The present invention provides a new method for preparation and crystallization of hydrohalides of pharmaceutical compounds or their intermediates. According to the present process hydrohalides may be obtained in a reliable way with good yield and in pure form consisting of a defined crystal structure. The process of the present invention is especially well suitable for industrial use.
Hydrochlorides of pharmaceutical compounds or their intermediates are usually prepared by acidification of a solution of a base or a salt thereof with hydrogen chloride whereby aqueous hydrogen chloride or gaseous hydrogen chloride is used or a solution of HCl in an organic solvent. The preparation of hydrochlorides by addition of aqueous hydrochloric acid is a straightforward process and hydrochloric acid is conveniently used as the 36% (w/w) solution in water. A typical procedure is to dissolve the organic base in a solvent and to add the calculated volume or an excess of concentrated HCl and if crystallization does not occur, it can be induced by progressive additions of an organic solvent like diethyl ether. However salt formation by aqueous hydrochloric acid is often characterized by lower yields due to solubility of the hydrochloride salt in water. Furthermore if anhydrous salt forms are desired, the use of aqueous hydrochloric acid is not feasible in many cases. If water interferes with the formation and isolation of a solid crystalline product, it is possible to use the anhydrous gas from cylinders or HCl gas in an anhydrous aprotic solvent like diethyl ether. But the alternative use of gaseous hydrogen chloride on a large scale gives rise to high equipment costs and typical risks of gas handling.
Very often it is important to produce a hydrochloride in a pure form consisting of a single crystal structure. This is of particular importance for pharmaceutical drug substance because variations in crystal structure may affect the dissolution, manufacturability and stability of a pharmaceutical drug product, specifically in a solid oral dosage form formulation. But the preferential formation of a desired form of a hydrochloride depends on crystallization kinetics and is not easy to control. Sometimes a constant flow of gaseous hydrogen chloride within a certain time is necessary and the temperature has to be kept substantially constant during the gas flow and even during filtering the product, making the process very difficult to handle.
A purpose of the present invention is to provide a suitable method to prepare hydrochlorides, hydrobromides or hydroiodides of pharmaceutical compounds or their intermediates in a reproducible manner and in a pure form consisting of a defined crystal structure.
The present invention provides a new method for preparation and crystallization of hydrohalides of pharmaceutical compounds or their intermediates. According to the present process hydrohalides may be obtained in a reliable way with good yield and in pure form consisting of a defined crystal structure. The process of the present invention is especially well suitable for industrial use.
In particular, the present invention relates to a process for the preparation of a crystalline hydrohalide of an organic amine wherein a trialkylsilylhalogenide is added to the organic amine in a solvent, which organic amine is in the form of the free base or an acid addition salt, wherein the conjugated acid of the acid addition salt is weaker than the hydrohalogenic acid.
It further relates to a Moxifloxacin hydrochloride methylene dichloride solvate, a new anhydrous form
IV of Moxifloxacin hydrochloride, a Moxifloxacin hydrochloride nitromethane solvate, a Moxifloxacin hydrochloride acetic acid solvate, pharmaceutical compositions comprising an effective amount of the anhydrous form IV of Moxifloxacin HCl or of the acetic acid solvate of Moxifloxacin HCl, a new crystalline form of Linezolid hydrochloride, a Prasugrel hydrochloride acetonitrile solvate and a Raloxifene hydrochloride tetrahydrofuran solvate, all new solvates or salts being obtainable by the process of the invention. The invention further relates to the use of trialkylsilyihalogenide in a process for the preparation of a crysialline hydrohalide of an organic amine.
The present invention relates to the discovery that trialkylsilylhalogenides are very well suited for the preparation of hydrohalide salts of basic drug substances or hydrohalide salts of basic intermediates, especially in cases where anhydrous conditions are required and/or in cases where a well defined crystalline structure of the salt in pure form has to be prepared.
The invention thus relates to a process for the preparation of a crystalline halogenide of an organic amine wherein a trialkylsilylhalogenide is added to the organic amine in a solvent, which organic amine is in the form of the free base or an acid addition salt, wherein the conjugated acid of the acid addition salt is weaker than the hydrohalogenic acid.
Suitable solvents for the process of the present invention are protic solvents or aprotic solvents in combination with at least one equivalent of a protic solvent compared to the organic amine. Protic solvents are solvents which are silylable i.e. which have the ability to generate in situ an hydrohalide when added to a trialkylsilylhalogenide. Suitable protic solvents are e.g. aliphatic alcohols or aromatic alcohols, silanols, ketones capable of enolization, or aliphatic or aromatic carbonic acids.
Aprotic solvents are solvent which are inert to silylation capable of dissolving or suspending the amine or directing the defined crystal structure of the hydrohalide formed.
Suitable aprotic solvents are e.g. ester, especially ethyl-acetate; nitriles, especially acetonitrile; Ketone, especially acetone; ethers, especially tertiobutylmethylether; Halogenated solvents, especially dichloromethane; Aromatic solvents, especially toluene; Alkanes, especially hexane; and nirtroalkenes, especially nitromethane.
An organic amine within the meaning of the present invention is an organic compound comprising a primary, secondary, tertiary or quaternary amino group and more than three carbon-carbon bonds and having a molecular weight of more than 80 Da, preferably having a molecular weight of between 100 Da and 5000 Da.
In one embodiment the process of the invention comprises the steps of:
In preferred embodiments the invention this process is used for the production of moxifloxacin hydrochloride acetic acid solvate, citalopram hydrobromide, dopidrogel hydrobromide, raloxifene hydrochloride form A or erlotinib hydrochloride form A, for example as further detailed below.
During step (b) the halogensilane reacts immediately as silylating agent, presumably with the protic solvent, thereby generating hydrohalogenic acid in situ, and the generated HCl, HBr or Hl converts the free base to the hydrogen halide.
Preferred trialkylsilylhalogenides are those where the three alkyl residues are identical, in particular where they are methyl, ethyl, propyl, butyl or isopropyl. Most preferred trialkylhalogenides are trimethylchorosilane, trimethylbromosilane and trimethyliodosilane.
The term “protic solvent” as used in the present invention includes solvent systems which are mixtures of solvents where the total amount of protic solvents is more than one molequivalent compared to the organic amine to be added, in particular wherein the total amount of protic solvents is about one molequivalent of the organic amine to be added.
Preferred protic solvents used in step (a) are solvents comprising a hydroxyl group or a carboxyl group. Particularly preferred protic solvents are aromatic or aliphatic alcohols, silanols, ketones capable of enolization, or aromatic or aliphatic carbonic acids, or solvent systems which are mixtures thereof. More preferred protic solvents are C1-C6 alkyl alcohols, like methanol, ethanol, 2-propanol (isopropanol), butanol (such as n-butanol and isobutanol); or C1-C6 alkylcarboxylic acid, in particular formic acid or acetic acid.
Workup and isolation of the hydrohalides, including drying, may be carried out using methods known in the art.
In a further embodiment, the process for preparing a hydrohalide salt of an organic compound comprises the steps of:
Step e) can be carried out by any suitable method in the art, e.g. by filtration.
In preferred embodiments the invention this process is used for, e.g., the production of sertraline hydrochloride form II, aripirazol hydrochloride, pramipexole monohydrochloride, memantine hydrochloride, rimonabant hydrochloride form I, clopidrogel hydrochloride form I, clopidrogel hydrobromide form A, prasugrel hydrochloride form A, prasugrel hydrochloride acetonitrile solvate, raloxifene hydrochloride tetrahydrofuran hemisolvate, olanzapine dihydrochloride form I, darifenacin hydrobromide, sitagliptin hydrochloride or vardenafil dihydrochloride, for example as further detailed below.
When aprotic solvents are used, the free base of the organic amine itself can react with the trialkylhalogenide to form a silylated hydrogen halide and the silylated product can be hydrolyzed afterwards by addition of one or more equivalents of a protic step like an alcohol. Thus, the order of steps b) and c) can be reversed. Also, the trialkylhalogenide can first be mixed with the protic solvent to generate the hydrohalogenic acid and this mixture can then be added to the dissolved or suspended organic amine.
In a further embodiment the process for preparing a hydrohalide salt of an organic compound comprises the steps of:
Step d) can be carried out by any suitable method in the art, e.g. by filtration.
In preferred embodiments the invention this process is used for, e.g., the production of sertraline hydrochloride form II, raloxifene hydrochloride form A or raloxifene hydrochloride tetrahydrofuran hemisolvate, for example as further detailed below.
In step (a) the acid addition salt of the organic amine can be generated in situ by adding the organic acid to the solution or suspension of the base in the solvent
The organic acid used for generation of the organic acid salt of the amine should be weaker than hydrochloric acid and preferably is selected from the group consisting of substituted or unsubstituted alkanoic acids, aromatic carboxylic acids, dicarboxylic acids or citric acid, with acetic acid being particularly preferred.
Preferably in step (a) the acid addition salt of the organic amine is generated in situ by adding an acid, which conjugated acid is weaker than hydrochloric acid and preferably is an organic acid, to a solution or slurry of the organic amine.
In preferred embodiments of the invention this process is used for, e.g., the production of mycophenolate mofetil hydrochloride in its crystalline anhydrous form, venlafaxine hydrochloride form I, venlafaxine hydrochloride form II, sertraline hydrochloride form II, donepezil hydrochloride form III, terbinafine hydrochloride, cinacalcet hydrochloride, moxifloxacin hydrochloride methylene dichloride solvate, moxifloxacine hydrochloride nitromethane solvate, moxifloxacine hydrochloride acetic acid solvate, citalopram hydrobromide, duloxetine hydrochloride or linezolid hydrochloride, for example as further detailed below.
Hydrochlorides have been by far the most frequent choice for salts of basic drugs because of the easy availability and for physiological tolerability, and about half the salts of all drugs are hydrochlorides, and serve as an example for all hydrohalides in the following paragraph.
The formation of hydrochlorides does sometimes require strictly anhydrous conditions and especially in this case it is advantageous to use trialkylsilylchloride for generating hydrochloric acid in situ and for inducing salt formation as described above. At other times formation of hydrochlorides requires a defined stoichiometry of HCl in relation to the organic amine, which is very easy to achieve by use of trialkylsilylchloride as described above. Even if only an exact calculated amount of an hydrohalogenic acid in a solvent is needed, the use of a trialkylsilylhalogenide is easier and a better method than the preparation of the solution via anhydrous gas from cylinders.
In other words, the use of trialkylsilylhalogenides for in situ generation of hydrohalogenic acid in the process of the invention allows a very good control of the stoichiometric ratio of hydrohalogenic acid and organic amine during salt formation. This is of particular advantage when there exist two or more hydrohalides of an organic amine, for example a monohydrohalide and a dihydrohalide, as in this case choosing the amount of hydrohalogenic acid to be generated can direct the process towards obtaining the desired hydrohalide. For example, if one desires to obtain a monohydrohalide, but there exists also a competing dihydrohalide, then one can limit the amount of added trialkylsilylhalogenide so that only one molequivalent of hydrohalogenid acid is generated in situ and thus steer crystallization towards generation of the monohydrohalide.
A further advantage of the process of the invention is that it can also operate at the virtual absence of water so that anhydrous forms of the hydrohalide salts of the organic amines become accessible.
Moreover, since the addition of the trialkylsilylhalogenide is a very robust step and can be effected within a broad temperature range and is compatible with a broad diversity of solvent systems, addition of the trialkylsilylhalogenide can most of the times be effected at those very conditions that are known to be optimal for obtaining a desired crystal form. For example, if it is known that polymorphic form A of a monohydrochloride of drug X is obtainable at low temperatures in solvent Y, while polymorphic form B of the same monohydrochloride is obtainable at ambient temperature on solvent Z, then one can simply choose the conditions so that the desired form, be it A or B, forms, for the very reason that the robust nature of the trialkylsilylhalogenide addition step allows to make this choice of crystallization conditions.
In a further embodiment, the process of the invention is employed for the generation of hydrohalides of drugs with a primary, secondary, tertiary or quaternary amino group, in particular wherein the drug is selected from an antidepressant, like the serotonin reuptake inhibitors Sertraline, Duloxetine, Venlafaxine and Citalopram, a nootropic agent, like in particular Donepezil, an antipsychotic agent, like in particular the neuroleptic Aripiprazole and the serotonin/dopamine antagonist Olanzapine, a muscle relaxant, like in particular the antispasmodic agent Memantine, an immunosuppressant, like in particular Mycophenolate Mofetil, an antifungal agent, like in particular Terbinafine, an antibacterial, like in particular a Quinolone, as for example Moxifloxacin or the oxazolidinone Linezolid, a calcimimetic agent, like in particular Cinacalcet, a Dopamine agonist, like in particular the D2-receptor agonist Pramipexole, an antiobesity agent, like Rimonabant, an antithrombotic like Clopidogrel and Prasugrel, an antiosteoporotic, like in particular Raloxifene, an antispasmodic like Darifenacin, an agent for treatment of male erectile dysfunction like Vardenafil, an antidiabetic, like in particular the DPP-IV inhibitor Sitagliptin, an antineoplastic like Erlotinib.
In a further embodiment, the invention relates to the preparation of crystalline anhydrous Mycophenolate Mofetil hydrochloride by a process of the invention, in particular a process which comprises
With this process, anhydrous Mycophenolate Mofetil hydrochloride precipitates and can be isolated in over 97% yield. FT-IR, DSC and XRPD data of the crystalline product correspond to IR, DSC and X-ray crystallography data as shown in WO 95/07902. WO 95/07902 discloses that anhydrous Mycophenolate Mofetil hydrochloride possesses about a two-fold increase in solubility over the monohydrate salt form, while possessing the stability characteristics of the monohydrate salt form. The present method avoids the formation of the monohydrate hydrochloride thus circumventing the need to heat Mycophenolate Mofetil hydrochloride Monohydrate in order to prepare the anhydrous form.
In a further embodiment, the invention relates to the preparation of Venlafaxine hydrochloride by a process of the invention, in particular to a process for the preparation of Venlafaxine hydrochloride Form I or Form II in pure form wherein gaseous hydrogen chloride is not used during the process. In a preferred embodiment, the invention relates to a process for the preparation of Venlafaxine hydrochloride Form I, which process comprises the steps of a) dissolving Venlafaxine base in ethyl acetate, b) adding acetic acid, in particular adding 1.0 to about 1.5 equivalents equivalent of acetic acid, and c) treating the solution with about 1.0 to about 1.5 equivalents of Trim ethylchlorosilane. By this process anhydrous Venlafaxine hydrochloride Form I precipitates and can be isolated in over 89% yield. XRPD data of the crystalline product correspond to X-ray crystallography data Form I as shown in WO 02/45658 (Teva) and Form B as shown in WO 02/36542 (Ciba).
In another preferred embodiment, the invention relates to a process for the preparation of Venlafaxine hydrochloride Form II which process comprises the steps of a) dissolving Venlafaxine base in acetone or acetonitrile as solvent, b) adding acetic acid, in particular adding 1.0 to about 1.5 equivalents equivalent of acetic acid, and c) treating the solution with about 1.0 to about 1.5 equivalents of Trimethylchlorosilane. By this process anhydrous Venlafaxine hydrochloride Form II is obtained. XRPD data of the crystalline product correspond to X-ray crystallography data Form II as shown in WO 02/45658 (Teva) and Form C as shown in WO 02/36542 (Ciba).
In a further embodiment, the invention relates to the preparation of Sertraline hydrochloride Form II by a process of the invention. Sertraline hydrochloride Form II is a metastable form and is usually produced by rapid crystallization of Sertraline hydrochloride from an organic solvent. However the preferential formation of form II depends on the rapidity of crystallization which is not easily controllable. Therefore there is a need for the preparation of Sertraline hydrochloride form II. The process of the present invention allows the industrial preparation of this metastable form II in pure form and in a simple way. The present invention therefore also relates to Sertraline hydrochloride form II without detectable levels of sertraline form I, that is less than 1.0% form I, in particular less than 0.5% form I, as determined by the absence of a suitable XRPD peak characteristic for form I alone, for example at 14.9 and 26.3 2 theta.
Therefore, in one embodiment, the invention relates to a process for preparing Sertraline hydrochloride Form II which comprises:
Trimethylchlorosilane can be added all at once or can be added in two or more portions, or can be added incrementally. The reaction with Trimethylchlorosilane can be conducted at any temperature at which Sertraline is soluble. In acetonitrile as solvent, the reaction is typically conducted at a temperature in the range of from about 20 to 80° C., and more typically at a temperature in the range of from about 20 to 50° C. In methyl isobutyl ketone as solvent the reaction is conducted at a temperature in the range of from about 50 to 100° C., and more typically at a temperature of about 80° C. Trimethylchlorosilane is typically added in an amount of about 1 to about 2 equivalents of Trimethylchlorosilane per equivalent of Sertraline. The protic solvent in step b) is typically added in an amount equivalent to the amount of Trimethylchlorosilane used. Following the addition of Trimethylchlorosilane, the reaction mixture can be aged for a period of time to permit intimate mixing.
In another preferred embodiment the invention relates to a process for preparing Sertraline hydrochloride Form II using an organic salt of Sertraline which comprises
Trimethylchlorosilane is typically added in an amount of from about 1 to about 2 equivalents of Trimethylchlorosilane per equivalent of the organic salt and more typically in an amount of 1,1 equivalents per equivalent of the organic salt.
The present invention further relates to a process for preparing Sertraline hydrochloride Form I which comprises a) dissolving Sertraline free base in isopropanol at room temperature and b) treating the solution with Trimethylchlorosilane.
The present invention further relates to a process of the invention for preparing anhydrous Donepezil hydrochloride. Depending on the choice of solvent, Donepezil hydrochloride Form II or Form III can be made.
In a first embodiment this is a process to prepare Donepezil hydrochloride Form II which comprises:
In a second embodiment this is a process to prepare anhydrous Donepezil hydrochloride Form III, wherein acetone or acetonitrile is used as solvent. XRPD data of the crystalline product Donepezil hydrochloride Form II and Donepezil hydrochloride Form III correspond to X-ray crystallography data of Form II and Form III as shown in WO 97/46527 (Eisai).
The present invention further relates to a process for preparing Terbinafine hydrochloride, Cinacalcet hydrochloride, Duloxetine hydrochloride, Memantine hydrochloride and Pramipexole Monohydrochloride according to a process of the invention, which process preferably comprises
In the above process, Terbinafine can be dissolved for example in an aprotic solvent like acetone, acetonitrile or tert.-butyl methyl ether, Cinacalcet can be dissolved for example in an aprotic solvent like acetonitrile or ethyl acetate, and Pramipexole can be dissolved for example in an aprotic solvent like acetonitrile.
XRPD data of the crystalline product Terbinafine hydrochloride correspond to X-ray crystallography data published by E. Tedesco et al. in Cryst Eng Comm, 2002, 4(67), 393-400. A characteristic X-ray powder diffraction pattern of the crystalline hydrochloride salt of Cinacalcet is shown in
A characteristic X-ray powder diffraction pattern of the crystalline hydrochloride salt of Duloxetine is shown in
The present invention also relates to a process of the invention for preparing Citalopram hydrobromide by the general process as defined above. In one embodiment the invention relates to a process for preparing Citalopram hydrobromide which comprises dissolving Citalopram free base in a protic solvent like an alcohol i.e. methanol or isopropanol and adding 1.0 to about 1.5 equivalents equivalent Trimethylbromosilane.
In another embodiment the invention relates to a process for preparing Citalopram hydrobromide which comprises:
The present invention also relates to a process of the invention for preparing Aripiprazole hydrochloride Form A, which process preferably comprises:
XRPD data of the crystalline product Aripiprazole hydrochloride correspond to X-ray crystallography data Form A as shown in WO 2004/083183 (Hetero Drugs Ltd.).
Rimonabant can be suspended for example in acetonitrile or dissolved in ethyl acetate and after addition of at least one equivalent of methanol and Trimethylchlorosilane the Hydrochloride of Rimonabant in crystalline form I is obtained. The X-ray powder diffraction pattern of Rimonabant Hydrochloride form I is shown in
Clopidogrel Hydrochloride in form I can be obtained for example by adding at least one equivalent of acetic acid and trimethylchlorosilane to a solution of Clopidogrel base in ethyl acetate. If acetone or acetonitrile is used as solvent, an anti-solvent like diisopropyl ether is added in order to precipitate the form I of Clopidogrel Hydrochloride. In one preferred embodiment, Clopidogrel base is dissolved in toluene, one equivalent methanol is added and the solution is treated with Trimethylchlorosilane. Following the addition of Trimethylchlorosilane, the fluffy precipitate is stirred for a period of time at room temperature to permit conversion to Clopidogrel Hydrochloride form I.
Prasugrel Hydrochloride form B can be obtained for example by adding at least one equivalent of acetic acid and trimethylchlorosilane to a solution of Prasugrel base in acetone. The XRPD pattern of Prasugrel Hydrochloride form B is shown in
The invention further relates to a novel Prasugrel Hydrochloride acetonitrile solvate, which may be characterized by an X-ray powder diffraction pattern comprising peaks at 8.3, 13.8,16.2, 18.8, 23.8, 25.4 and 26.8 degrees 2 theta. An example of a X-ray powder diffraction pattern of Prasugrel
Hydrochloride acetonitrile solvate is shown in
Prasugrel Hydrochloride acetonitrile solvate can preferably prepared by the a process of the present invention comprising the steps of:
Under air drying conditions, Prasugrel Hydrochloride acetonitrile solvate is stable and does not desolvate. It has an 1H-NMR spectrum which is substantially identical to the 1H-NMR spectrum (DMSO-d6, TMS). Specifically, it has a characteristic peak at 2. ppm (s, 3H) which corresponds to about one mol acetonitrile per mol of substance.
Sitagliptin Hydrochloride in amorphous form can be obtained for example by adding at least one equivalent of methanol and trimethylchlorosilane to a solution of Sitagliptin base in a mixture of methylenechloride and diethylether. The XRPD pattern of amorphous Sitagliptin Hydrochloride is shown in
The present invention also relates to a process for preparing Clopidogrel Hydrobromide form A by the general process as defined above which comprises dissolving Clopidogrel free base in a protic solvent like an alcohol i.e. methanol or isopropanol and adding 1.0 to about 1.5 equivalents equivalent Trimethylbromosilane.
Alternatively, the process for preparing Clopidogrel Hydrobromide form A is a process of the invention which comprises:
A characteristic X-ray powder diffraction pattern of the crystalline Clopidogrel Hydrobromide is shown in
The present invention further relates to a process of the present invention for preparing Raloxifene Hydrochloride Form A. In a preferred embodiment the process for preparing Raloxifene Hydrochloride Form A comprises
Alternatively the process for preparing Raloxifene Hydrochloride Form A comprises
In methyl isobutyl ketone as solvent typically the reaction with Trimethylchlorosilane is conducted at a temperature of about 100° C., in acetonitrile as solvent, the reaction with Trimethylchlorosilane is typically conducted at ambient temperature.
A characteristic X-ray powder diffraction pattern of Raloxifene Hydrochloride Form A is shown in
The present invention also relates to a novel Raloxifene Hydrochloride Hemisolvate with tetrahydrofuran, which may be characterized by an X-ray powder diffraction pattern comprising peaks at 13.6, 16.6, 17.7, 18.9, 19.2, 19.5, 21.2 and 23.6 degrees 2 theta. An example of an X-ray powder diffraction pattern of Raloxifene Hydrochloride Hemisolvate with tetrahydrofuran is shown in
The invention also relates to a process of the present invention for the preparation of Raloxifene Hydrochloride Hemisolvate with tetrahydrofuran comprising the steps of:
An alternative embodiment of the process for preparing the Raloxifene Hydrochloride Hemisolvate with tetrahydrofuran is a process using an organic salt of Raloxifene which comprises
Under air drying conditions, Raloxifene Hydrochloride THF Hemisolvate is stable and does not desolvate. It has an 1H-NMR spectrum which is substantially identical to the 1H-NMR spectrum (DMSO-d6, TMS).
The present invention further relates to a process of the invention for preparing anhydrous Vardenafil Dihydrochloride, which process comprises:
A characteristic X-ray powder diffraction pattern of anhydrous Vardenafil Dihydrochloride is shown in
The present invention further relates to a process of the present invention for preparing Erlotinib Hydrochloride Form A, which process comprises suspending Erlotinib base in isopropanol and treating the suspension with at least one equivalent of Trimethylchlorosilane at room temperature. A characteristic X-ray powder diffraction pattern of Erlotinib Hydrochloride Form A is shown in
By employing the processes of the invention, we have further discovered a Moxifloxacin hydrochloride methylene dichloride solvate characterized by an X-ray powder diffraction pattern with peaks at about 14.6, 18.7, 21.9, 23.5, and 25.3 degrees 2 theta. The invention therefore also relates to a Moxifloxacin hydrochloride methylene dichloride solvate, in particular wherein the molar ratio of Moxifloxacin hydrochloride to methylene dichloride is about 1:1, in particular this solvate demonstrates peaks in a X-ray powder diffraction pattern at about 14.6, 18.7, 21.9, 23.5, and 25.3 degrees 2 theta. A characteristic X-ray powder diffraction pattern of Moxifloxacin hydrochloride methylene dichloride solvate is shown in
Moxifloxacin hydrochloride methylene dichloride solvate may be also characterized by characteristic bands in an infrared spectrum at about 2704, 1720, 1434, 1311, 1272, 730 and 702 cm−1, in particular by the typical infrared spectrum as shown in
Moxifloxacin hydrochloride methylene dichloride solvate may be prepared by the process of the invention comprising the steps of:
Under air drying conditions, Moxifloxacin hydrochloride methylene dichloride solvate is stable and does not desolvate. TGA of Moxifloxacin hydrochloride methylene dichloride solvate shows a loss of mass of 16% between 80 and 180° C., which corresponds to one mol dichloromethane per mol of substance. The invention therefore relates to Moxifloxacin hydrochloride methylene dichloride solvate showing a loss of mass of between 10% and 20%, and in particular about 16%, between 80 and 180° C., which corresponds to about one mol dichloromethane per mol of substance.
Moxifloxacin hydrochloride methylene dichloride solvate has an 1H-NMR spectrum which is substantially identical to the 1H-NMR spectrum (DMSO-d6, TMS) shown in
By employing the processes of the invention, we have further discovered a Moxifloxacin hydrochloride nitromethane solvate. The invention therefore also relates to such a solvate, in particular wherein the molar ratio of Moxifloxacin hydrochloride to nitromethane is about 1:1. The solvate can be further characterized by an X-ray powder diffraction pattern with peaks at about 11.2, 14.7, 16.9, 20.4, 22.0, 22.6 and 23.4 degrees 2 theta, in particular by the characteristic X-ray powder diffraction pattern of Moxifloxacin hydrochloride nitromethane solvate as shown in
Moxifloxacin hydrochloride nitromethane solvate may be prepared by the process of the invention, in particular comprising the steps of:
Moxifloxacin hydrochloride nitromethane solvate has an 1H-NMR spectrum which is substantially identical to the 1H-NMR spectrum (DMSO-d6, TMS) shown in
The present invention also relates to a novel anhydrous hydrochloride salt of Moxifloxacin, herein called form IV. In particular, form IV does not convert to a hydrous form of Moxifloxacin hydrochloride, when placed in a dessicator at a humidity level of 33% for 48 hours. More particular, the invention relates to form IV characterized by an X-ray powder diffraction pattern with peaks at about 10.0, 13.2, 15.3, 17.2 and 24.4 degrees 2 theta. A characteristic X-ray powder diffraction pattern of the anhydrous form IV of Moxifloxacin hydrochloride is shown in
Moxifloxacin hydrochloride form IV may further be characterized by showing a typical infrared spectrum as shown in
The new anhydrous form IV may preferably be prepared by desolvating Moxifloxacin hydrochloride methylene dichloride solvate by drying in vacuum at about 100° C. The anhydrous form IV shows a lower hygroscopicity as anhydrous form II described in US 5849 752 (Bayer) and a lower hygroscopicity than anhydrous form B described in Chemi Spa's patent application WO 2005/054240, facilitating its handling and/or storage. After placing Moxifloxacin hydrochloride anhydrous form IV in a dessicator at a humidity level of 33% for 48 hours anhydrous form IV does not convert to a hydrous form of Moxifloxacin hydrochloride, This is demonstrated by the XRPD pattern which shows no alteration and by the moisture content which rises only from 0.5% to 0.6%. The invention also relates to pharmaceutical compositions comprising form IV.
By employing the processes of the invention, we have further discovered a Moxifloxacin hydrochloride acetic acid solvate. The invention therefore also relates to such a solvate, in particular wherein the molar ratio of Moxifloxacin hydrochloride to acetic acid is about 1:1. This solvate may be further characterized by an X-ray powder diffraction pattern with peaks at about 5.3, 7.6, 9.3, 15.2, 16.2, 18.8, 20.8, 26.6 and 27.7 degrees 2 theta. In a preferred embodiment the moxifloxacin hydrochloride acetic acid solvate shows a X-ray powder diffraction pattern substantially in accordance with the one shown in
Moxifloxacin hydrochloride acetic acid solvate may be prepared by the process as defined and described above, which comprises:
Moxifloxacin hydrochloride acetic acid solvate has an 1H-NMR spectrum which is substantially identical to the 1H-NMR spectrum (DMSO-d6, TMS) shown in
The present invention also relates to a process of the invention for preparing Linezolid hydrochloride, which preferably comprises adding a protic solvent like n-butanol or acetic acid to a solution of Linezolid in an organic solvent like acetone or acetonitrile and treating the mixture with Trimethylchlorosilane.
The present invention also relates to crystalline Linezolid hydrochloride. Linezolid hydrochloride may be characterized by, for example, characteristic peaks in the XRPD pattern at values of about 13.9, 18.2, 19.1, 23.0 and 27.2 degrees two theta. A characteristic X-ray powder diffraction pattern of the crystalline Linezolid hydrochloride is shown in
As explained above, the invention allows fine-tuning of the amount of hydrohalogenic acid generated in the crystallization solution, of the speed with which said hydrohalogenic acid is generated—for example by controlling the rate of addition of the trialkylsilylhalogenide—and of the conditions, under which the hydrohalogenic acid is generated—for example by adjusting temperature, solvent composition or further parameters as necessary for obtaining a desired salt (e.g. the mono- or dihydrohalide salt) of the organic amine or a desired polymorphic form of the hydrohalide salt of the organic amine. Thus, the present invention relates to the use of a trialkylsilylhalogenide for the preparation of a crystalline hydrohalide of an organic amine. This use is particularly advatageous if the crystalline hydrohalide of the organic amine is one desired hydrohalide among several known hydrohalides of said organic amine, for example in such cases where a crystalline monohydrochloride of a drug is desired, while there is or are also di- or tri-hydrochloride of said drug. Using the conventional technique of adding HCl gas to the crystallization mixture would not be difficult to control with regard to amount of HCl added, would not allow the same flexibility with regard to the choice of crystallization conditions and would simply be more difficult to handle.
A further advantage is that the hydrohalogenic acid can be generated essentially in the absence of water or at least in the presence of only small amounts of water. Thus, anhydrous forms of crystalline hydrohalides of organic amines become accessible. Thus, the invention also relates to the use of a trialkylhalogenide in the preparation of an anhydrous crystalline hydrohalide salt of an organic amine.
Furthermore, the generation of controlled amounts of hydrohalogenic acid essentially in the absence of water makes solvates of organic amines accessible which would not form in the presence of water, for example solvates which are thermodynamically less stable than the corresponding hydrates. Thus, the present invention also relates to the use of a trialkylhalogenide in the preparation of solvates of crystalline hydrohalides of an organic amine, in particular the preparation of anhydrous solvates.
It will be apparent to the skilled person that preferred trialkaylsilylhalogenides, preferred organic amines and preferred conditions for these uses are as defined above in the description of the process of the invention.
The following examples will illustrate, but do not limit the scope of the present invention. Wherever used, room temperature denotes a temperature in the range of 20-30° C.
The infrared spectra were recorded using a BRUKER Tensor 27 FTIR-spectrometer with diamond ATR-cell.
The XRPD were recorded on a AXS-BRUKER X-ray powder diffractometer D-8 using the following acquisition conditions: tube anode: Cu; generator tension: 40 kV; generator current: 40 mA; start angle: 2.0° ?; end angle: 40.0° ?; step size: 0.01° ?; time per step: 2 seconds.
Differential scanning calorimetry (DSC) was performed with a DSC 7 (Perkin-Elmer, Norwalk, Conn., USA) using the Pyris 2.0 software. Samples were weighed into 25 μl Al-Pans. Dry nitrogen is used as the purge gas (purge: 20 ml min−1).
1H-NMR spectra were recorded on a Brucker AM-300 spectrometer.
2 g (4.61 mmol) mycophenolate mofetil base were dissolved in 50 ml ethyl acetate at room temperature. To this solution 0.3 ml (1.2 equiv.) acetic acid and 0.7 ml (1.2 equiv.) trimethyichlorosilane were added under stirring. After 2 minutes at room temperature the crystallization started. The suspension was stirred for 1 hour and the precipitate filtered off. The solid was washed with ethyl acetate and dried under vacuum at room temperature to yield 2.11 g (97,6%) of mycophenolate mofetil hydrochloride.
mp.=157.2° C.
The XRD pattern of mycophenolate mofetil hydrochloride is shown in
DSC of mycophenolate mofetil hydrochloride shows an endotherm peak at about 159° C. (onset temperature about 155° C., see
0.4 g (1.44 mmol) Venlafaxine base were dissolved in 10 ml ethyl acetate at room temperature. To this solution 0.1 ml (1.1 equiv.) acetic acid and 0.2 ml (1.1 equiv.) trimethylchlorosilane were added under stirring. After 2 minutes at room temperature the crystallization started. The suspension was stirred for 30 minutes and the precipitate filtered off. The solid was washed with ethyl acetate and dried under vacuum at room temperature to yield 0.41 g (89.1%) of Venlafaxine hydrochloride.
mp.=208° C.
The XRD pattern of Venlafaxine hydrochloride form I is shown in
The infrared spectrum obtained is shown in
0.4 g (1.44 mmol) Venlafaxine base were dissolved in 10 ml acetone at room temperature. To this solution 0.1 ml (1.1 equiv.) acetic acid and 0.2 ml (1.1 equiv.) trimethyichlorosilane were added under stirring. After 2 minutes at room temperature the crystallization started. The suspension was stirred for 30 minutes and the precipitate was filtered off. The solid was washed with ethyl acetate and dried under vacuum at room temperature to yield 0,38 g (82.6%) of Venlafaxine hydrochloride form II.
The XRD pattern of Venlafaxine hydrochloride form II is shown in
The infrared spectrum obtained is shown in
0.4 g (1.44 mmol) Venlafaxine base were dissolved in 10 ml acetonitrile at room temperature. To this solution 0.1 ml (1.1 equiv.) acetic acid and 0.2 ml (1.1 equiv.) trimethylchlorosilane were added under stirring. After 2 minutes at room temperature the crystallization started. The suspension was stirred for 30 minutes and the precipitate was filtered off. The solid was washed with ethyl acetate and dried under vacuum at room temperature to yield 0.23 g (51.1%) of Venlafaxine hydrochloride form II.
3 g (9.8 mmol) Sertraline base were dissolved in 60 ml acetonitrile at room temperature. To this solution 0.6 ml (1 eg) acetic acid and 1.4 ml (1.1 eq) of trimethylchlorosilane was added under stirring. While adding Sertraline hydrochloride precipitated nicely in the crystalline Form II. After stirring the suspension for one hour the product was filtered of and dried at 50° C. for 3 hours to yield 3.2 g (95.3%) of Sertraline hydrochloride Form II.
mp.: 252° C.
The XRD pattern obtained is shown in
The infrared spectrum obtained is shown in
3 g (9.8 mmol) Sertraline base were dissolved in a mixture of 60 ml acetonitrile and 1 ml n-butanol. The solution was heated to 50° C. and 1.4 ml (1.1 eq) trimethylchlorosilane was added under stirring. Immediately during the addition Sertraline hydrochloride precipitated in the crystalline Form II. After stirring for 30 min at 50° C., the suspension was cooled to room temperature and stirred for about one hour. The product was filtered off and dried at 50° C. for 3 hours to yield 3.1 g (94%) of Sertraline hydrochloride form II.
10 g (32.7 mmol) Sertraline base in 200 ml methyl isobutyl ketone (MIBK) were heated to about 80° C. To the solution 2.4 ml (1.1 eq) acetic acid and then 4.5 ml (1.1 eq) trimethylchlorosilane were added under stirring. A gelatinous mass was first obtained which becomes crystalline after stirring at 80° C. for one hour. The reaction mixture was cooled to room temperature and again stirred for about one and a half hour. The product was filtered off and dried at 50° C. for 4 hours to yield 10.93 g (97.7%) of Sertraline hydrochloride form II.
A suspension of 3 g (6.5 mmol) Sertraline Mandelate salt in 60 ml acetonitrile was stirred at room temperature and 1.4 ml (1.7 eq) trimethylchlorosilane was added. The viscous suspension changed first to a thin suspension and afterwards a thick suspension of crystals of Sertraline hydrochloride Form II within 15 minutes was obtained. After stirring for about one hour, the product was filtered off and dried at 50° C. under vacuum to yield 2.09 g (96.3%) of Sertraline hydrochloride form II.
A suspension of 3 g (6,5 mmol) Sertraline Mandelate salt in 60 ml methyl ethyl ketone was heated to about 80° C. and 0.9 ml (1.1 eq) trimethylchlorosilane was added. A clear solution was obtained and soon after Sertraline hydrochloride in the crystalline form II starts to precipitate. The reaction mixture was cooled to room temperature under stirring within one hour and then the product was filtered off and dried at 50° C. under vacuum to yield 1.97 g (87.8%) of Sertraline hydrochloride form II.
A suspension of 3 g (6.5 mmol) Sertraline Mandelate salt in 60 ml methyl isobutyl ketone was heated to about 80° C. and 0.9 ml (1.1 eq) trimethylchlorosilane is added. The suspension changed to a gelateneous mass. After approximately 5 minutes Sertraline hydrochloride in the crystalline form II started to form. The reaction mixture was stirred at 80° C. for about 20 minutes and then cooled to room temperature under stirring within one hour. The product was filtered off and dried at 50° C. under vacuum for 3 hours to yield 2.11 g (94.0%) of Sertraline hydrochloride form II.
A suspension of 15 g (32.7 mmol) Sertraline Mandelate salt in 300 ml methyl isobutyl ketone was heated to about 100° C. and 4.6 ml (1.1 eq) trimethylchlorosilane was added. The suspension changed to a gelateneous mass. After approximately 5 minutes Sertraline hydrochloride in the crystalline form II started to form The suspension changed to a gelateneous mass. After approximately 5 minutes. The reaction mixture was stirred at 100° C. for about 15 minutes and then cooled to room temperature under stirring within one and a half hour. The product was filtered off, washed twice with 10 ml acetone and dried at 50° C. under vacuum for 4 hours to yield 10.64 g (94.9%) of Sertraline hydrochloride form II.
To a solution of 3 g (9.8 mmol) Sertraline free base in 50 nil ethyl acetate was added a solution of 0.97 g (1.1 eq) oxalic acid in 50 ml methanol. After stirring for 15 minutes the crystalline precipitate was filtered off and dried at 50° C. under vacuum to yield 3.37 g (86.8%) of Sertraline Oxalate.
A suspension of 0.7 g (1.77 mmol) Sertraline Oxalate in 15 ml acetonitrile was stirred at room temperature and 250 μl (1.1 eq) trimethylchlorosilane was added. After addition the suspension converted almost to a solution but at the same time Sertraline hydrochloride in the crystalline form It started to precipitate. After stirring for about one hour, the product was filtered off and dried at 50° C. under vacuum to yield 0.47 g (77.8%) of Sertraline hydrochloride form II.
A solution of 3 g (9.8 mmol) Sertraline base in 60 ml 2-propanol was stirred at room temperature and 0.6 ml acetic acid and 1.4 ml (1.1 eq) trimethylchlorosilane were added under stirring. After 2 minutes at room temperature the crystallization started. The suspension was stirred for 60 minutes and the precipitate filtered off. The solid was washed with 2-propanol and dried under vacuum at 50° C. for 3 hours to yield 2.95 g (87.8%) of Sertraline hydrochloride form I.
The XRD pattern obtained is shown in
The infrared spectrum obtained is shown in
0.5 g (1.32 mmol) Donepezil base were dissolved in 30 ml ethyl acetate at room temperature. To this solution 0.1 ml (1.1 eq) acetic acid and 0.2 ml (1.1 eq) trimethylchlorosilane were added under stirring. After 2 minutes at room temperature the crystallization started. The suspension was stirred for 2 hours and the precipitate was filtered off. The solid was washed with ethyl acetate and dried under vacuum at room temperature to yield 0.55 g (100%) of Donepezil hydrochloride form II.
The XRD pattern obtained is shown in
The infrared spectrum obtained is shown in
0.5 g (1.32 mmol) Donepezil base were dissolved in 10 ml acetone at room temperature. To this solution 0.1 ml (1.1 eq) acetic acid and 0.2 ml (1.1 eq) trimethylchlorosilane were added under stirring. After 2 minutes at room temperature the crystallization started. The suspension was stirred for 30 minutes and the precipitate filtered off. The solid was washed with ethyl acetate and dried under vacuum at room temperature to yield 0.54 g (98.5%) of Donepezil hydrochloride.
mp.=211° C.
The XRD pattern obtained is shown in
The infrared spectrum obtained is shown in
Example 7.b was repeated by using aetonitrile instead of acetone.
Yield: 0.47 g (85.6%) of donepezil hydrochloride form III.
0.4 g (1.37 mmol) Terbinafine base were dissolved in 5 ml acetone at room temperature. To this solution 86 μl(1.1 eq) acetic acid and 191 μl (1.1 eq) trimethylchlorosilane were added under stirring. After 2 minutes at room temperature the crystallization started. The suspension was stirred for 1 h and the precipitate was filtered off. The solid was washed with acetone and dried under vacuum at room temperature to yield 0.3 g (66.7%) of Terbinafine hydrochloride.
mp.=185° C.
The XRD pattern of Terbinafine hydrochloride is shown in
Example 8.a was repeated by using acetonitrile instead of acetone.
Yield: 0.19 g (42.2%) of Terbinafine hydrochloride
Example 8.a was repeated by using tert.-butyl-methyl-ether instead of acetone.
Yield: 0.41 g (91.1%) of Terbinafine hydrochloride
1.0 g (2.80 mmol) Cinacalcet base were dissolved in 10 ml acetonitile at room temperature. To this solution 0.19 ml (1.2 eq) acetic acid and 0.42 ml (1.2 eq) trimethylchlorosilane were added under stirring. After 2 minutes at room temperature the crystallization started. The suspension was stirred for 2 h and the precipitate was filtered off. The solid was washed with acetonitrile and dried under vacuum at room temperature to yield 0.45 g (40.8%) of Cinacalcet hydrochloride.
mp.=173° C.
The XRD pattern obtained is shown in
Example 9.a was repeated by using ethylacetate instead of acetonitrile.
Yield: 0.41 g (37.2%) of Cinacalcet hydrochloride.
0.72 g (22.2 mmol) Citalopram base were dissolved in 10 ml acetonitrile at room temperature. To this solution 0.14 ml (1.1 eq) acetic acid and 0.32 ml (1.1 eq) trimethylbromosilane were added under stirring. After 30 minutes at room temperature 15 ml of diethylether were added and the crystallization started. The suspension was stirred for 1 h and the precipitate filtered off. The solid was washed with acetonitrile and dried under vacuum at room temperature to yield 0.67 g (74.5%) of Citalopram hydrobromide.
mp.=182° C.
The XRD pattern obtained is shown in
Example 10.a was repeated with 0.5 g (15.4 mmol) Citalopram base using ethytacetate instead of acetonitrile as solvent.
Yield: 0.53 g (84.8%) of Citalopram hydrobromide.
Example 10.a was repeated with 0,59 g (18,2 mmol) Citalopram base using acetone instead of acetonitrile as solvent.
Yield: 0.67 g (90.9%) of Citalopram hydrobromide.
0.27 g (0.8 mmol) Citalopram base were dissolved in 3 ml isopropanol at room temperature and 145 μl (1.1 eq) trimethylbromosilane were added to the solution. After standing in a refrigerator over night the crystalline precipitate was filtered off and dried in vacuum to yield 0.25 g (74.1%) of Citalopram hydrobromide.
2.0 g (4.46 mmol) aripiprazole were dissolved in 20 ml 1,2-dichloromethane at room temperature. To this solution 0.45 ml (1.1 eq) n-butanol and 0.63 ml (1.1 eq) trimethylchlorosilane were added under stirring. After 2 minutes at room temperatur the crystallization started. The suspension was stirred for 15 minutes and the precipitate was filtered off. The solid was washed with 1,2-dichloromethane and dried under vacuum at room temperature to yield 2.05 g (94.0%) of aripiprazole hydrochloride.
mp.=210° C.
The XRD pattern of the product is shown in
0.5 g (2.37 mmol) Pramipexole base were dissolved in 20 ml acetonitrile at room temperature. To this solution 0.24 ml n-butanol (2.6 mmol, 1.1 equiv.) and 0.33 ml trimethylchlorosilane (2.6 mmol, 1.1 equiv.) were added under stirring. After 1 minute at room temperatur the crystallization started. The suspension was stirred for 1 hour and the precipitate was filtered off. The solid was washed with acetonitrile and dried under vacuum at room temperature to yield 0.56 g (95.5%) of Pramipexole Monohydrochloride.
mp.=264° C.
The XRD pattern obtained is shown in
5 g (12.5 mmol) Moxifloxacin were prepared according to EP 550903 and dissolved in 50 ml methylene dichloride at room temperature. To this solution 0.9 ml (1.2 equiv.) acetic acid and 2 ml (1.2 equiv.) trimethylchlorosilane were added under stirring. Immediately after addition of the chlorosilane the crystallization started. The suspension was stirred for about 30 min and the precipitate filtered off and dried under vacuum at room temperature to yield 6.3 g (94.2%) of the 1:1 solvate of Moxifloxacine hydrochloride with methylene dichloride.
1H-NMR (DMSO-d6): 0.8-0.95 (m, 1H), 0.95-1.3 (m, 3H), 1.6-1.9 (m, 4 H), 2.55-2.75 (m, 1H), 2.8-3.0 (m, 1H), 3.5-3.7 (m with Singlet at 3.6 ppm, 4H), 3.7-3.8 (m, 1H), 3.8-4.0 (m, 2H), 4.0-4.2 (m, 2H), 5.77 (s, 2H), 7.65 (d, J=14 Hz, 1H), 8.66 (s, 1H), 8.95 (s, broad, 1H), 10.2 (s, broad, 1H), 15.1 (s, broad, 1H).
The singlet at 5.77 ppm corresponds to about one mol methylene dichloride per mol of substance (see
The XRD pattern of the product is shown in
The Moxifloxacine hydrochloride solvate with methylene dichloride is not hygroscopic (no water uptake after 1 day at 33% relative humidity.
2 g Moxifloxacine hydrochloride methylene dichloride solvate were dried in vacuum at 100° C. for about 6 hours yielding 1.75 g of the desolvated anhydrous form IV of Moxifloxacine hydrochloride.
The XRD pattern of the product is shown in
3.0 g (7.47 mmol) moxifloxacin were prepared according to EP 550903 and dissolved in 30 ml acetic acid at room temperature. To this solution 2.0 ml (2.1 eq) trimethylchlorosilane were added under stirring. 30 minutes after addition of the chlorosilane the crystallization started. The suspension was stirred for about 3.5 hours and the precipitate filtered off washed with acetonitrile and dried under vacuum at room temperature to yield 3.21 g (86.3%) of the 1:1 solvate of Moxifloxacine hydrochloride with acetic acid.
1H-NMR (DMSO-d6): 0.8-0.95 (m, 1H), 0.95-1.3 (m, 3H), 1.6-1.9 (m, 4 H), 1.9 (s, 3H), 2.55-2.75 (m, 1H), 2.8-3.0 (m, 1H), 3.1-3.25 (m, 1H), 3.5-3.7 (m with Singlet at 3.6 ppm, 4H), 3.7-3.8 (m, 1H), 3.8-4.0 (m, 2H), 4.0-4.2 (m, 2H), 7.63 (d, J=14 Hz, 1H), 8.65 (s, 1H), 9.1 (s, broad, 1H), 10.4 (s, broad, 1H), 12.7 (s, broad, 1H).
The singlet at 1.9 ppm corresponds to about one mol acetic acid per mol of substance (see
The XRD pattern of the product is shown in
1.0 g (2.49 mmol) Moxifloxacin were prepared according to EP 550903 and dissolved in 5 ml acetic acid and 5 ml acetonitrile at room temperature. To this solution 0.38 ml (1.2 eq) trimethylchlorosilane were added under stirring.
2 hours after addition of the chlorosilane the crystallization didn't start. To this solution 0.38 ml trimethylchlorosilane were once more added under stirring. The suspension was stored for about 17 hours at 4° C. and the precipitate filtered off washed with acetonitrile and dried under vacuum at room temperature to yield 0.93 g (75.0%) of the 1:1 solvate of Moxifloxacine hydrochloride with acetic acid.
0.5 g (1.25 mmol) Moxifloxacin were prepared according to EP 550903 and dissolved in 15 ml nitromethane at appr. 60° C. To this solution 0.14 ml (2 eq) acetic acid and (2 eq) ml trimethylchlorosilane were added under stirring. The suspension was stored for about 17 hours and the precipitate was filtered off, washed with acetone and dried under vacuum at room temperature to yield 0.55 g (88.2%) of the 1:1 solvate of Moxifloxacine hydrochloride with nitromethane.
1H-NMR (DMSO-d6): 0.8-0.95 (m, 1H), 0.95-1.3 (m, 3H), 1.6-1.9 (m, 4 H), 2.55-2.75 (m, 1H), 2.8-3.0 (m, 1H), 3.1-3.25 (m, 1H), 3.5-3.7 (m with Singlet at 3.6 ppm, 4H), 3.7-3.8 (m, 1H), 3.8-3.95 (m, 2H), 4.0-4.2 (m, 2H), 4.44 (s, 3H), 7.63 (d, J=14 Hz, 1H), 8.65 (s, 1H), 9.0 (s, broad, 1H), 10.3 (s, broad, 1H), 15.1 (s, broad, 1H).
The singlet at 4.44 ppm corresponds to about one mol nitromethane per mol of substance (see
The XRD pattern of the product is shown in
0.3 g (1.0 mmol) Duloxetine base were dissolved in 5 ml ethylacetate at room temperature. To this solution 65 μl acetic acid and 0.14 ml trimethylchlorosilane were added under stirring. After addition of the chlorosilane a precipitate was formed and the suspension was stirred for about 2 hours at room temperature. The white crystalline solid was filtered off and dried under vacuum at room temperature to yield 0.21 g (62.9%) of Duloxetine hydrochloride
mp.=161° C.
The XRD pattern of the product is shown in
Example 16.a was repeated by using acetone instead of ethylacetate.
Yield: 0.26 g (77.9%) of Duloxedine hydrochloride.
5 g (14.8 mmol) Linezolide were dissolved in 200 ml acetonitrile at room temperature. To this solution 1.0 ml (1.1 equiv.) acetic acid and 2.1 ml (1.1 equiv.) trimethylchlorosilane were added under stirring. After addition of the chlorosilane and stirring for 1 hour a precipitate was formed and the suspension was stirred for about 3.5 hours at room temperature. The white crystalline solid was filtered off and dried under vacuum at room temperature to yield 1.43 g (25.8%) of linezolide hydrochloride.
mp.=163° C.
The XRD pattern of the product is shown in
Example 17.a was repeated with 0.5 g (1.5 mmol) Linezolid using acetone instead of acetonitrile as solvent.
Yield: 0.20 g (36.4%) of Linezolide hydrochloride.
0.5 g (2.8 mmol) Memantine base were dissolved in 10 ml ethylacetate at room temperature. To this solution 0.1 ml (1.1 equiv.) methanol and 0.4 ml (1.1 equiv.) trimethylchlorosilane were added under stirring. After addition of the chlorosilane a precipitate was formed and the suspension was stirred for about 2 hours at room temperature. The white crystalline solid was filtered off and dried under vacuum at room temperature to yield 0.59 g (98.0%) of the Memantine hydrochloride.
mp.=293-296° C.
The XRD pattern of the product is shown in
1 g (2.16 mmol) Rimonabant was suspended in 20 ml acetonitrile at room temperature. To the suspension 0.105 ml (1.2 equiv.) methanol and 0.33 ml (1.2 equiv.) trimethylchlorosilane were added under stirring. A clear solution was obtained and soon after Rimonabant hydrochloride in the crystalline form I started to precipitate. The product was filtered off and dried at room temperature under vacuum over night to yield 0.9 g (83.4%) of Rimonabant hydrochloride form I.
The XRD pattern of the product is shown in
1 g (2.16 mmol) Rimonabant was dissolved in 10 ml ethyl acetate at room temperature To this solution 0.105 ml (1.2 equiv.) methanol and 0.33 ml (1.2 equiv.) trimethylchlorosilane were added under stirring. After addition of the chlorosilane a precipitate was formed and the white crystalline solid was filtered off and dried under vacuum at room temperature to yield 0.95 g (88.1%) of Rimonabant hydrochloride form I.
Example 19b was repeated using acetone instead of ethyl acetate as solvent.
Yield: 0.89 g (82.5%) of Rimonabant hydrochloride form I.
1.2 g (3.73 mmol) Clopidogrel were dissolved in 10 ml acetone at room temperature. To the solution 255 μl (1.2 equiv.) acetic acid and 565 μl (1.2 equiv.) trimethylchlorosilane were added under stirring. After addition of 6 ml diisopropylether Clopidogrel hydrochloride started to precipitate. After stirring for one hour the crystalline precipitate was filtered off and dried at room temperature under vacuum over night to yield 0.85 g (63.8%) Clopidogrel hydrochloride form I.
The XRD pattern of the product is shown in
1 g (3.11 mmol) Clopidogrel was dissolved in 10 ml acetonitrile at room temperature. To the solution 213 μl (1.2 equiv.) acetic acid and 475 μl (1.2 equiv.) trimethylchlorosilane were added under stirring. The mixture was cooled down to about 5° C. and 40 ml diisopropylether was added under stirring. After stirring for one hour the crystalline precipitate was filtered off and dried at room temperature under vacuum over night to yield 0.50 g (45.0%) Clopidogrel hydrochloride form I.
1 g (3.11 mmol) Clopidogrel was dissolved in 10 ml ethyl acetate at room temperature. To the solution 213 μl (1.2 equiv.) acetic acid and 475 μl (1.2 equiv.) trimethylchlorosilane were added under stirring. After addition of the chlorosilane a viscous solid precipitated which converted to a crystalline product within about 5 min. The mixture was stirred at room temperature for one hour. The product was then filtered off and dried at room temperature under vacuum over night to yield 0.88 g (79.3%) Clopidogrel hydrochloride form L
30 g (93.22 mmol) Clopidogrel free base were dissolved in 1000 ml toluene in a 1 Liter reaction flask equipped with a mechanical stirrer and a dropping funnel. To the solution was added 4.5 ml (1.2 equiv.) methanol and after mixing by stirring 14.1 ml (1.2 equiv.) trimethylchlorosilane was added dropwise at room temperature under slowly stirring within 45 min. After addition the reaction mixture was stirred at room temperature for about three hours wherein the fluffy precipitate converted to a white crystalline solid. The salt was filtered off and washed with 20 ml toluene The product was dried under vacuum at room temperature over night yielding 29.1 g (87.1%) Clopidogrel hydrochloride form I.
1 g (3.11 mmol) Clopidogrel was dissolved in 10 ml ethyl acetate at room temperature. To the solution 213 μl (1.2 equiv.) acetic acid and 482 μl (1.2 equiv.) trimethylbromosilane were added under stirring. After addition of the bromosilane a viscous solid precipitated which converted to a crystalline product within about 30 min. The mixture was stirred at room temperature for one hour. The product was then filtered off and dried at room temperature under vacuum over night to yield 1.03 g (82.3%) Clopidogrel hydrobromide form A.
The XRD pattern of the product is shown in
1 g (3.11 mmol) Clopidogrel was dissolved in 10 ml isopropanol. To the solution 482 μl (1.2 equiv.) trimethylbromosilane were added. After stirring for 90 min the product crystallized after scratching with a glass stick. The hydrobromide salt was filtered off and dried at room temperature under vacuum over night to yield 0.86 g (68.7%) Clopidogrel hydrobromide form A.
5.0 g (13.4 mmol) Prasugrel base were dissolved in 75 ml acetone at room temperature. To the solution 919 μl (1.2 equiv.) acetic acid and 2053 μl (1.2 equiv.) trimethylchlorosilane were added under stirring. Immediately after addition a white precipitate was obtained. The hydrochloride salt wais filtered off and dried at room temperature under vacuum for 6 hours to yield 4.41 g (80.4%) Prasugrel hydrochloride form B. The XRD pattern of the product is shown in
0.5 g (1.34 mmol) Prasugrel base were dissolved in 7.5 ml acetonitrile. The unsolved part was filtered off. To the solution 82 μl (1.2 equiv.) acetic acid and 205 μl (1.2 equiv.) trimethylchlorosilane were added under stirring. The mixture was stirred at room temperature for seventeen hours. The suspension was filtered off and dried at room temperature under vacuum over night to yield 0.43 g (78%) Prasugrel Hydrochloride acetonitrile solvate.
1H-NMR (DMSO-d6): 0.84-0.97 (m, 2H), 0.98-1.16 (m, 2H), 1.87-2.0 (m, 1H), 2.08 (s, 2H), 2.29 (s, 3H), 2.96-3.15 (m, 2H), 3.34-3.6 (m, 1H), 3.7-4.2 (m, 3H), 6.14 (s, broad, 1H), 6.58 (s, 1H), 7.3-7.55 (m, 2H), 7.55-7.8 (m, 2H).
The singlet at 2.08 ppm corresponds to about one mol acetonitrile per one and a half mol of substance.
The XRD pattern of the product is shown in
1.0 g (1.77 mmol) Raloxifene lactate was suspended in 10 ml acetonitrile at room temperature. To the suspension 272 μl (1.2 equiv.) trimethylchlorosilane were added under stirring. After stirring for one hour the crystalline precipitate was filtered off and dried at room temperature under vacuum over night to yield 0.80 g (82.5%) Raloxifene Hydrochloride form A.
The XRD pattern of the product is shown in
1.5 g (2.66 mmol) Raloxifene lactate were suspended in 30 ml methyl isobutyl ketone (MIBK) at room temperature. The suspension was heated to 100° C. To the suspension 408 μl (1.2 equiv.) trimethylchlorosilane were added under stirring. The suspension was cooled down to room temperature. After stirring for one hour the crystalline precipitate was filtered off and dried at room temperature under vacuum over night to yield 1.42 g (97.6%) Raloxifene Hydrochloride form A.
0.51 g (0.90 mmol) Raloxifene base were suspended in 5 ml ethanole at room temperature. To the suspension 162 μl (1.2 equiv.) trimethylchlorosilane were added under stirring. A clear solution was obtained and soon after Raloxifene hydrochloride in the crystalline form started to precipitate. After stirring for three hours the crystalline precipitate was filtered off and dried at room temperature under vacuum over night to yield 0.41 g (74.6%) Raloxifene Hydrochloride form A.
0.50 g (0.88 mmol) Raloxifene base were suspended in 5 ml tetrahydrofuran at room temperature. To the suspension 51 μl (1.2 equiv.) methanol and 162 μl (1.2 equiv.) trimethylchlorosilane were added under stirring. After stirring for three hours at room temperature the crystalline precipitate was filtered off and dried at room temperature under vacuum over night to yield 0.45 g (97.6%) Raloxifene Hydrochloride THF hemisolvate.
1H-NMR (DMSO-d6): 1.25-1.4 (m, 1H), 1.6-1.9 (m, 7H), 2.8-3.1 (m, 2H), 3.3-3.55 (m, 4H), 3.55-3.65 (m, 2.6 H), 4.4 (t, broad, 2H), 6.7-6.8 (m, 2H), 6.9 (dd, J=2.26 and 8.8 Hz, 1H), 6.98 (d, J=9 Hz, 1H), 7.15-7.22 (m, 2H), 7.3 (d, J=8.7 Hz, 1H), 7.4 (d, J=2.3 Hz, 1H), 7.71 (d, J=9 Hz, 1H), 9.95 (d, J=9 Hz, 1H), 10.8 (s, brand, 1H).
The amount of tetrahydrofuran present in the crystalline material wais about 0.6 molar equivalents as determined by proton NMR spectroscopy.
The XRD pattern of the product is shown in
0.30 g (0.53 mmol) Raloxifene lactate were suspended in 3 ml tetrahydrofuran at room temperature. To the suspension 82 μl (1.2 equiv.) trimethylchlorosilane were added under stirring. After stirring for two hours at room temperature the crystalline precipitate was filtered off and dried at room temperature under vacuum over night to yield 0.28 g (102.6%) Raloxifene Hydrochloride THF hemisolvate.
1.0 g (3.20 mmol) Olanzapine base were suspended in 10 ml acetonitrile at room temperature. To the suspension 312 μl (2.4 equiv.) methanol 980 μl (2.4 equiv.) trimethylchlorosilane were added under Mining. After stirring for one hour the crystalline precipitate was filtered off and dried at room temperature under vacuum over night to yield 1.24 g (100.54%) Olanzapine Dihydrochloride form I.
The XRD pattern of the product is shown in
1.0 g (3.20 mmol) Olanzapine base were suspended in 10 ml acetone at room temperature. To the suspension 312 μl (2.4 equiv.) methanol 980 μl (2.4 equiv.) trimethylchlorosilane were added under stirring. After stirring for one hour the crystalline precipitate was filtered off and dried at room temperature under vacuum over night to yield 1.35 g (107.31%) Olanzapine dihydrochioride form I.
0.9 g (2.11 mmol) Darifenacin base were dissolved in 9 ml methyl ethyl ketone at room temperature. To the solution 103 μl (1.2 equiv.) methanol 329 μl (1.2 equiv.) trimethylbromosilane were added under stirring. After stirring for one hour the crystalline precipitate was filtered off and dried at room temperature under vacuum over night to yield 0.88 mg (82.13%) Darifenacin Hydrobromide.
The XRD pattern of the product is shown in
0.085 g (0.21 mmol) Sitagliptin base were dissolved in 2 ml Diethylether and 3 ml Methylenchloride at room temperature. To the solution 10 μl (1.2 equiv.) methanole and 32 μl (1.2 equiv.)
trimethylchlorosilane were added under stirring. Immediately after addition a precipitate was obtained.
The suspension was stirred for 1 hour, filtered off and dried at room temperature under vacuum over night to yield 0.089 g (96.8%) Sitagliptin Hydrochloride in amorphous form.
The XRD pattern of the product is shown in
0.2 g (0.359 mmol) Vardenafil base were suspended in 4 ml diethylether at room temperature. To the suspension 5 ml methylene dichloride were added and a solution was obtained.
35 μl (2.4 equiv.) methanol and 110 μl (2.4 equiv.) trimethylchlorosilane were added to the solution and immediately after addition a white precipitate was obtained. The suspension was stirred for twenty minutes, filtered off and dried at room temperature under vacuum over night to yield 0.2 g (95.4%) Vardenafil Dihydrochloride.
The XRD pattern of the product is shown in
0.3 g (0.82 mmol) Erlotinob base were suspended in 3 ml isopropanol. 126 μl (1.2 eq.) trimethylchlorosilane are added to the suspension. A white precipitate was obtained. After stirring for 1 hour, the precipitate was filtered off and dried at room temperature under vacuum over night to yield 0.26 g (80.8%) Erlotinib Hydrochloride Form A.
The XRD pattern of the product is shown in
Number | Date | Country | Kind |
---|---|---|---|
06116134.5 | Jun 2006 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/005596 | 6/25/2007 | WO | 00 | 4/14/2010 |