG


CAGAATGAATCACCGATACGCGAGCGAACGTGAAGCGACTGCTGCTGCAAAACGTCTGCGACCTGA


GCAACAACATGAATGGTCTTCGGTTTCCGTGTTTCGTAAAGTCTGGAAACGCGGAAGTCAGCGCCCT


GCACCATTATGTTCCGGATCTGCATCGCAGGATGCTGCTGGCTACCCTGTGGAACACCTACATCTGT


ATTAACGAAGCGCTGGCATTGACCCTGAGTGATTTTTCTCTGGTCCCGCCGCATCCATACCGCCAGT


TGTTTACCCTCACAACGTTCCAGTAACCGGGCATGTTCATCATCAGTAACCCGTATCGTGAGCATCCT


CTCTCGTTTCATCGGTATCATTACCCCCATGAACAGAAATCCCCCTTACACGGAGGCATCAGTGACC


AAACAGGAAAAAACCGCCCTTAACATGGCCCGCTTTATCAGAAGCCAGACATTAACGCTTCTGGAGA


AACTCAACGAGCTGGACGCGGATGAACAGGCAGACATCTGTGAATCGCTTCACGACCACGCTGATG


AGCTTTACCGCAGCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCC


CGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCA


GCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATAC


TGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGC


ACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGC


GCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAG


AATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAA


AGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCT


CAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCC


TCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAG


CGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTG


GGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAG


TCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCG


AGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACA


GTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCG


GCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAA


AGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGT


TAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGT


TTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGGA


CCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTAC


GATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGG


CTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTT


TATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGT


TTGCGCAACGTTGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCAT


TCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAG


CTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCA


GCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAAC


CAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAAT


ACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCT


CAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGC


ATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGA


ATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAG


GGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCG


CACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAA


ATAGGCGTATCACGAGGCCCTTTCGTCTTCAAGAA





SEQ ID NO: 25


5′-(dIdC)13-3′ (ODN1a)


dIdC dIdC dIdC dIdC dIdC dIdC dIdC dIdC dIdC dIdC dIdC dIdC dIdC





SEQ ID NO: 26


KLK peptide


KLKLLLLLKLK





SEQ ID NO: 27


Full-length native hMPV A1 F protein coding sequence (″FNative″)


ATGTCTTGGAAAGTGGTGATCATTTTTTCATTGTTAATAACACCTCAACACGGTCTTAAAGAGAGCTA


CTTAGAAGAGTCATGTAGCACTATAACTGAAGGATATCTCAGTGTTCTGAGGACAGGTTGGTACACC


AATGTTTTTACACTGGAGGTAGGCGATGTAGAGAACCTTACATGTGCCGATGGACCCAGCTTAATAA


AAACAGAATTAGACCTGACCAAAAGTGCACTAAGAGAGCTCAGAACAGTTTCTGCTGATCAACTGGC


AAGAGAGGAGCAAATTGAAAATCCCAGACAATCTAGATTCGTTCTAGGAGCAATAGCACTCGGTGTT


GCAACTGCAGCTGCAGTTACAGCAGGTGTTGCAATTGCCAAAACCATCCGGCTTGAAAGTGAAGTAA


CAGCAATTAAGAATGCCCTCAAAAAGACCAATGAAGCAGTATCTACATTGGGGAATGGAGTTCGTGT


GTTGGCAACTGCAGTGAGAGAGCTGAAAGATTTTGTGAGCAAGAATCTAACACGTGCAATCAACAAA


AACAAGTGCGACATTGCTGACCTGAAAATGGCCGTTAGCTTCAGTCAATTCAACAGAAGGTTCCTAA


ATGTTGTGCGGCAATTTTCAGACAACGCTGGAATAACACCAGCAATATCTTTGGACTTAATGACAGAT


GCTGAACTAGCCAGAGCTGTTTCCAACATGCCAACATCTGCAGGACAAATAAAACTGATGTTGGAGA


ACCGTGCAATGGTAAGAAGAAAAGGGTTCGGATTCCTGATAGGAGTTTACGGAAGCTCCGTAATTTA


CATGGTGCAACTGCCAATCTTTGGGGTTATAGACACGCCTTGCTGGATAGTAAAAGCAGCCCCTTCT


TGTTCAGAAAAAAAGGGAAACTATGCTTGCCTCTTAAGAGAAGACCAAGGATGGTATTGTCAAAATGC


AGGGTCAACTGTTTACTACCCAAATGAAAAAGACTGTGAAACAAGAGGAGACCATGTCTTTTGCGAC


ACAGCAGCAGGAATCAATGTTGCTGAGCAGTCAAAGGAGTGCAACATAAACATATCTACTACTAATTA


CCCATGCAAAGTTAGCACAGGAAGACATCCTATCAGTATGGTTGCACTATCTCCTCTTGGGGCTTTG


GTTGCTTGCTACAAGGGAGTGAGCTGTTCCATTGGCAGCAACAGAGTAGGGATCATCAAGCAACTGA


ACAAAGGCTGCTCTTATATAACCAACCAAGACGCAGACACAGTGACAATAGACAACACTGTATACCA


GCTAAGCAAAGTTGAAGGCGAACAGCATGTTATAAAAGGAAGGCCAGTGTCAAGCAGCTTTGACCCA


GTCAAGTTTCCTGAAGATCAATTCAATGTTGCACTTGACCAAGTTTTCGAGAGCATTGAGAACAGTCA


GGCCTTGGTGGATCAATCAAACAGAATCCTAAGCAGTGCAGAGAAAGGAAACACTGGCTTCATCATT


GTAATAATTCTAATTGCTGTCCTTGGCTCTACCATGATCCTAGTGAGTGTTTTTATCATAATAAAGAAA


ACAAAGAAACCCACAGGAGCACCTCCAGAGCTGAGTGGTGTCACAAACAATGGCTTCATACCACATA


ATTAG





SEQ ID NO: 28


Full-length optimized hMPV A1 F protein coding sequence (″FOpt1″; Opti GeneArt )


ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCACCCCTCAGCACGGCCTGAAAGAGAGC


TACCTGGAAGAGTCCTGCAGCACCATCACCGAGGGCTACCTGAGCGTGCTGAGAACCGGCTGGTAC


ACCAACGTGTTCACCCTGGAAGTGGGCGACGTGGAAAACCTGACCTGTGCCGATGGACCCAGCCTG


ATCAAGACCGAGCTGGACCTGACAAAGAGCGCCCTGAGAGAGCTGAGGACAGTCTCTGCAGATCAG


CTGGCCAGAGAGGAACAGATCGAGAACCCCAGACAGAGCAGATTCGTGCTGGGAGCTATCGCCCT


GGGAGTTGCTACAGCTGCTGCTGTGACAGCTGGCGTGGCCATTGCCAAGACCATCCGGCTGGAAAG


CGAAGTGACCGCCATCAAGAACGCCCTGAAAAAGACCAACGAGGCCGTGTCTACCCTCGGCAATGG


CGTTAGAGTGCTGGCCACAGCCGTGCGCGAGCTGAAGGATTTCGTGTCCAAGAACCTGACCAGGGC


CATCAACAAGAACAAGTGCGACATTGCCGACCTGAAGATGGCCGTGTCCTTCAGCCAGTTCAACCG


GCGGTTCCTGAATGTCGTGCGGCAGTTCTCTGACAACGCCGGCATCACACCAGCCATCAGCCTGGA


TCTGATGACCGATGCCGAACTGGCTAGAGCCGTGTCCAACATGCCTACATCTGCCGGCCAGATCAA


GCTGATGCTGGAAAACAGAGCCATGGTCCGACGGAAAGGCTTCGGCTTTCTGATCGGCGTGTACGG


CAGCAGCGTGATCTACATGGTGCAGCTGCCTATCTTCGGCGTGATCGACACCCCTTGCTGGATCGT


GAAAGCCGCTCCTAGCTGCAGCGAGAAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGGACCAAG


GCTGGTACTGTCAGAATGCCGGCAGCACCGTGTACTACCCCAACGAGAAGGACTGCGAGACAAGAG


GCGACCACGTGTTCTGTGATACCGCCGCTGGAATCAACGTGGCCGAGCAGAGCAAAGAGTGCAACA


TCAACATCAGCACCACAAACTACCCCTGCAAGGTGTCCACCGGCAGACACCCTATCAGCATGGTGG


CTCTGTCTCCACTGGGAGCCCTGGTGGCTTGTTATAAGGGCGTGTCCTGTAGCATCGGCAGCAACA


GAGTGGGCATCATCAAGCAGCTGAACAAGGGCTGCTCCTACATCACCAACCAGGACGCCGATACCG


TGACCATCGACAATACCGTGTATCAGCTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGGGCA


GACCTGTGTCCAGCAGCTTCGACCCCGTGAAGTTCCCCGAGGACCAGTTCAATGTGGCCCTGGACC


AGGTGTTCGAGAGCATCGAGAATAGCCAGGCTCTGGTGGACCAGTCCAACCGGATTCTGTCTAGCG


CCGAGAAGGGAAACACCGGCTTCATCATCGTGATCATCCTGATCGCCGTGCTGGGCTCCACCATGA


TCCTGGTGTCCGTGTTCATCATCATCAAAAAGACGAAGAAGCCCACAGGCGCCCCTCCAGAACTGTC


TGGCGTGACCAACAATGGCTTCATCCCTCACAACTAG





SEQ ID NO: 29


Full-length optimized hMPV A1 F protein coding sequence (″FOpt2″; Opti GenScript)


ATGTCTTGGAAGGTGGTCATCATCTTTAGCCTGCTGATCACCCCACAGCACGGCCTGAAGGAGAGCT


ACCTGGAGGAGTCCTGTTCTACCATCACAGAGGGCTACCTGTCCGTGCTGAGAACCGGCTGGTATA


CAAACGTGTTCACCCTGGAGGTCGGCGATGTGGAGAATCTGACATGCGCCGACGGCCCTTCCCTGA


TCAAGACAGAGCTGGATCTGACCAAGAGCGCCCTGAGGGAGCTGAGAACCGTGTCCGCCGACCAG


CTGGCCAGGGAGGAGCAGATCGAGAACCCAAGGCAGTCTCGCTTTGTGCTGGGAGCAATCGCCCT


GGGAGTGGCAACCGCCGCCGCCGTGACCGCCGGCGTGGCCATCGCCAAGACAATCCGCCTGGAG


TCTGAGGTGACCGCCATCAAGAACGCCCTGAAGAAGACAAATGAGGCCGTGAGCACCCTGGGAAAC


GGCGTGCGGGTGCTGGCCACAGCCGTGAGAGAGCTGAAGGATTTCGTGTCCAAGAATCTGACCCG


GGCCATCAACAAGAATAAGTGTGACATCGCCGATCTGAAGATGGCCGTGAGCTTCTCCCAGTTTAAC


CGGAGATTTCTGAATGTGGTGAGACAGTTCTCTGACAACGCCGGCATCACACCAGCCATCAGCCTG


GACCTGATGACCGATGCAGAGCTGGCCAGGGCCGTGTCTAACATGCCCACAAGCGCCGGCCAGAT


CAAGCTGATGCTGGAGAATAGGGCTATGGTGCGGAGGAAGGGATTCGGCTTTCTGATCGGCGTGTA


CGGCAGCTCCGTGATCTATATGGTGCAGCTGCCTATCTTTGGCGTGATCGATACACCATGCTGGATC


GTGAAGGCCGCCCCCTCTTGTAGCGAGAAGAAGGGCAATTACGCATGCCTGCTGAGGGAGGATCA


GGGATGGTATTGTCAGAACGCCGGCTCCACCGTGTACTATCCCAATGAGAAGGACTGTGAGACAAG


AGGCGACCACGTGTTCTGCGATACCGCCGCCGGCATCAACGTGGCAGAGCAGTCCAAGGAGTGTA


ACATCAATATCTCTACCACAAATTACCCTTGCAAGGTGAGCACCGGCAGGCACCCTATCAGCATGGT


GGCCCTGTCTCCACTGGGCGCCCTGGTGGCCTGCTATAAGGGCGTGTCCTGTTCTATCGGCTCCAA


CCGCGTGGGCATCATCAAGCAGCTGAACAAGGGCTGCTCTTACATCACAAATCAGGACGCCGATAC


CGTGACAATCGATAATACCGTGTATCAGCTGTCCAAGGTGGAGGGAGAGCAGCACGTGATCAAGGG


ACGGCCCGTGTCTAGCTCCTTCGACCCAGTGAAGTTTCCCGAGGATCAGTTCAACGTGGCCCTGGA


CCAGGTGTTTGAGAGCATCGAGAACTCCCAGGCCCTGGTGGACCAGAGCAATAGAATCCTGAGCAG


CGCCGAGAAGGGCAATACAGGCTTTATCATCGTGATCATCCTGATCGCCGTGCTGGGCAGCACCAT


GATCCTGGTGTCCGTGTTCATCATCATCAAGAAGACAAAGAAGCCAACCGGCGCCCCTCCTGAGCT


GAGCGGCGTGACCAACAATGGCTTCATCCCTCACAACTAG





SEQ ID NO: 30


Full-length optimized hMPV A1 F protein coding sequence (″FOpt3″; Opti GeneArt


with high CpG content)


ATGTCGTGGAAGGTCGTCATCATCTTCTCGCTGCTGATCACGCCGCAGCACGGCCTGAAAGAGTCG


TACCTCGAAGAGTCGTGCTCGACGATCACGGAGGGCTACCTGTCGGTGCTGCGGACGGGCTGGTA


CACGAACGTGTTCACGCTCGAAGTCGGCGACGTCGAAAACCTGACGTGCGCGGACGGACCGTCGC


TGATCAAGACGGAGCTCGACCTGACGAAGTCGGCGCTGCGCGAGCTGCGGACGGTCTCGGCGGAT


CAGCTCGCGCGCGAGGAACAGATCGAGAACCCGCGGCAGTCGCGGTTCGTGCTCGGCGCGATCGC


GCTCGGCGTCGCGACGGCGGCGGCGGTGACGGCGGGCGTCGCGATCGCGAAGACGATCCGGCTC


GAATCGGAAGTGACGGCGATCAAGAACGCGCTGAAAAAGACGAACGAGGCGGTGTCGACGCTCGG


CAACGGCGTTCGCGTGCTCGCGACGGCGGTGCGCGAGCTGAAGGATTTCGTGTCGAAGAACCTGA


CGCGCGCGATCAACAAGAACAAGTGCGACATCGCGGACCTGAAGATGGCGGTGTCGTTCTCGCAGT


TCAACCGGCGGTTCCTGAACGTCGTGCGGCAGTTCTCGGACAACGCGGGCATCACGCCGGCGATC


TCGCTCGATCTGATGACGGACGCGGAACTCGCGCGCGCGGTGTCGAACATGCCGACGTCGGCGGG


CCAGATCAAGCTGATGCTCGAAAACCGCGCGATGGTCCGACGGAAAGGCTTCGGCTTTCTGATCGG


CGTGTACGGCTCGTCGGTGATCTACATGGTGCAGCTGCCGATCTTCGGCGTGATCGACACGCCGTG


CTGGATCGTGAAAGCGGCGCCGTCGTGCTCGGAGAAGAAGGGCAATTACGCGTGCCTGCTGCGCG


AGGACCAAGGCTGGTACTGTCAGAACGCGGGCTCGACGGTGTACTACCCGAACGAGAAGGACTGC


GAGACGCGCGGCGACCACGTGTTCTGCGATACGGCGGCGGGAATCAACGTCGCGGAGCAGTCGAA


AGAGTGCAACATCAACATCTCGACGACGAACTACCCGTGCAAGGTGTCGACGGGCCGGCACCCGAT


CTCGATGGTCGCGCTGTCGCCGCTCGGCGCGCTCGTCGCGTGTTATAAGGGCGTGTCGTGTTCGAT


CGGCTCGAACCGCGTCGGCATCATCAAGCAGCTGAACAAGGGCTGCTCGTACATCACGAACCAGGA


CGCGGATACGGTGACGATCGACAATACGGTGTATCAGCTGTCGAAGGTCGAAGGCGAACAGCACGT


GATCAAGGGCCGCCCGGTGTCGTCGTCGTTCGACCCGGTGAAGTTCCCGGAGGACCAGTTCAACG


TCGCGCTCGACCAGGTGTTCGAGTCGATCGAGAATTCGCAGGCGCTCGTCGACCAGTCGAACCGGA


TTCTGTCGTCGGCGGAGAAGGGAAACACGGGCTTCATCATCGTGATCATCCTGATCGCGGTGCTCG


GCTCGACGATGATCCTCGTGTCGGTGTTCATCATCATCAAAAAGACGAAGAAGCCGACGGGCGCGC


CGCCGGAACTGTCGGGCGTGACGAACAACGGCTTCATCCCGCACAACTAG





SEQ ID NO: 31


Full-length optimized hMPV A1 F protein coding sequence (″FOpt4″; Opti GeneArt


with NDV F protein signal peptide)


ATGGGCAGCAGACCCAGCACCAAGAATCCCGCTCCTATGATGCTGACCATCAGAGTGGCCCTGGTG


CTGAGCTGTATCTGCCCCGCCAATAGCCTGAAAGAGAGCTACCTGGAAGAGTCCTGCAGCACCATC


ACCGAGGGCTACCTGAGCGTGCTGAGAACCGGCTGGTACACCAACGTGTTCACCCTGGAAGTGGG


CGACGTGGAAAACCTGACCTGTGCCGATGGACCCAGCCTGATCAAGACCGAGCTGGACCTGACAAA


GAGCGCCCTGAGAGAGCTGAGGACAGTCTCTGCAGATCAGCTGGCCAGAGAGGAACAGATCGAGA


ACCCCAGACAGAGCAGATTCGTGCTGGGAGCTATCGCCCTGGGAGTTGCTACAGCTGCTGCTGTGA


CAGCTGGCGTGGCCATTGCCAAGACCATCCGGCTGGAAAGCGAAGTGACCGCCATCAAGAACGCC


CTGAAAAAGACCAACGAGGCCGTGTCTACCCTCGGCAATGGCGTTAGAGTGCTGGCCACAGCCGTG


CGCGAGCTGAAGGATTTCGTGTCCAAGAACCTGACCAGGGCCATCAACAAGAACAAGTGCGACATT


GCCGACCTGAAGATGGCCGTGTCCTTCAGCCAGTTCAACCGGCGGTTCCTGAATGTCGTGCGGCAG


TTCTCTGACAACGCCGGCATCACACCAGCCATCAGCCTGGATCTGATGACCGATGCCGAACTGGCT


AGAGCCGTGTCCAACATGCCTACATCTGCCGGCCAGATCAAGCTGATGCTGGAAAACAGAGCCATG


GTCCGACGGAAAGGCTTCGGCTTTCTGATCGGCGTGTACGGCAGCAGCGTGATCTACATGGTGCAG


CTGCCTATCTTCGGCGTGATCGACACCCCTTGCTGGATCGTGAAAGCCGCTCCTAGCTGCAGCGAG


AAGAAGGGCAATTACGCCTGCCTGCTGAGAGAGGACCAAGGCTGGTACTGTCAGAATGCCGGCAGC


ACCGTGTACTACCCCAACGAGAAGGACTGCGAGACAAGAGGCGACCACGTGTTCTGTGATACCGCC


GCTGGAATCAACGTGGCCGAGCAGAGCAAAGAGTGCAACATCAACATCAGCACCACAAACTACCCC


TGCAAGGTGTCCACCGGCAGACACCCTATCAGCATGGTGGCTCTGTCTCCACTGGGAGCCCTGGTG


GCTTGTTATAAGGGCGTGTCCTGTAGCATCGGCAGCAACAGAGTGGGCATCATCAAGCAGCTGAAC


AAGGGCTGCTCCTACATCACCAACCAGGACGCCGATACCGTGACCATCGACAATACCGTGTATCAG


CTGAGCAAGGTGGAAGGCGAACAGCACGTGATCAAGGGCAGACCTGTGTCCAGCAGCTTCGACCC


CGTGAAGTTCCCCGAGGACCAGTTCAATGTGGCCCTGGACCAGGTGTTCGAGAGCATCGAGAATAG


CCAGGCTCTGGTGGACCAGTCCAACCGGATTCTGTCTAGCGCCGAGAAGGGAAACACCGGCTTCAT


CATCGTGATCATCCTGATCGCCGTGCTGGGCTCCACCATGATCCTGGTGTCCGTGTTCATCATCATC


AAAAAGACGAAGAAGCCCACAGGCGCCCCTCCAGAACTGTCTGGCGTGACCAACAATGGCTTCATC


CCTCACAACTAG





SEQ ID NO: 32


Full-length optimized hMPV A1 F protein coding sequence (″FOpt5″; Opti GeneArt


with low CpG content)


ATGAGCTGGAAGGTGGTCATCATCTTCAGCCTGCTGATCACCCCTCAGCATGGCCTGAAAGAGAGC


TACCTGGAAGAGTCCTGCAGCACCATCACAGAGGGCTACCTGAGTGTGCTGAGAACAGGCTGGTAC


ACCAATGTGTTCACCCTGGAAGTGGGGGATGTGGAAAACCTGACCTGTGCTGATGGACCCAGCCTG


ATCAAGACAGAGCTGGACCTGACAAAGAGTGCCCTGAGAGAGCTGAGGACAGTCTCTGCAGATCAG


CTGGCCAGAGAGGAACAGATTGAGAACCCCAGACAGAGCAGATTTGTGCTGGGAGCTATTGCCCTG


GGAGTTGCTACAGCTGCTGCTGTGACAGCTGGGGTGGCCATTGCCAAGACCATCAGACTGGAAAGT


GAAGTGACAGCCATCAAGAATGCCCTGAAAAAGACCAATGAGGCTGTGTCTACCCTGGGCAATGGG


GTTAGAGTGCTGGCCACAGCTGTGAGAGAGCTGAAGGATTTTGTGTCCAAGAACCTGACCAGGGCC


ATCAACAAGAACAAGTGTGACATTGCTGACCTGAAGATGGCTGTGTCCTTCAGCCAGTTCAACAGAA


GATTCCTGAATGTGGTGAGACAGTTCTCTGACAATGCTGGCATCACACCAGCCATCAGCCTGGATCT


GATGACAGATGCTGAACTGGCTAGAGCTGTGTCCAACATGCCTACATCTGCTGGCCAGATCAAGCTG


ATGCTGGAAAACAGAGCCATGGTCAGAAGAAAAGGCTTTGGCTTTCTGATTGGGGTGTATGGCAGCA


GTGTGATCTACATGGTGCAGCTGCCTATCTTTGGGGTGATTGACACCCCTTGCTGGATTGTGAAAGC


TGCTCCTAGCTGCAGTGAGAAGAAGGGCAATTATGCCTGCCTGCTGAGAGAGGACCAAGGCTGGTA


CTGTCAGAATGCTGGCAGCACAGTGTACTACCCCAATGAGAAGGACTGTGAGACAAGAGGGGACCA


TGTGTTCTGTGATACAGCTGCTGGAATCAATGTGGCTGAGCAGAGCAAAGAGTGCAACATCAACATC


AGCACCACAAACTACCCCTGCAAGGTGTCCACAGGCAGACACCCTATCAGCATGGTGGCTCTGTCT


CCACTGGGAGCCCTGGTGGCTTGTTATAAGGGGGTGTCCTGTAGCATTGGCAGCAACAGAGTGGGC


ATCATCAAGCAGCTGAACAAGGGCTGCTCCTACATCACCAACCAGGATGCTGATACAGTGACCATTG


ACAATACAGTGTATCAGCTGAGCAAGGTGGAAGGGGAACAGCATGTGATCAAGGGCAGACCTGTGT


CCAGCAGCTTTGACCCTGTGAAGTTCCCTGAGGACCAGTTCAATGTGGCCCTGGACCAGGTGTTTG


AGAGCATTGAGAATAGCCAGGCTCTGGTGGACCAGTCCAACAGAATTCTGTCTAGTGCTGAGAAGG


GAAACACAGGCTTCATCATTGTGATCATCCTGATTGCTGTGCTGGGCTCCACCATGATCCTGGTGAG


TGTGTTCATCATCATCAAAAAGACAAAGAAGCCCACAGGGGCCCCTCCAGAACTGTCTGGGGTGAC


CAACAATGGCTTCATCCCTCACAACTAG





SEQ ID NO: 33


GFP insert nucleotide sequence


CATGGCGCGCCTAAGAAAAAATACGGGTAGAAGCCACCATGCCCGCCATGAAGATCGAGTGCCGCA


TCACCGGCACCCTGAACGGCGTGGAGTTCGAGCTGGTGGGCGGCGGAGAGGGCACCCCCGAGCA


GGGCCGCATGACCAACAAGATGAAGAGCACCAAAGGCGCCCTGACCTTCAGCCCCTACCTGCTGAG


CCACGTGATGGGCTACGGCTTCTACCACTTCGGCACCTACCCCAGCGGCTACGAGAACCCCTTCCT


GCACGCCATCAACAACGGCGGCTACACCAACACCCGCATCGAGAAGTACGAGGACGGCGGCGTGC


TGCACGTGAGCTTCAGCTACCGCTACGAGGCCGGCCGCGTGATCGGCGACTTCAAGGTGGTGGGC


ACCGGCTTCCCCGAGGACAGCGTGATCTTCACCGACAAGATCATCCGCAGCAACGCCACCGTGGAG


CACCTGCACCCCATGGGCGATAACGTGCTGGTGGGCAGCTTCGCCCGCACCTTCAGCCTGCGCGA


CGGCGGCTACTACAGCTTCGTGGTGGACAGCCACATGCACTTCAAGAGCGCCATCCACCCCAGCAT


CCTGCAGAACGGGGGCCCCATGTTCGCCTTCCGCCGCGTGGAGGAGCTGCACAGCAACACCGAGC


TGGGCATCGTGGAGTACCAGCACGCCTTCAAGACCCCCATCGCCTTCGCCAGATCTCGAGCTCGAT


AGGGGCGCGCCGGC





SEQ ID NO: 34


Nucleotide sequence insert for hMPV Matrix protein (M protein) expression (from


isolate 00-1; Accession No: AF371337)


GGCCGCGCGGGCCTTAATTAAACGCGTGGCCGGCCGGCGCGCCTAAGAAAAAATACGGGTAGAAG


CCACCATGGAGTCCTACCTAGTAGACACCTATCAAGGCATTCCTTACACAGCAGCTGTTCAAGTTGA


TCTAATAGAAAAGGACCTGTTACCTGCAAGCCTAACAATATGGTTCCCTTTGTTTCAGGCCAACACAC


CACCAGCAGTGCTGCTCGATCAGCTAAAAACCCTGACAATAACCACTCTGTATGCTGCATCACAAAA


TGGTCCAATACTCAAAGTGAATGCATCAGCCCAAGGTGCAGCAATGTCTGTACTTCCCAAAAAATTTG


AAGTCAATGCGACTGTAGCACTCGATGAATATAGCAAACTGGAATTTGACAAACTCACAGTCTGTGAA


GTAAAAACAGTTTACTTAACAACCATGAAACCATACGGGATGGTATCAAAATTTGTGAGCTCAGCCAA


ATCAGTTGGCAAAAAAACACATGATCTAATCGCACTATGTGATTTTATGGATCTAGAAAAGAACACAC


CTGTTACAATACCAGCATTCATCAAATCAGTTTCAATCAAAGAGAGTGAGTCAGCTACTGTTGAAGCT


GCTATAAGCAGTGAAGCAGACCAAGCTCTAACACAGGCCAAAATTGCACCTTATGCGGGATTAATTA


TGATCATGACTATGAACAATCCCAAAGGCATATTCAAAAAGCTTGGAGCTGGGACTCAAGTCATAGTA


GAACTAGGAGCATATGTCCAGGCTGAAAGCATAAGCAAAATATGCAAGACTTGGAGCCATCAAGGGA


CAAGATATGTCTTGAAGTCCAGATAATAGATAATGGCGCGCCATGGCCGGCCACGCGTAATTAATTA


ATATAGGCCGCGCGGGCC





SEQ ID NO: 35


CMV promoter sequence


Nt seq CMV enhancer and promoter


TCAATATTGGCCATTAGCCATATTATTCATTGGTTATATAGCATAAATCAATATTGGCTATTGGCCATT


GCATACGTTGTATCTATATCATAATATGTACATTTATATTGGCTCATGTCCAATATGACCGCCATGTTG


GCATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGA


GTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATT


GACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTG


GAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGCCCCCTA


TTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTACGGGACTTTCC


TACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACACCA


ATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGA


GTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTGCGATCGCCCGCCCCG


TTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAAC


CGTCAGATC





SEQ ID NO: 36


Sequence used to correct L-protein frameshift mutation (KpnI-KpnI)


GGTACCATATCTCGGGTCAAAGACACAGGAGAGGAGAGCTGCCTCACTTGCAAAAATAGCTCATATG


TCGCCACATGTAAAGGCTGCCCTAAGGGCATCATCCGTGTTGATCTGGGCTTATGGGGATAATGAAG


TAAATTGGACTGCTGCTCTTACGATTGCAAAATCTCGGTGTAATGTAAACTTAGAGTATCTTCGGTTA


CTGTCCCCTTTACCCACGGCTGGGAATCTTCAACATAGACTAGATGATGGTATAACTCAGATGACATT


CACCCCTGCATCTCTCTACAGGGTGTCACCTTACATTCACATATCCAATGATTCTCAAAGGCTGTTCA


CTGAAGAAGGAGTCAAAGAGGGGAATGTGGTTTACCAACAGATCATGCTCTTGGGTTTATCTCTAAT


CGAATCGATCTTTCCAATGACAACAACCAGGACATATGATGAGATCACACTGCACCTACATAGTAAAT


TTAGTTGCTGTATCAGAGAAGCACCTGTTGCGGTTCCTTTCGAGCTACTTGGGGTGGTACC





SEQ ID NO: 37


ATU of hMPV A1 F protein with five flanking restriction sites


GGCCGCGCGGGCCATTAATTAATAATACGCGTGGCCGGCCATGGCGCGCCTAAGAAAAAATACGGG


TAGAAGCCACCATGTCTTGGAAAGTGGTGATCATTTTTTCATTGTTAATAACACCTCAACACGGTCTT


AAAGAGAGCTACTTAGAAGAGTCATGTAGCACTATAACTGAAGGATATCTCAGTGTTCTGAGGACAG


GTTGGTACACCAATGTTTTTACACTGGAGGTAGGCGATGTAGAGAACCTTACATGTGCCGATGGACC


CAGCTTAATAAAAACAGAATTAGACCTGACCAAAAGTGCACTAAGAGAGCTCAGAACAGTTTCTGCTG


ATCAACTGGCAAGAGAGGAGCAAATTGAAAATCCCAGACAATCTAGATTCGTTCTAGGAGCAATAGC


ACTCGGTGTTGCAACTGCAGCTGCAGTTACAGCAGGTGTTGCAATTGCCAAAACCATCCGGCTTGAA


AGTGAAGTAACAGCAATTAAGAATGCCCTCAAAAAGACCAATGAAGCAGTATCTACATTGGGGAATG


GAGTTCGTGTGTTGGCAACTGCAGTGAGAGAGCTGAAAGATTTTGTGAGCAAGAATCTAACACGTGC


AATCAACAAAAACAAGTGCGACATTGCTGACCTGAAAATGGCCGTTAGCTTCAGTCAATTCAACAGAA


GGTTCCTAAATGTTGTGCGGCAATTTTCAGACAACGCTGGAATAACACCAGCAATATCTTTGGACTTA


ATGACAGATGCTGAACTAGCCAGAGCTGTTTCCAACATGCCAACATCTGCAGGACAAATAAAACTGA


TGTTGGAGAACCGTGCAATGGTAAGAAGAAAAGGGTTCGGATTCCTGATAGGAGTTTACGGAAGCTC


CGTAATTTACATGGTGCAACTGCCAATCTTTGGGGTTATAGACACGCCTTGCTGGATAGTAAAAGCA


GCCCCTTCTTGTTCAGAAAAAAAGGGAAACTATGCTTGCCTCTTAAGAGAAGACCAAGGATGGTATT


GTCAAAATGCAGGGTCAACTGTTTACTACCCAAATGAAAAAGACTGTGAAACAAGAGGAGACCATGT


CTTTTGCGACACAGCAGCAGGAATCAATGTTGCTGAGCAGTCAAAGGAGTGCAACATAAACATATCT


ACTACTAATTACCCATGCAAAGTTAGCACAGGAAGACATCCTATCAGTATGGTTGCACTATCTCCTCT


TGGGGCTTTGGTTGCTTGCTACAAGGGAGTGAGCTGTTCCATTGGCAGCAACAGAGTAGGGATCAT


CAAGCAACTGAACAAAGGCTGCTCTTATATAACCAACCAAGACGCAGACACAGTGACAATAGACAAC


ACTGTATACCAGCTAAGCAAAGTTGAAGGCGAACAGCATGTTATAAAAGGAAGGCCAGTGTCAAGCA


GCTTTGACCCAGTCAAGTTTCCTGAAGATCAATTCAATGTTGCACTTGACCAAGTTTTCGAGAGCATT


GAGAACAGTCAGGCCTTGGTGGATCAATCAAACAGAATCCTAAGCAGTGCAGAGAAAGGAAACACT


GGCTTCATCATTGTAATAATTCTAATTGCTGTCCTTGGCTCTACCATGATCCTAGTGAGTGTTTTTATC


ATAATAAAGAAAACAAAGAAACCCACAGGAGCACCTCCAGAGCTGAGTGGTGTCACAAACAATGGCT


TCATACCACATAATTAGAGGCGCGCCGGCCGGCCATTAACGCGTTTAATTAATAGGCCGCGCGGGC


C





SEQ ID NO: 38


Constitutive expression vector pClneo


TCAATATTGGCCATTAGCCATATTATTCATTGGTTATATAGCATAAATCAATATTGGCTATTGGCCA


TTGCATACGTTGTATCTATATCATAATATGTACATTTATATTGGCTCATGTCCAATATGACCGCCAT


GTTGGCATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATA


TATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCC


CGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACG


TCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAA


GTCCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGAC


CTTACGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCG


GTTTTGGCAGTACACCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCAC


CCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAA


CAACTGCGATCGCCCGCCCCGTTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTAT


ATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCACTAGAAGCTTTATTGCGGTAGTTTATCACAGT


TAAATTGCTAACGCAGTCAGTGCTTCTGACACAACAGTCTCGAACTTAAGCTGCAGTGACTCTCTT


AAGGTAGCCTTGCAGAAGTTGGTCGTGAGGCACTGGGCAGGTAAGTATCAAGGTTACAAGACAG


GTTTAAGGAGACCAATAGAAACTGGGCTTGTCGAGACAGAGAAGACTCTTGCGTTTCTGATAGGC


ACCTATTGGTCTTACTGACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGTTCAATTA


CAGCTCTTAAGGCTAGAGTACTTAATACGACTCACTATAGGCTAGCCTCGAGAATTCACGCGTGG


TACCTCTAGAGTCGACCCGGGCGGCCGCTTCCCTTTAGTGAGGGTTAATGCTTCGAGCAGACAT


GATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTG


TGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAAC


AATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGATGTGGGAGGTTTTTTAAAGCAAGTAAAAC


CTCTACAAATGTGGTAAAATCCGATAAGGATCGATCCGGGCTGGCGTAATAGCGAAGAGGCCCG


CACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGTAGCGGC


GCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTA


GCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGC


TCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAAC


TTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACG


TTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCG


GTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTT


AACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTCCTGATGCGGTATTTTCTC


CTTACGCATCTGTGCGGTATTTCACACCGCATACGCGGATCTGCGCAGCACCATGGCCTGAAATA


ACCTCTGAAAGAGGAACTTGGTTAGGTACCTTCTGAGGCGGAAAGAACCAGCTGTGGAATGTGT


GTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCT


CAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGC


ATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCC


GCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGG


CCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTG


CAAAAAGCTTGATTCTTCTGACACAACAGTCTCGAACTTAAGGCTAGAGCCACCATGATTGAACAA


GATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCAC


AACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTC


TTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATC


GTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAG


GGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCC


GAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCC


CATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGT


CGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCT


CAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAA


TATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGAC


CGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTG


ACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTT


CTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCT


GCCATCACGATGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGA


ATCGATAGCGATAAGGATCCGCGTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGT


TAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGG


CATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTC


ATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGA


TAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGT


TTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAAT


AATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGG


CATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGT


TGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGC


CCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGT


ATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTA


CTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCA


TAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTA


ACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAA


TGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGC


AAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGC


GGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAAT


CTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCT


CCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATC


GCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTT


TAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCAT


GACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAG


GATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTAC


CAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC


AGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTC


TGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATA


AGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTG


AACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTA


CAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTA


AGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTT


TATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGG


GCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCT


TTTGCTCACATGGCTCGACAGATCT





SEQ ID NO: 39


CMV-NDV protein NP


TCAATATTGGCCATTAGCCATATTATTCATTGGTTATATAGCATAAATCAATATTGGCTATTGGCCA


TTGCATACGTTGTATCTATATCATAATATGTACATTTATATTGGCTCATGTCCAATATGACCGCCAT


GTTGGCATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATA


TATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCC


CGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACG


TCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAA


GTCCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGAC


CTTACGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCG


GTTTTGGCAGTACACCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCAC


CCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAA


CAACTGCGATCGCCCGCCCCGTTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTAT


ATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCACTAGAAGCTTTATTGCGGTAGTTTATCACAGT


TAAATTGCTAACGCAGTCAGTGCTTCTGACACAACAGTCTCGAACTTAAGCTGCAGTGACTCTCTT


AAGGTAGCCTTGCAGAAGTTGGTCGTGAGGCACTGGGCAGGTAAGTATCAAGGTTACAAGACAG


GTTTAAGGAGACCAATAGAAACTGGGCTTGTCGAGACAGAGAAGACTCTTGCGTTTCTGATAGGC


ACCTATTGGTCTTACTGACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGTTCAATTA


CAGCTCTTAAGGCTAGAGTACTTAATACGACTCACTATAGGCTAGCCTCGAGAATTCCGAGTGCG


AGCCCGAAGCACAAACTCGAGAAAGCCTTCTGCCAACATGTCTTCCGTATTTGATGAGTACGAAC


AGCTCCTCGCGGCTCAGACTCGCCCCAATGGAGCTCATGGAGGGGGAGAAAAAGGGAGTACCT


TAAAAGTAGACGTCCCGGTATTCACTCTTAACAGTGATGACCCAGAAGATAGATGGAGCTTTGTG


GTATTCTGCCTCCGGATTGCTGTTAGCGAAGATGCCAACAAACCACTCAGGCAAGGTGCTCTCAT


ATCTCTTTTATGCTCCCACTCACAGGTAATGAGGAACCATGTTGCCATTGCAGGGAAACAGAATG


AAGCCACATTGGCCGTGCTTGAGATTGATGGCTTTGCCAACGGCACGCCCCAGTTCAACAATAG


GAGTGGAGTGTCTGAAGAGAGAGCACAGAGATTTGCGATGATAGCAGGATCTCTCCCTCGGGCA


TGCAGCAACGGAACCCCGTTCGTCACAGCCGGGGCAGAAGATGATGCACCAGAAGACATCACC


GATACCCTGGAGAGGATCCTCTCTATCCAGGCTCAAGTATGGGTCACAGTAGCAAAAGCCATGAC


TGCGTATGAGACTGCAGATGAGTCGGAAACAAGGCGAATCAATAAGTATATGCAGCAAGGCAGG


GTCCAAAAGAAATACATCCTCTACCCCGTATGCAGGAGCACAATCCAACTCACGATCAGACAGTC


TCTTGCAGTCCGCATCTTTTTGGTTAGCGAGCTCAAGAGAGGCCGCAACACGGCAGGTGGTACC


TCTACTTATTATAACCTGGTAGGGGACGTAGACTCATACATCAGGAATACCGGGCTTACTGCATTC


TTCTTGACACTCAAGTACGGAATCAACACCAAGACATCAGCCCTTGCACTTAGTAGCCTCTCAGG


CGACATCCAGAAGATGAAGCAGCTCATGCGTTTGTATCGGATGAAAGGAGATAATGCGCCGTACA


TGACATTACTTGGTGATAGTGACCAGATGAGCTTTGCGCCTGCCGAGTATGCACAACTTTACTCC


TTTGCCATGGGTATGGCATCAGTCCTAGATAAAGGTACTGGGAAATACCAATTTGCCAGGGACTT


TATGAGCACATCATTCTGGAGACTTGGAGTAGAGTACGCTCAGGCTCAGGGAAGTAGCATTAACG


AGGATATGGCTGCCGAGCTAAAGCTAACCCCAGCAGCAATGAAGGGCCTGGCAGCTGCTGCCCA


ACGGGTCTCCGACGATACCAGCAGCATATACATGCCTACTCAACAAGTCGGAGTCCTCACTGGG


CTTAGCGAGGGGGGGTCCCAAGCTCTACAAGGCGGATCGAATAGATCGCAAGGGCAACCAGAA


GCCGGGGATGGGGAGACCCAATTCCTGGATCTGATGAGAGCGGTAGCAAATAGCATGAGGGAG


GCGCCAAACTCTGCACAGGGCACTCCCCAATCGGGGCCTCCCCCAACTCCTGGGCCATCCCAA


GATAACGACACCGACTGGGGGTATTGACCTGCAGGCATGCAAGGGCGGCCGCTTCCCTTTAGTG


AGGGTTAATGCTTCGAGCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAAT


GCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGC


TGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGATGTGG


GAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTA





SEQ ID NO: 40


CMV-NDV protein P


TCAATATTGGCCATTAGCCATATTATTCATTGGTTATATAGCATAAATCAATATTGGCTATTGGCCA


TTGCATACGTTGTATCTATATCATAATATGTACATTTATATTGGCTCATGTCCAATATGACCGCCAT


GTTGGCATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATA


TATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCC


CGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACG


TCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAA


GTCCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGAC


CTTACGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCG


GTTTTGGCAGTACACCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCAC


CCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAA


CAACTGCGATCGCCCGCCCCGTTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTAT


ATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCACTAGAAGCTTTATTGCGGTAGTTTATCACAGT


TAAATTGCTAACGCAGTCAGTGCTTCTGACACAACAGTCTCGAACTTAAGCTGCAGTGACTCTCTT


AAGGTAGCCTTGCAGAAGTTGGTCGTGAGGCACTGGGCAGGTAAGTATCAAGGTTACAAGACAG


GTTTAAGGAGACCAATAGAAACTGGGCTTGTCGAGACAGAGAAGACTCTTGCGTTTCTGATAGGC


ACCTATTGGTCTTACTGACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGTTCAATTA


CAGCTCTTAAGGCTAGAGTACTTAATACGACTCACTATAGGCTAGCCTCGAGAATTCAGAAAAAA


GTACGGGTAGAAGAGGGATATTCAGAGATCAGGGCAAGTCTCCCGAGTCTCTGCTCTCTCCTCTA


CCTGATAGACCAGGACAAACAATGGCCACCTTTACAGATGCAGAGATCGACGAGCTATTTGAGAC


AAGTGGAACTGTCATTGACAACATAATTACAGCCCAGGGTAAACCAGCAGAGACTGTTGGAAGGA


GTGCAATCCCACAAGGCAAGACCAAGGTGCTGAGCGCAGCATGGGAGAAGCATGGGAGCATCC


AGCCACCGGCCAGTCAAGACAACCCCGATCGACAGGACAGATCTGACAAACAACCATCCACACC


CGAGCAAACGACCCCGCATGACAGCCCGCCGGCCACATCCGCCGACCAGCCCCCCACCCAGGC


CACAGACGAAGCCGTCGACACACAGCTCAGGACCGGAGCAAGCAACTCTCTGCTGTTGATGCTT


GACAAGCTCAGCAATAAATCGTCCAATGCTAAAAAGGGCCCATGGTCGAGCCCCCAAGAGGGGA


ATCACCAACGTCCGACTCAACAGCAGGGGAGTCAACCCAGTCGCGGAAACAGTCAGGAAAGACC


GCAGAACCAAGTCAAGGCCGCCCCTGGAAACCAGGGCACAGACGTGAACACAGCATATCATGGA


CAATGGGAGGAGTCACAACTATCAGCTGGTGCAACCCCTCATGCTCTCCGATCAAGGCAGAGCC


AAGACAATACCCTTGTATCTGCGGATCATGTCCAGCCACCTGTAGACTTTGTGCAAGCGATGATG


TCTATGATGGAGGCGATATCACAGAGAGTAAGTAAGGTTGACTATCAGCTAGATCTTGTCTTGAAA


CAGACATCCTCCATCCCTATGATGCGGTCCGAAATCCAACAGCTGAAAACATCTGTTGCAGTCAT


GGAAGCCAACTTGGGAATGATGAAGATTCTGGATCCCGGTTGTGCCAACATTTCATCTCTGAGTG


ATCTACGGGCAGTTGCCCGATCTCACCCGGTTTTAGTTTCAGGCCCTGGAGACCCCTCTCCCTAT


GTGACACAAGGAGGCGAAATGGCACTTAATAAACTTTCGCAACCAGTGCCACATCCATCTGAATT


GATTAAACTCGCCACTGCATGCGGGCCTGATATAGGAGTGGAAAAGGACACTGTCCGTGCATTG


ATCATGTCACGCCCAATGCACCCGAGTTCTTCAGCCAAGCTCCTAAGCAAGTTAGATGCAGCCGG


GTCGATCGAGGAAATCAGGAAAATCAAGCGCCTTGCAGTGAATGGCTAATCTAGAGTCGACCCG


GGCGGCCGCTTCCCTTTAGTGAGGGTTAATGCTTCGAGCAGACATGATAAGATACATTGATGAGT


TTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTG


CTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTT


CAGGTTCAGGGGGAGATGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTA





SEQ ID NO: 41


CMV-NDV protein L


TCAATATTGGCCATTAGCCATATTATTCATTGGTTATATAGCATAAATCAATATTGGCTATTGGCCA


TTGCATACGTTGTATCTATATCATAATATGTACATTTATATTGGCTCATGTCCAATATGACCGCCAT


GTTGGCATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATA


TATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCC


CGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACG


TCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAA


GTCCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGAC


CTTACGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCG


GTTTTGGCAGTACACCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCAC


CCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAA


CAACTGCGATCGCCCGCCCCGTTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTAT


ATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCACTAGAAGCTTTATTGCGGTAGTTTATCACAGT


TAAATTGCTAACGCAGTCAGTGCTTCTGACACAACAGTCTCGAACTTAAGCTGCAGTGACTCTCTT


AAGGTAGCCTTGCAGAAGTTGGTCGTGAGGCACTGGGCAGGTAAGTATCAAGGTTACAAGACAG


GTTTAAGGAGACCAATAGAAACTGGGCTTGTCGAGACAGAGAAGACTCTTGCGTTTCTGATAGGC


ACCTATTGGTCTTACTGACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGTTCAATTA


CAGCTCTTAAGGCTAGAGTACTTAATACGACTCACTATAGGCTAGCCTCGAGAATTCACGCGTAA


TTATGGCGAGCTCCGGTCCTGAAAGGGCAGAGCATCAGATTATCCTACCAGAGCCACACCTGTC


TTCACCATTGGTCAAGCACAAACTACTCTATTACTGGAAATTAACTGGGCTACCGCTTCCTGATGA


ATGTGACTTCGACCACCTCATTCTCAGCCGACAATGGAAAAAAATACTTGAATCGGCCTCTCCTG


ATACTGAGAGAATGATAAAACTCGGAAGGGCAGTACACCAAACTCTTAACCACAATTCCAGAATAA


CCGGAGTGCTCCACCCCAGGTGTTTAGAACAACTGGCTAATATTGAGGTCCCAGATTCAACCAAC


AAATTTCGGAAGATTGAGAAGAAGATCCAAATTCACAACACGAGATATGGAGAACTGTTCACAAG


GCTGTGTACGCATATAGAGAAGAAACTGCTGGGGTCATCTTGGTCTAACAATGTCCCCCGGTCAG


AGGAGTTCAGCAGCATTCGTACGGATCCGGCATTCTGGTTTCACTCAAAATGGTCCACAGCCAAG


TTTGCATGGCTCCATATAAAACAGATCCAGAGGCATCTGATGGTGGCAGCTAAGACAAGGTCTGC


GGCCAACAAATTGGTGATGCTAACCCATAAGGTAGGCCAAGTCTTTGTCACTCCTGAACTTGTCG


TTGTGACGCATACGAATGAGAACAAGTTCACATGTCTTACCCAGGAACTTGTATTGATGTATGCAG


ATATGATGGAGGGCAGAGATATGGTCAACATAATATCAACCACGGCGGTGCATCTCAGAAGCTTA


TCAGAGAAAATTGATGACATTTTGCGGTTAATAGACGCTCTGGCAAAAGACTTGGGTAATCAAGTC


TACGATGTTGTATCACTAATGGAGGGATTTGCATACGGAGCTGTCCAGCTACTCGAGCCGTCAGG


TACATTTGCAGGAGATTTCTTCGCATTCAACCTGCAGGAGCTTAAAGACATTCTAATTGGCCTCCT


CCCCAATGATATAGCAGAATCCGTGACTCATGCAATCGCTACTGTATTCTCTGGTTTAGAACAGAA


TCAAGCAGCTGAGATGTTGTGTCTGTTGCGTCTGTGGGGTCACCCACTGCTTGAGTCCCGTATTG


CAGCAAAGGCAGTCAGGAGCCAAATGTGCGCACCGAAAATGGTAGACTTTGATATGATCCTTCAG


GTACTGTCTTTCTTCAAGGGAACAATCATCAACGGGTACAGAAAGAAGAATGCAGGTGTGTGGCC


GCGAGTCAAAGTGGATACAATATATGGGAAGGTCATTGGGCAACTACATGCAGATTCAGCAGAGA


TTTCACACGATATCATGTTGAGAGAGTATAAGAGTTTATCTGCACTTGAATTTGAGCCATGTATAG


AATATGACCCTGTCACCAACCTGAGCATGTTCCTAAAAGACAAGGCAATCGCACACCCCAACGAT


AATTGGCTTGCCTCGTTTAGGCGGAACCTTCTCTCCGAAGACCAGAAGAAACATGTAAAAGAAGC


AACTTCGACTAATCGCCTCTTGATAGAGTTTTTAGAGTCAAATGATTTTGATCCATATAAAGAGATG


GAATATCTGACGACCCTTGAGTACCTTAGAGATGACAATGTGGCAGTATCATACTCGCTCAAGGA


GAAGGAAGTGAAAGTTAATGGACGGATCTTCGCTAAGCTGACAAAGAAGTTAAGGAACTGTCAGG


TGATGGCGGAAGGGATCCTAGCCGATCAGATTGCACCTTTCTTTCAGGGAAATGGAGTCATTCAG


GATAGCATATCCTTGACCAAGAGTATGCTAGCGATGAGTCAACTGTCTTTTAACAGCAATAAGAAA


CGTATCACTGACTGTAAAGAAAGAGTATCTTCAAACCGCAATCATGATCCGAAAAGCAAGAACCG


TCGGAGAGTTGCAACCTTCATAACAACTGACCTGCAAAAGTACTGTCTTAATTGGAGATATCAGAC


AATCAAATTGTTCGCTCATGCCATCAATCAGTTGATGGGCCTACCTCACTTCTTCGAATGGATTCA


CCTAAGACTGATGGACACTACGATGTTCGTAGGAGACCCTTTCAATCCTCCAAGTGACCCTACTG


ACTGTGACCTCTCAAGAGTCCCTAATGATGACATATATATTGTCAGTGCCAGAGGGGGTATCGAA


GGATTATGCCAGAAGCTATGGACAATGATCTCAATTGCTGCAATCCAACTTGCTGCAGCTAGATC


GCATTGTCGTGTTGCCTGTATGGTACAGGGTGATAATCAAGTAATAGCAGTAACGAGAGAGGTAA


GATCAGACGACTCTCCGGAGATGGTGTTGACACAGTTGCATCAAGCCAGTGATAATTTCTTCAAG


GAATTAATTCATGTCAATCATTTGATTGGCCATAATTTGAAGGATCGTGAAACCATCAGGTCAGAC


ACATTCTTCATATACAGCAAACGAATCTTCAAAGATGGAGCAATCCTCAGTCAAGTCCTCAAAAAT


TCATCTAAATTAGTGCTAGTGTCAGGTGATCTCAGTGAAAACACCGTAATGTCCTGTGCCAACATT


GCCTCTACTGTAGCACGGCTATGCGAGAACGGGCTTCCCAAAGACTTCTGTTACTATTTAAACTAT


ATAATGAGTTGTGTGCAGACATACTTTGACTCTGAGTTCTCCATCACCAACAATTCGCACCCCGAT


CTTAATCAGTCGTGGATTGAGGACATCTCTTTTGTGCACTCATATGTTCTGACTCCTGCCCAATTA


GGGGGACTGAGTAACCTTCAATACTCAAGGCTCTACACTAGAAATATCGGTGACCCGGGGACTA


CTGCTTTTGCAGAGATCAAGCGACTAGAAGCAGTGGGATTACTGAGTCCTAACATTATGACTAATA


TCTTAACTAGGCCGCCTGGGAATGGAGATTGGGCCAGTCTGTGCAACGACCCATACTCTTTCAAT


TTTGAGACTGTTGCAAGCCCAAATATTGTTCTTAAGAAACATACGCAAAGAGTCCTATTTGAAACT


TGTTCAAATCCCTTATTGTCTGGAGTGCACACAGAGGATAATGAGGCAGAAGAGAAGGCATTGGC


TGAATTCTTGCTTAATCAAGAGGTGATTCATCCCCGCGTTGCGCATGCCATCATGGAGGCAAGCT


CTGTAGGTAGGAGAAAGCAAATTCAAGGGCTTGTTGACACAACAAACACCGTAATTAAGATTGCG


CTTACTAGGAGGCCATTAGGCATCAAGAGGCTGATGCGGATAGTCAATTATTCTAGCATGCATGC


AATGCTGTTTAGAGACGATGTTTTTTCCTCCAGTAGATCCAACCACCCCTTAGTCTCTTCTAATAT


GTGTTCTCTGACACTGGCAGACTATGCACGGAATAGAAGCTGGTCACCTTTGACGGGAGGCAGG


AAAATACTGGGTGTATCTAATCCTGATACGATAGAACTCGTAGAGGGTGAGATTCTTAGTGTAAGC


GGAGGGTGTACAAGATGTGACAGCGGAGATGAACAATTTACTTGGTTCCATCTTCCAAGCAATAT


AGAATTGACCGATGACACCAGCAAGAATCCTCCGATGAGGGTACCATATCTCGGGTCAAAGACAC


AGGAGAGGAGAGCTGCCTCACTTGCAAAAATAGCTCATATGTCGCCACATGTAAAGGCTGCCCTA


AGGGCATCATCCGTGTTGATCTGGGCTTATGGGGATAATGAAGTAAATTGGACTGCTGCTCTTAC


GATTGCAAAATCTCGGTGTAATGTAAACTTAGAGTATCTTCGGTTACTGTCCCCTTTACCCACGGC


TGGGAATCTTCAACATAGACTAGATGATGGTATAACTCAGATGACATTCACCCCTGCATCTCTCTA


CAGGGTGTCACCTTACATTCACATATCCAATGATTCTCAAAGGCTGTTCACTGAAGAAGGAGTCAA


AGAGGGGAATGTGGTTTACCAACAGATCATGCTCTTGGGTTTATCTCTAATCGAATCGATCTTTCC


AATGACAACAACCAGGACATATGATGAGATCACACTGCACCTACATAGTAAATTTAGTTGCTGTAT


CAGAGAAGCACCTGTTGCGGTTCCTTTCGAGCTACTTGGGGTGGTACCGGAACTGAGGACAGTG


ACCTCAAATAAGTTTATGTATGATCCTAGCCCTGTATCGGAGGGAGACTTTGCGAGACTTGACTTA


GCTATCTTCAAGAGTTATGAGCTTAATCTGGAGTCATATCCCACGATAGAGCTAATGAACATTCTT


TCAATATCCAGCGGGAAGTTGATTGGCCAGTCTGTGGTTTCTTATGATGAAGATACCTCCATAAAG


AATGACGCCATAATAGTGTATGACAATACCCGAAATTGGATCAGTGAAGCTCAGAATTCAGATGT


GGTCCGCCTATTTGAATATGCAGCACTTGAAGTGCTCCTCGACTGTTCTTACCAACTCTATTACCT


GAGAGTAAGAGGCCTAGACAATATTGTCTTATATATGGGTGATTTATACAAGAATATGCCAGGAAT


TCTACTTTCCAACATTGCAGCTACAATATCTCATCCCGTCATTCATTCAAGGTTACATGCAGTGGG


CCTGGTCAACCATGACGGATCACACCAACTTGCAGATACGGATTTTATCGAAATGTCTGCAAAAC


TATTAGTATCTTGCACCCGACGTGTGATCTCCGGCTTATATTCAGGAAATAAGTATGATCTGCTGT


TCCCATCTGTCTTAGATGATAACCTGAATGAGAAGATGCTTCAGCTGATATCCCGGTTATGCTGTC


TGTACACGGTACTCTTTGCTACAACAAGAGAAATCCCGAAAATAAGAGGCTTAACTGCAGAAGAG


AAATGTTCAATACTCACTGAGTATTTACTGTCGGATGCTGTGAAACCATTACTTAGCCCCGATCAA


GTGAGCTCTATCATGTCTCCTAACATAATTACATTCCCAGCTAATCTGTACTACATGTCTCGGAAG


AGCCTCAATTTGATCAGGGAAAGGGAGGACAGGGATACTATCCTGGCGTTGTTGTTCCCCCAAG


AGCCATTATTAGAGTTCCCTTCTGTGCAAGATATTGGTGCTCGAGTGAAAGATCCATTCACCCGA


CAACCTGCGGCATTTTTGCAAGAGTTAGATTTGAGTGCTCCAGCAAGGTATGACGCATTCACACT


TAGTCAGATTCATCCTGAACTCACATCTCCAAATCCGGAGGAAGACTACTTAGTACGATACTTGTT


CAGAGGGATAGGGACTGCATCTTCCTCTTGGTATAAGGCATCTCATCTCCTTTCTGTACCCGAGG


TAAGATGTGCAAGACACGGGAACTCCTTATACTTAGCTGAAGGGAGCGGAGCCATCATGAGTCTT


CTCGAACTGCATGTACCACATGAAACTATCTATTACAATACGCTCTTTTCAAATGAGATGAACCCC


CCGCAACGACATTTCGGGCCGACCCCAACTCAGTTTTTGAATTCGGTTGTTTATAGGAATCTACA


GGCGGAGGTAACATGCAAAGATGGATTTGTCCAAGAGTTCCGTCCATTATGGAGAGAAAATACAG


AGGAAAGTGACCTGACCTCAGATAAAGCAGTGGGGTATATTACATCTGCAGTGCCCTACAGATCT


GTATCATTGCTGCATTGTGACATTGAAATTCCTCCAGGGTCCAATCAAAGCTTACTAGATCAACTA


GCTATCAATTTATCTCTGATTGCCATGCATTCTGTAAGGGAGGGCGGGGTAGTAATCATCAAAGT


GTTGTATGCAATGGGATACTACTTTCATCTACTCATGAACTTGTTTGCTCCGTGTTCCACAAAAGG


ATATATTCTCTCTAATGGTTATGCATGTCGAGGAGATATGGAGTGTTACCTGGTATTTGTCATGGG


TTACCTGGGCGGGCCTACATTTGTACATGAGGTGGTGAGGATGGCAAAAACTCTGGTGCAGCGG


CACGGTACGCTCTTGTCTAAATCAGATGAGATCACACTGACCAGGTTATTCACCTCACAGCGGCA


GCGTGTGACAGACATCCTATCCAGTCCTTTACCAAGATTAATAAAGTACTTGAGGAAGAATATTGA


CACTGCGCTGATTGAAGCCGGGGGACAGCCCGTCCGTCCATTCTGTGCGGAGAGTCTGGTGAG


CACGCTAGCGAACATAACTCAGATAACCCAGATTATCGCTAGTCACATTGACACAGTTATCCGGT


CTGTGATATATATGGAAGCTGAGGGTGATCTCGCTGACACAGTATTTCTATTTACCCCTTACAATC


TCTCTACTGACGGGAAAAAGAGGACATCACTTATACAGTGCACGAGACAGATCCTAGAGGTTACA


ATACTAGGTCTTAGAGTCGAAAATCTCAATAAAATAGGCGATATAATCAGCCTAGTGCTTAAAGGC


ATGATCTCAATGGAGGACCTTATCCCACTAAGGACATACTTGAAGCATAGTACCTGCCCTAAATAT


TTGAAGGCTGTCCTAGGTATTACCAAACTCAAAGAAATGTTTACAGACACTTCTGTATTGTACTTG


ACTCGTGCTCAACAAAAATTCTACATGAAAACTATAGGCAATGCAGTCAAAGGATATTACAGTAAC


TGTGACTCTTAATGAAGCGGCCGCTTCCCTTTAGTGAGGGTTAATGCTTCGAGCAGACATGATAA


GATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAA


TTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTG


CATTCATTTTATGTTTCAGGTTCAGGGGGAGATGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTA


CAAATGTGGTA





SEQ ID NO: 42


Enterobacteria phage T7 RNA polymerase coding sequence (Accession No: FJ881694)


ATGAACACGATTAACATCGCTAAGAACGACTTCTCTGACATCGAACTGGCTGCTATCCCGTTCAACAC


TCTGGCTGACCATTACGGTGAGCGTTTAGCTCGCGAACAGTTGGCCCTTGAGCATGAGTCTTACGAG


ATGGGTGAAGCACGCTTCCGCAAGATGTTTGAGCGTCAACTTAAAGCTGGTGAGGTTGCGGATAAC


GCTGCCGCCAAGCCTCTCATCACTACCCTACTCCCTAAGATGATTGCACGCATCAACGACTGGTTTG


AGGAAGTGAAAGCTAAGCGCGGCAAGCGCCCGACAGCCTTCCAGTTCCTGCAAGAAATCAAGCCGG


AAGCCGTAGCGTACATCACCATTAAGACCACTCTGGCTTGCCTAACCAGTGCTGACAATACAACCGT


TCAGGCTGTAGCAAGCGCAATCGGTCGGGCCATTGAGGACGAGGCTCGCTTCGGTCGTATCCGTGA


CCTTGAAGCTAAGCACTTCAAGAAAAACGTTGAGGAACAACTCAACAAGCGCGTAGGGCACGTCTAC


AAGAAAGCATTTATGCAAGTTGTCGAGGCTGACATGCTCTCTAAGGGTCTACTCGGTGGCGAGGCGT


GGTCTTCGTGGCATAAGGAAGACTCTATTCATGTAGGAGTACGCTGCATCGAGATGCTCATTGAGTC


AACCGGAATGGTTAGCTTACACCGCCAAAATGCTGGCGTAGTAGGTCAAGACTCTGAGACTATCGAA


CTCGCACCTGAATACGCTGAGGCTATCGCAACCCGTGCAGGTGCGCTGGCTGGCATCTCTCCGATG


TTCCAACCTTGCGTAGTTCCTCCTAAGCCGTGGACTGGCATTACTGGTGGTGGCTATTGGGCTAACG


GTCGTCGTCCTCTGGCGCTGGTGCGTACTCACAGTAAGAAAGCACTGATGCGCTACGAAGACGTTT


ACATGCCTGAGGTGTACAAAGCGATTAACATTGCGCAAAACACCGCATGGAAAATCAACAAGAAAGT


CCTAGCGGTCGCCAACGTAATCACCAAGTGGAAGCATTGTCCGGTCGAGGACATCCCTGCGATTGA


GCGTGAAGAACTCCCGATGAAACCGGAAGACATCGACATGAATCCTGAGGCTCTCACCGCGTGGAA


ACGTGCTGCCGCTGCTGTGTACCGCAAGGACAAGGCTCGCAAGTCTCGCCGTATCAGCCTTGAGTT


CATGCTTGAGCAAGCCAATAAGTTTGCTAACCATAAGGCCATCTGGTTCCCTTACAACATGGACTGG


CGCGGTCGTGTTTACGCTGTGTCAATGTTCAACCCGCAAGGTAACGATATGACCAAAGGACTGCTTA


CGCTGGCGAAAGGTAAACCAATCGGTAAGGAAGGTTACTACTGGCTGAAAATCCACGGTGCAAACT


GTGCGGGTGTCGATAAGGTTCCGTTCCCTGAGCGCATCAAGTTCATTGAGGAAAACCACGAGAACAT


CATGGCTTGCGCTAAGTCTCCACTGGAGAACACTTGGTGGGCTGAGCAAGATTCTCCGTTCTGCTTC


CTTGCGTTCTGCTTTGAGTACGCTGGGGTACAGCACCACGGCCTGAGCTATAACTGCTCCCTTCCGC


TGGCGTTTGACGGGTCTTGCTCTGGCATCCAGCACTTCTCCGCGATGCTCCGAGATGAGGTAGGTG


GTCGCGCGGTTAACTTGCTTCCTAGTGAAACCGTTCAGGACATCTACGGGATTGTTGCTAAGAAAGT


CAACGAGATTCTACAAGCAGACGCAATCAATGGGACCGATAACGAAGTAGTTACCGTGACCGATGAG


AACACTGGTGAAATCTCTGAGAAAGTCAAGCTGGGCACTAAGGCACTGGCTGGTCAATGGCTGGCT


TACGGTGTTACTCGCAGTGTGACTAAGCGTTCAGTCATGACGCTGGCTTACGGGTCCAAAGAGTTCG


GCTTCCGTCAACAAGTGCTGGAAGATACCATTCAGCCAGCTATTGATTCCGGCAAGGGTCTGATGTT


CACTCAGCCGAATCAGGCTGCTGGATACATGGCTAAGCTGATTTGGGAATCTGTGAGCGTGACGGT


GGTAGCTGCGGTTGAAGCAATGAACTGGCTTAAGTCTGCTGCTAAGCTGCTGGCTGCTGAGGTCAA


AGATAAGAAGACTGGAGAGATTCTTCGCAAGCGTTGCGCTGTGCATTGGGTAACTCCTGATGGTTTC


CCTGTGTGGCAGGAATACAAGAAGCCTATTCAGACGCGCTTGAACCTGATGTTCCTCGGTCAGTTCC


GCTTACAGCCTACCATTAACACCAACAAAGATAGCGAGATTGATGCACACAAACAGGAGTCTGGTAT


CGCTCCTAACTTTGTACACAGCCAAGACGGTAGCCACCTTCGTAAGACTGTAGTGTGGGCACACGA


GAAGTACGGAATCGAATCTTTTGCACTGATTCACGACTCCTTCGGTACCATTCCGGCTGACGCTGCG


AACCTGTTCAAAGCAGTGCGCGAAACTATGGTTGACACATATGAGTCTTGTGATGTACTGGCTGATTT


CTACGACCAGTTCGCTGACCAGTTGCACGAGTCTCAATTGGACAAAATGCCAGCACTTCCGGCTAAA


GGTAACTTGAACCTCCGTGACATCTTAGAGTCGGACTTCGCGTTCGCGTAATAA





Primers for sequencing


SEQ ID NO: 43


oVVS01322


AAATACGCGTAATTATGGCGAGCTCCGGTCCTGAAA





SEQ ID NO: 44


oVVS01291


TATGGATCCTATTTATCATCGAGCTCGAGATCTGG





SEQ ID NO: 45


oVVS01290


CATCGTCTCCCATGCCCGCCATGAAGATCGA





SEQ ID NO: 46


oVVS01300


CGAATTCTTACGCGAACGCGAAGTCC





SEQ ID NO: 47


oVVS01299


CCGGATCCATGAACACGATTAACATCGCT





SEQ ID NO: 48


oVVS01444


AAGACCGTGTTGAGGTGTTATTA





SEQ ID NO: 49


oVVS01443


TCCCCAATGTAGATACTGCTTC





SEQ ID NO: 50


oVVS01442


TATCCAGCAAGGCGTGTCTA





SEQ ID NO: 51


oVVS01441


TTGTCACTGTGTCTGCGTCTT





SEQ ID NO: 52


oVVS01440


CACTCCAATTCTACCCGTATTTT





SEQ ID NO: 53


oVVS01439


CTACCATGATCCTAGTGAGTGTTTT





SEQ ID NO: 54


oVVS01438


GCTTTGGTTGCTTGCTACAA





SEQ ID NO: 55


oVVS01437


GAACCGTGCAATGGTAAGAA





SEQ ID NO: 56


oVVS01436


GGTGTTGCAACTGCAGCTGC





SEQ ID NO: 57


oVVS01435


CTTCCTCAGCCCCACTGAAT





SEQ ID NO: 58


oVVS01433


ACCAAACAGAGAATCCGTGAGTTACG





SEQ ID NO: 59


oVVS01434


ACCAAACAAAGATTTGGTGAATGACG





SEQ ID NO: 60


oVVS01428


ATAACGCCGGCGCCTCACATGGCTCGACAGATC





SEQ ID NO: 61


oVVS01427


TATAGGCCGGCCACGCCAGCCCGGATCGATCCTTATCGG





SEQ ID NO: 62


oVVS01426


ATGGTGATGGTGATGGTGGCTTCCCC





SEQ ID NO: 63


oVVS01425


GGTGGCTTCCCCTTGGCACCAGTCC





SEQ ID NO: 64


oVVS01424


ATAGCGCCCAGCACGAATCTCC





SEQ ID NO: 65


oVVS01423


TGCCGCACGACGTTCAGGAA





SEQ ID NO: 66


oVVS01422


TGGTCCTCTCTCAGCAGGCA





SEQ ID NO: 67


oVVS01421


AGCCCTTGTTCAGCTGCTTG





SEQ ID NO: 68


oVVS01420


GAAAGTAAGGTCCAATTGCC





SEQ ID NO: 69


oVVS01419


CAGAGTGGGCATCATCAAGC





SEQ ID NO: 70


oVVS01418


TGGCGAGAAGGGCAACTACG





SEQ ID NO: 71


oVVS01417


CAGTTCAACCGGCGGTTCCT





SEQ ID NO: 72


oVVS01416


AGATCGAGAACCCTCGGGCT





SEQ ID NO: 73


oVVS01415


AAACTTGTCGACGCTAGCGCCG





SEQ ID NO: 74


oVVS01402


CCAGCTCGAGTCATTAGCCATTTAGAGCAAGGCGC





SEQ ID NO: 75


oVVS01401


CCGCATCGTCTCCCATGGCCACCTTTACAGATGCAG





SEQ ID NO: 76


oVVS01400


TTATCTCGAGTTTTATCAGTACCCCCAGTCGGTGTCG





SEQ ID NO: 77


oVVS01399


CGCATACATGTCTTCCGTATTTGATGAGTA





SEQ ID NO: 78


oVVS01275


CAAAGGATATTACAGTAACTGTGACTCT





SEQ ID NO: 79


oVVS01274


ACTGCGCTGATTGAAGCCGG





SEQ ID NO: 80


oVVS01273


CATCTGCAGTGCCCTACAGA





SEQ ID NO: 81


oVVS01272


CATTCACCCGACAACCTGCG





SEQ ID NO: 82


oVVS01271


TCACACCAACTTGCAGATACG





SEQ ID NO: 83


oVVS01270


ACCGGAACTGAGGACAGTGA





SEQ ID NO: 84


oVVS01269


ACAGGAGAGGAGAGCTGCCT





SEQ ID NO: 85


oVVS01268


TGATTCATCCCCGCGTTGCG





SEQ ID NO: 86


oVVS01267


GCTTCCCAAAGACTTCTGTTACTATTTA





SEQ ID NO: 87


oVVS01266


TGTGACCTCTCAAGAGTCCCT





SEQ ID NO: 88


oVVS01265


CCTTAGAGATGACAATGTGGCA





SEQ ID NO: 89


oVVS01264


GCTTGAGTCCCGTATTGCAG





SEQ ID NO: 90


oVVS01263


CAACAAATTGGTGATGCTAACC





SEQ ID NO: 91


oVVS01262


CAAGCACAAACTACTCTATTACTGGAAA





SEQ ID NO: 92


oVVS01261


CAAGCAGTACCAAAGCAGCAT





SEQ ID NO: 93


oVVS01260


ATTCGAATGGCCAAGTCTTC





SEQ ID NO: 94


oVVS01259


CCCATTACTGCTACACCCATAAT





SEQ ID NO: 95


oVVS01258


GCAAAAAATACATGGCGCTTGATA





SEQ ID NO: 96


oVVS01257


CAACTCGATCAGTAATGCTTTGAAT





SEQ ID NO: 97


oVVS01256


CGTAAGCACAACCAGGGGAT





SEQ ID NO: 98


oVVS01255


AGCTCTGATACAAGCCAAACAA





SEQ ID NO: 99


oVVS01254


CCCAGATCATCATGACACAAAA





SEQ ID NO: 100


oVVS01253


TTGTCTAAGTCTGACAGCGGA





SEQ ID NO: 101


oVVS01252


CAGTATTCATCACCACCTATGGA





SEQ ID NO: 102


oVVS01251


TGATCATGTCACGCCCAATG





SEQ ID NO: 103


oVVS01250


CACAACTATCAGCTGGTGCAAC





SEQ ID NO: 104


oVVS01249


TTACAGCCCAGGGTAAACCA





SEQ ID NO: 105


oVVS01248


CCCAATTCCTGGATCTGATG





SEQ ID NO: 106


oVVS01247


GACATCAGCCCTTGCACTTA





SEQ ID NO: 107


oVVS01246


GCCCCAGTTCAACAATAGGA





SEQ ID NO: 108


oVVS01245


CCCTTTCGTCTTCAAGAATTCT





SEQ ID NO: 109


oVVS01244


TTGTTGAACTGGGGCGTGCC





SEQ ID NO: 110


oVVS01243


AACGCATGAGCTGCTTCATC





SEQ ID NO: 111


oVVS01242


TCGTTATCTTGGGATGGCCC





SEQ ID NO: 112


oVVS01241


GGGTGTGGATGGTTGTTTGTC





SEQ ID NO: 113


oVVS01240


GATTTCGGACCGCATCATAG





SEQ ID NO: 114


oVVS01239


ATTAATTACGGTTGGCCGGC





SEQ ID NO: 115


oVVS01238


TTCTCTGGCGCTTTCACGTG





SEQ ID NO: 116


oVVS01237


TAGAGGTAACCTCGTGGTCGGCGGT





SEQ ID NO: 117


oVVS01236


CCCCCTCCAGATGTAGTCACA





SEQ ID NO: 118


oVVS01235


TTAGGTTCCCGACTGAAGGTA





SEQ ID NO: 119


oVVS01234


CTGTTGCTTTCCTCTAACTTATTCAAAG





SEQ ID NO: 120


oVVS01233


GCTACAGATATAGCCAAGGTCACTAC





SEQ ID NO: 121


oVVS01232


CGCAGAGTAGAAAAGAATACCCTC





SEQ ID NO: 122


oVVS01231


CCCTACTGTGAGAATTCTGCCTT





SEQ ID NO: 123


oVVS01230


GATACAATGCCATCTTTCCAACT





SEQ ID NO: 124


oVVS01229


GTGAATTTGGATCTTCTTCTCAATC





SEQ ID NO: 125


oVVS01228


GCTCGAGTAGCTGGACAGCT





SEQ ID NO: 126


oVVS01227


CCTAAACGAGGCAAGCCAAT





SEQ ID NO: 127


oVVS01226


TGAGGTAGGCCCATCAACTG





SEQ ID NO: 128


oVVS01225


CAGTAGAGGCAATGTTGGCA





SEQ ID NO: 129


oVVS01224


GCGGGGATGAATCACCTCTT





SEQ ID NO: 130


oVVS01223


CCTTAGGGCAGCCTTTACAT





SEQ ID NO: 131


oVVS01222


TGACTCCAGATTAAGCTCATAACTCT





SEQ ID NO: 132


oVVS01221


CGGGATATCAGCTGAAGCATC





SEQ ID NO: 133


oVVS01220


CCGTGTCTTGCACATCTTACCT





SEQ ID NO: 134


oVVS01219


AACACTCCATATCTCCTCGACA





SEQ ID NO: 135


oVVS01218


ATGGAGATCATGCCTTTAAGC





SEQ ID NO: 136


oVVS01217


GTGATAAACTACCGCATTAAAGCT









The terms “identical” or “percent identity” in the context of two or more nucleic acid or amino acid sequences refer to two or more sequences or subsequences that are the same. Two sequences are “substantially identical” if two sequences have a specified percentage of amino acid residues or nucleotides that are the same (e.g., at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity) over a specified region or over the entire sequence, when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. Optionally, the identity exists over a region that is at least about 50 nucleotides (or about 10 amino acids) in length, or more preferably over a region that is 100 to 500 or 1000 or more nucleotides (or 20, 50, 200 or more amino acids) in length. In some embodiments, the identity exists over the length of a protein, such as an F protein.


For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. Methods of alignment of sequences for comparison are well known in the art. See, e.g., the local homology algorithm of Smith and Waterman (1981; Adv. Appl. Math. 2:482-489), the homology alignment algorithm of Needleman and Wunsch (1970; J. Mol. Biol. 48:443), the search for similarity method of Pearson and Lipman (1998; Proc. Natl. Acad. Sci. USA 85:2444-2448), the computerized implementations of various algorithms (GAP, BESTFIT, FASTA, Jalview and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group. 575 Science Dr., Madison, Wis.), multi-sequence alignment implementation using, e.g. CLUSTALW (Larkin et al., 2007, Bioinformatics, 23:2947-2948) or MAFFT (Katoh and Toh, 2008, Briefings in Bioinformatics 9:286-298), or by manual alignment and visual inspection (see. e.g., Brent et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (Ringbou ed., 2003)). Two examples of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul, et al., 1997, Nuc. Acids Res. 25(17):3389-3402 and Altschul et al., 1990, J. Mol. Biol. 215:403-410, respectively.


The entire contents of all of the references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated by reference.

Claims
  • 1. A method of producing infectious paramyxovirus particles comprising the steps of a) transfecting an avian cell line with a vector comprising a paramyxovirus nucleic acid sequence under T7 control;a T7 RNA polymerase expression vector; andthree further expression vectors comprising, respectively, paramyxovirus phosphoprotein (P), nucleoprotein (N) and polymerase (L) coding sequences; andb) culturing said transfected avian cell line under conditions favorable for virus propagation.
  • 2. The method of claim 1, wherein said T7 RNA polymerase expression vector and further expression vectors are under control of a constitutive promoter, optionally a CMV promoter.
  • 3-4. (canceled)
  • 5. The method of claim 1, wherein said vector comprising a paramyxovirus nucleic acid sequence under T7 control additionally comprises a T7 promoter sequence as defined by SEQ ID NO: 6 and a T7 terminator sequence as defined by SEQ ID NO: 7.
  • 6.-13. (canceled)
  • 14. The method of claim 1, wherein said avian cell line is a duck cell line.
  • 15. The method of claim 1, wherein said avian cell line is selected from the group consisting of an AGE.CR cell line, a DuckCelt-T17 cell line, an EBx cell line, and an EB66 cell line.
  • 16.-17. (canceled)
  • 18. The method of claim 1, wherein the infectious paramyxovirus is a wild-type paramyxovirus, a chimeric paramyxovirus or a recombinant paramyxovirus.
  • 19. The method of claim 1, wherein the paramyxovirus nucleic acid sequence is modified to contain one or more restriction enzyme sites for insertion of a heterologous coding sequence located between the paramyxovirus protein coding sequences, particularly between the NP and P coding sequences and/or the P and M coding sequences.
  • 20-21. (canceled)
  • 22. The method of claim 1, wherein the paramyxovirus nucleic acid sequence contains coding sequences for one or more foreign antigens.
  • 23. (canceled)
  • 24. The method of claim 1, wherein said paramyxovirus nucleic acid sequence contains coding sequences for one or more foreign antigens selected from the group consisting of antigens from viral pathogens, oncolytic proteins and immunomodulating proteins.
  • 25. The method of claim 1, wherein said paramyxovirus nucleic acid sequence contains coding sequences for one or more hMPV and/or RSV antigens.
  • 26.-27. (canceled)
  • 28. The method of claim 1, wherein said paramyxovirus nucleic acid sequence contains coding sequences for an hMPV and/or RSV F protein and/or M protein.
  • 29. The method of claim 28, wherein said F and M proteins assemble to produce hMPV or RSV virus like particles.
  • 30. The method according to claim 28, wherein said hMPV or RSV F protein is a wild-type F protein, a modified F protein, an F protein in pre-fusion conformation or an F protein in post-fusion conformation.
  • 31. The method according to claim 28, wherein said hMPV F protein is selected from the group consisting of SEQ ID NOs: 17-20, or immunogenic variants having at least 95% sequence identity to SEQ ID NOs: 17-20.
  • 32.-34. (canceled)
  • 35. The method of claim 1, wherein the paramyxovirus nucleic acid is a Newcastle Disease Virus (NDV) nucleic acid, especially an NDV nucleic acid derived from a LaSota, Hitchner B1 or AF2240 strain.
  • 36. The method of claim 1, wherein the paramyxovirus nucleic acid encodes a wild-type NDV genome, a chimeric NDV genome, a recombinant NDV genome or a virus-like particle comprising NDV elements, especially a recombinant NDV genomic nucleic acid as defined by SEQ ID NO: 16.
  • 37.-48. (canceled)
  • 49. Use of the method of claim 1 for the manufacture of a composition or vaccine for immunization against a virus infection, particularly an NDV, hMPV or RSV infection.
  • 50.-51. (canceled)
  • 52. A composition or vaccine comprising the virus particles obtainable or obtained by the method of claim 1 for treating and/or preventing a virus infection, particularly an NDV, hMPV or RSV infection.
  • 53-57. (canceled)
  • 58. A virus particle obtainable or obtained by the method of claim 1, wherein said virus particle comprises one or more hMPV or RSV protein(s), especially an F protein and/or M protein.
  • 59. A recombinant Newcastle Disease Virus (NDV) genomic nucleic acid having the sequence as defined by SEQ ID NO: 16, optionally further comprising one or more heterologous sequence(s) encoding an hMPV and/or RSV antigen(s), especially an hMPV and/or RSV F protein and/or M protein.
Priority Claims (1)
Number Date Country Kind
18183324.5 Jul 2018 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2019/069030 7/15/2019 WO 00