1. Field of the Invention
This invention relates to the field of information networks, and more particularly relates to a protocol for configuring routes over a network.
2. Description of the Related Art
Today's networks carry vast amounts of information. High bandwidth applications supported by these networks include streaming video, streaming audio, and large aggregations of voice traffic. In the future, these bandwidth demands are certain to increase. To meet such demands, an increasingly popular alternative is the use of lightwave communications carried over fiber-optic cables. The use of lightwave communications provides several benefits, including high bandwidth, ease of installation, and capacity for future growth.
Optical infrastructures are capable of transmission speeds in the gigabit range, which helps address the ever-increasing need for bandwidth mentioned above. Such infrastructures employ various topologies, including ring and mesh topologies. In order to provide fault protection, ring topologies normally reserve a large portion (e.g 50% or more) of the network's available bandwidth for use in restoring failed circuits. However, ring topologies are capable of quickly restoring failed circuits. This capability is important in providing reliable service to customers, and is particularly important in telephony applications, where a failure can result in alarms, dropped calls, and, ultimately, customer dissatisfaction and lost revenue. In a similar vein, because of bandwidth demands, protocol overhead related to provisioning, restoration, and other functions should be kept to a minimum in order to make the maximum amount of bandwidth available for use by customers.
An alternative to the ring topology, the mesh topology reduces the amount of bandwidth needed for protection. The mesh topology is a point-to-point topology, with each node in the network connected to one or more other nodes. Because a circuit may be routed through various combinations of the network's nodes and over the various links which connect them, excess capacity through a given node or over a given link can serve to protect several circuits. However, the restoration of a circuit following a failure in a mesh topology can consume a relatively large amount of time.
In one embodiment, the present invention restores a failed virtual path, provisioned on an active physical path, in a mesh topology optical network by providing an alternative link-and-node disjoint standby physical path protection. Each path is provisioned between the source and the destination node (the end nodes) using a different set of intermediary nodes. In case of a failure in the active physical path, the end nodes switch the virtual path to alternative standby physical path.
The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. Other aspects, inventive features, and advantages of the present invention, as defined solely by the claims, will become apparent in the non-limiting detailed description set forth below.
The present invention may be better understood, and numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawing.
The following is intended to provide a detailed description of an example of the invention and should not be taken to be limiting of the invention itself. Rather, any number of variations may fall within the scope of the invention which is defined in the claims following the description.
Provisioning of Network Nodes
A network can include multiple connected nodes. The nodes in a network can be configured in various topologies. Once a network topology has been defined, the user can configure one or more end-to-end connections that can span multiple nodes, an operation is referred to herein as provisioning. For end-to-end connection between two nodes, a physical path must be selected and configured. Each set of physical connections that are provisioned creates an end-to-end connection between the two end nodes that supports a virtual point-to-point link (referred to herein as a virtual path or VP). The resulting VP has an associated capacity and an operational state, among other attributes.
In a network, VPs may be provisioned statically or dynamically. For example, a user can identify the nodes which will comprise the virtual path and manually configure each node to support the given virtual path. The selection of nodes may be based on any number of criteria, such as Quality of Service (QoS), latency, cost, distance traveled in the network and the like. Alternatively, the VP may be provisioned dynamically using any one of a number of methods. The provisioning information may then be forwarded to all the nodes in the network to store information in each node's network topology database. Each node periodically updates this information to efficiently maintain resources and in case of path failure, effectively allocate appropriate resources needed for specific virtual path for path restoration.
The end nodes of a VP can be configured to have a master/slave relationship. The term source and destination are also used herein in referring to two such end-nodes. In such a relationship in one embodiment, the node with a numerically lower node ID typically assumes the role of the master (or source) node, while the other assumes the role of the slave (or destination) node, although the opposite arrangement is also acceptable. An intermediate node is referred to herein as tandem node. Generally, the source node assumes all provisioning responsibilities and the destination node simply waits for a message from the source node informing the destination node of the VP's new physical path. This information includes node identifications, if any, of tandem nodes of that path. In a zoned mesh network topology, if a virtual path spans over multiple zones, the border node or proxy node of each zone acts as source node for their particular zone. As will be apparent to one of skill in the art, the opposite convention or another paradigm could easily be employed.
During the provisioning, each VP is assigned a performance and restoration priority level. This priority, also referred to herein as Class of Service (CoS), determines VP's relative priority for performance within the network and restoration in the event of a failure within the network. The method of assigning CoS is described in commonly-assigned U.S. patent application Ser. No. 09/858,743, filed on May 16, 2001, entitled “A Resource Reservation Scheme for Path Restoration in an Optical Network”, and is hereby incorporated by reference, in its entirety and for all purposes. In case of a VP failure at any node in the network (e.g., due to a failure of the physical path, high bit error rate or the like) the node determines how to restore the VP based on the CoS assigned to the VP. The assigned CoS defines the restoration method used by the node to restore the failed VP.
Provisioning of Virtual Path using 1+1 Protection
The 1+1 restoration method is typically assigned to mission critical data paths with higher CoS. Typically, the source node of a VP initiates the provisioning using Add Path Request packet. The an example of a method of initiating an Add Path request and the allocation of physical resources for a VP is described in commonly-assigned U.S. patent application Ser. No. 09/891,022, filed on Jun. 25, 2001, entitled “A Method For Restoring A Virtual Path In An Optical Network Using Dynamic Unicast”, as previously incorporated herein.
In a 1+1 restoration method, two distinct physical paths are provisioned and assigned to a VP. Each provisioned physical path is preferably completely node and link disjoint, although the 1+1 restoration method described herein can be limited to only a section of a given path. The VP is provisioned by using two separate Add Path requests for two distinct physical paths. The provisioning of the VP is not considered successful unless two distinct physical paths are provisioned and assigned to the VP. One of the two assigned physical paths is designated as the primary path and the other physical path is designated as the secondary path. During the provisioning, each tandem node allocates specific ports at input and output links for each path. For 1+1 restoration scheme, these ports are not shared by any other VP. In case of a path failure, tandem nodes do not release these ports.
After the provisioning of VP 0, the reserved ports and the bandwidth of the secondary path at link 117 and link 119 are not used by any other VP in the network 100. The secondary path including link 117 and link 119 is dedicated to VP 0 for restoration purpose. The primary path and the secondary path stay active during the data transmission. However, one path is used as the transmission path and the other path is used as standby path in case of a failure.
Failure Detection, Propagation, and Restoration
Failure Detection and Propagation
In networks, failures are typically detected using the mechanisms provided by the underlying physical network. The failure detection mechanism in a mesh optical network is described in commonly-assigned U.S. patent application Ser. No. 09/232,397, filed Jan. 15, 1999 and entitled “A Method For Routing Information Over A Network,” which is hereby incorporated by reference, in its entirety and for all purposes.
1+1 Restoration
The restoration using a 1+1 restoration scheme can be initiated either by the source node or the destination node of the VP. When the VP's active physical path fails at a tandem node, the tandem node initiates a path restoration request for the end nodes (the source node and the destination node) of the failed VP using a Restore_I request. The method of generating Restore_I requests and associated responses is described in commonly-assigned U.S. patent application Ser. No. 09/750,668, entitled “A Virtual Path Restoration Scheme Using Fast Dynamic Mesh Restoration in an Optical Network,” as previously incorporated herein. The tandem node sends Restore_I request upstream and down stream for the end nodes (the source node and the destination node). The Restore_I request is transmitted in both directions because due to the path failure, one of the source node and the destination node will not receive the failure message. When a tandem node receives a Restore_I request, the tandem node forwards the Restore_I request on appropriate link to the next node. Because the physical paths are reserved for the VP, the tandem nodes do not release the resources of the VP.
When an end node (either the source node or the destination node) receives a path failure message or a Restore_I request, the end node switches the VP to the standby physical path. Each end node can switch the physical path of the VP independent of the other. The end node switches the physical path of the VP without further command packet exchange. After switching the VP to the standby physical path, the end nodes exchange a path integrity message to ensure the integrity of the VP. The end nodes also exchange a path update message to update network topology database to reflect the physical path change of the VP.
If the failure notification is received by the end node (the source node or the destination node) of the VP, the end node generates a local alarm (step 435). The failures can be major (e.g., failure of a link and the like) or minor (e.g., high bit rate error and the like). Generally, not every failure requires physical path switching. The node determines if the failure requires switching the physical path of the VP (step 440). If the failure does not require switching the physical path, the node needs not take any further action. If the failure requires switching the physical path, the node determines if the alternate physical path is available (step 445). If the alternate physical path is not available (i.e., due to a previous failure that has not been fixed), the node generates a major network alarm (step 450). The node changes the state of the VP to down (step 455).
If the alternate physical path is available, the node proceeds to switch the physical path (step 460). After switching the VP to the alternate physical path, the node sends a path integrity message to check the validity of the VP (step 465). The node also sends a port update message on the VP to update the active ports information in the network (step 470). After the switching of the physical path, the VP continues to use the alternate physical path until a failure occurs in the alternate physical path. In case of a failure on the alternate physical path, similar process is followed to switch the VP to the previous physical path provided that the previous physical path is restored.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from this invention and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of this invention. Furthermore, it is to be understood that the invention is solely defined by the appended claims.
This application is a CIP of 09/858,743 May 16, 2001 which is a CIP of 09/232,397, Jan. 15, 1999, now U.S. Pat. No. 6,856,627. This application is also related to following commonly-assigned applications: 1. patent application Ser. No. 09/389,302, entitled “A Network Addressing Scheme For Reducing Protocol Overhead In An Optical Network,” filed Sep. 2, 1999.2. patent application Ser. No. 09/232,395, entitled “A Configurable Network Router,” filed Jan. 15, 1999.3. patent application Ser. No. 09/750,668, entitled “A Virtual Path Restoration Scheme Using Fast Dynamic Mesh Restoration in an Optical Network,” filed on Dec. 29, 2000.4. patent application Ser. No. 09/891,022, entitled “A Method for Restoring a Virtual Path in an Optical Network Using Dynamic Unicast,” filed on Jun. 25, 2001.5. patent application Ser. No. 09/876,380, entitled “A Method for Restoring a Virtual Path in an Optical Network Using 1:N Protection,” filed on Jun. 7, 2001. Above mentioned applications are assigned to Cisco Technology, Inc., the assignee of the present invention, and are hereby incorporated by reference, in their entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5049871 | Sturgis et al. | Sep 1991 | A |
5093824 | Coan et al. | Mar 1992 | A |
5412376 | Chujo et al. | May 1995 | A |
5590118 | Nederlof | Dec 1996 | A |
5590119 | Moran et al. | Dec 1996 | A |
5596722 | Rahnema | Jan 1997 | A |
5646936 | Shah et al. | Jul 1997 | A |
5687167 | Bertin et al. | Nov 1997 | A |
5737319 | Croslin et al. | Apr 1998 | A |
5781528 | Sato et al. | Jul 1998 | A |
5805578 | Stirpe et al. | Sep 1998 | A |
5805593 | Busche | Sep 1998 | A |
5835696 | Hess | Nov 1998 | A |
5881048 | Croslin | Mar 1999 | A |
5881246 | Crawley et al. | Mar 1999 | A |
5884297 | Noven | Mar 1999 | A |
5920257 | Commerford | Jul 1999 | A |
5933425 | Iwata | Aug 1999 | A |
5959972 | Hamami | Sep 1999 | A |
5987526 | Morales | Nov 1999 | A |
5995503 | Crawley et al. | Nov 1999 | A |
5999286 | Venkatesan | Dec 1999 | A |
6011780 | Vaman et al. | Jan 2000 | A |
6041037 | Nishio et al. | Mar 2000 | A |
6041049 | Brady | Mar 2000 | A |
6047331 | Medard et al. | Apr 2000 | A |
6075766 | Croslin | Jun 2000 | A |
6075775 | Ueki | Jun 2000 | A |
6097696 | Doverspike | Aug 2000 | A |
6097722 | Graham et al. | Aug 2000 | A |
6115753 | Joens | Sep 2000 | A |
6130876 | Chaudhuri | Oct 2000 | A |
6130881 | Stiller et al. | Oct 2000 | A |
6134671 | Commerford et al. | Oct 2000 | A |
6148000 | Feldman et al. | Nov 2000 | A |
6154778 | Koistinen et al. | Nov 2000 | A |
6163525 | Bentall et al. | Dec 2000 | A |
6222653 | Asahi | Apr 2001 | B1 |
6259673 | Yoshihara et al. | Jul 2001 | B1 |
6272107 | Rochberger et al. | Aug 2001 | B1 |
6275492 | Zhang | Aug 2001 | B1 |
6282170 | Bentall et al. | Aug 2001 | B1 |
6292464 | Elahmadi et al. | Sep 2001 | B1 |
6301244 | Huang et al. | Oct 2001 | B1 |
6304549 | Srinivasan et al. | Oct 2001 | B1 |
6324162 | Chaudhuri | Nov 2001 | B1 |
6347078 | Narvaez-Guarnieri et al. | Feb 2002 | B1 |
6370119 | Basso et al. | Apr 2002 | B1 |
6400681 | Bertin et al. | Jun 2002 | B1 |
6430150 | Azuma et al. | Aug 2002 | B1 |
6457050 | Cowan et al. | Sep 2002 | B1 |
6463062 | Buyukkoc et al. | Oct 2002 | B1 |
6504845 | Petersen et al. | Jan 2003 | B1 |
20020191247 | Lu et al. | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
0 781 068 | Jun 1997 | EP |
0 841 824 | May 1998 | EP |
Number | Date | Country | |
---|---|---|---|
20030179700 A1 | Sep 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09858743 | May 2001 | US |
Child | 09859166 | US | |
Parent | 09232397 | Jan 1999 | US |
Child | 09858743 | US |