The invention relates to computer graphics, and in particular, to methods and systems for scripting movement between two or more related images or panoramas.
Virtual tours have become a frequently used technique for providing viewers with information about three-dimensional spaces of interest. Such tours can provide a photorealistic, interactive and immersive experience of a scene or collection of scenes. These tours can incorporate one or more of a wide variety of graphic display techniques in representing the scenes.
However, current virtual tour implementations employing images and panoramas have significant limitations. The inherent nature of panoramas (including regular photographs and images) is that panoramas are taken from a single acquisition position, and, thus, the images are static. To describe a broader area, i.e., beyond a view from a point in space, panoramic virtual tours typically employ a “periscope view”—the end user “pops” into a point in space, looks around, and then instantaneously “pops” into another position in space to navigate through a wider area. Assuming a simple case of two panoramic scenes, even when the acquisition positions are very close, it is often difficult for the viewer to mentally connect the two scenes. The two panoramas are not inherently capable of describing how the panoramas are connected and oriented with respect to each other. With these limitations, it is difficult for the viewer to understand the space, sense of orientation, and scale of a wider area with current virtual tours. Additional techniques are required to allow virtual tours to more readily facilitate viewer understanding of three-dimensional spaces.
In embodiments of the invention, a method is provided for authoring a motion picture experience of a three-dimensional space based on a series of digitally stored 2-D images of the space. Using a map view of the space, a user defines a series of locations using graphical inputs. For each location in the series of locations, the user then employs a first person view of the space linked to the map view to define directions for perspective views of the space at that location. For pairs of locations in the space, the user graphically describes transitional effects that will be employed when the experience transitions between locations, simulating motion. Data corresponding to user selections is stored for later playback of the motion picture experience on a display.
In other embodiments of the invention, a method is provided for displaying a motion picture of a three-dimensional space based on a series of digitally stored 2-D images of the space. Stored data is accessed that includes 2-D images for a series of locations in the space, view directions for each location and transitional effect information for pairs of locations. The data is used to generate a motion picture experience of the space. The motion picture experience is then displayed on a display. The experience is based on the accessed data using transitional effect information to provide transitions between pair of locations in the series of locations, such that there is simulated motion between the locations.
The foregoing features of the invention will be more readily understood by reference to the following detailed description taken with the accompanying drawings:
A method and system for providing a virtual tour is described in U.S. Provisional Patent Application Ser. No. 60/858,511 (including Appendix 1) filed on Nov. 13, 2006, entitled “Method for Scripting Inter-Scene Transitions,” which is incorporated herein by reference in its entirety. Terms used in U.S. Provisional Patent Application Ser. No. 60/858,511, unless context requires otherwise, shall have the same meaning throughout this specification.
In broad overview, embodiments of the invention described in U.S. Provisional Patent Application Ser. No. 60/858,511 provide a system and a method that simulates smooth motion between images of two or more connected locations or scenes in a virtual tour of a space. Simulated motion provides a sense of orientation and an understanding of the space to users navigating through images of the space. To navigate from one image to another, a user may select a portion of a first scene that connects to a second scene. The view is then transitioned to the second scene. This type of navigation may be disorienting if the second scene simply replaces the first scene—there is no sense of motion between the scenes to emphasize the geographic connection between them. Instead, smooth and continuous motion between the two scenes may be simulated to provide the viewer a better sense of the relationships between the two scenes, including a sense of space and orientation. Such smooth and continuous motion can be simulated by transitional effects between pairs of locations. Such transitional effects include, but are not limited to: blending, morphing, fade-in-fade-out, etc. The techniques for simulating smooth motion between locations, many of which are described in U.S. Provisional Patent Application Ser. No. 60/858,511, will be called hereafter collectively “transitional effects” and the data that describes one or more of these effects will be called “transitional effect data” or “transitional effect information.”
In further embodiments of the invention described, for example, in U.S. Provisional Patent Application Ser. No. 60/858,511, this concept of simulating motion between images can be extended to create a network of multiple images forming a tour of a space, such as a neighborhood, a boulevard, or even a town or city. Such a network of scenes will be called below a “supertour.” The term “supertour” is used for convenience in description and not by way of limitation: the network of images may extend from two images to an arbitrarily large number of images. While the supertour space may be physically continuous, the space may also be discontinuous and may even contain portions that are imaginary. Methods for creating a supertour are described in U.S. Provisional Patent Application Ser. No. 60/858,511.
In broad overview, embodiments of the present invention provide a method and a system for selecting a subset of a supertour, storing that subset for later recall and sharing the subset with other viewers. The viewer can display the subset of the supertour on a display surface. This stored subset will be called in this specification, unless context requires otherwise, a “motion picture experience.” The term “motion picture experience” means the same as “experience”, emphasizing the movie-like effect that can be achieved with playback of the experience. While an experience is described as a subset of a supertour, the supertour itself can combine portions of various spaces, real and/or imaginary. An experience, for example, can include a subset of a combination of individual supertours. Further, an experience may include annotations for the display, such as text and audio, and may include directives (i.e., a script) to lead the viewer in a preferred sequence through the subset of the supertour. For example, at a given location, a series of view directions may be scripted so that a viewer sees specific views from the location using a perspective image viewer. While a supertour generally includes an expansive connected network of locations, an experience may also focus on a single location. In that location, the experience can include a series of view directions together with annotations. In embodiments of the present invention, a supertour network represents a three-dimensional space-a space that we are all familiar with. Note that as used in this description and the accompanying claims, unless the context otherwise requires, a “realm” will mean a three-dimensional space. Note that the parts of a realm need not be contiguous-realms may include discontinuities. While a realm may represent an actual physical space, any part of a realm may be imaginary.
In
The map viewer interactively displays map-related data. The map viewer may be embedded in a web browser and interactively driven by the user. Similarly, the first-person viewer is an interactive viewer that represents what a user sees at the current position on the map. Typically, this view is a perspective view of the space as seen from the current position. In an embodiment of the invention, the first-person viewer is an interactive viewer that displays a full panoramic image that covers a 360-degree by 180-degree field of view. The map viewer and the first-person viewer can communicate with each other to ensure that the viewers remain synchronized.
In the first-person viewer, various types of contextual hyperlinks may be embedded in the view. In
As described above, an experience is a selected subset of a supertour network that may include additional annotations and directives indicating how to view the subset. Examples of an experience include network traversal from location A to B, changing view directions on the first-person viewer for a location, and hyperlinks that may be activated to provide annotations and other effects. There are also functional events, such as, “find the closest route from point A to point B,” and “walk around randomly for the next 5 minutes” that may be initiated by user inputs.
Once data corresponding to this experience have been described or “recorded” with a scripting language, the experience may be played back and shared with others, such as over the internet or via a computer-readable medium. The script language that describes an experience may also incorporate additional text, images, videos, audio, etc. to further enhance the content. Storage of the data for the experience may be performed in various ways as are known in the art. For example, pointers to images, text, audio, etc. may be stored on a data set or the images, text, audio, itself may be stored on the data set or a mix of both techniques may be used. The data may be stored on any medium suitable for storing digital data. Once the data has been stored, a playback process is employed to access the stored data, combine the data with other stored data, and then to parse the data and generate audio and video for playback on a display surface.
Some classifications of experiences to note are: (1) linear vs. nonlinear and (2) deterministic vs. nondeterministic. We discuss these classifications to illustrate types of experiences.
A linear experience is a sequence of connected nodes in the supertour network. As shown in
A nonlinear experience contains a sequence of nodes, some of which are discontinuous, not-connected nodes.
A deterministic experience is a fully predetermined sequence of information to be displayed—the experience will always produce the same path and effects during playback. A nondeterministic experience contains sequences which are not all predetermined. During playback (runtime) the resulting experience is not always the same.
Three types of nondeterministic experiences are random, points of interest, and branching experiences.
A random experience is when a playback starts from a random node and traverses the supertour network randomly. Various levels of randomness may be applied.
A points of interest (“POI”) experience is an experience that is constrained such that the sequence must pass through user-specified nodes. For instance, given a beginning node and the ending node, find a path (if any) that satisfies certain constraints, such as finding shortest paths, scenic paths, or popular paths between two or more nodes.
A branching experience may be thought of as the converse of POI experiences. While POI experiences are constrained such that the traversal of the node sequence must include specified nodes, a branching experience must follow a deterministic path until the branching node is reached, at which point a user, an algorithm or some heuristics can determine a path to take, selected from two or more paths.
In embodiments of the invention, an experience typically consists of a beginning, a middle, and an end. As shown in
For each node in an experience, other parameters may be added to the images for the node, such as text and hypertext annotations, images, videos, audio, and view direction(s) (keyframe) animation, as shown in
In an embodiment of the invention, an experience authoring tool (“EAT”) is an application for authoring the various types of motion picture experiences. EAT can run, for example, on a web browser, or other similar display.
The menu bar has basic features that allow users to open, create new, save, and close the authoring process. When EAT is run as a web application, the users can save their work locally on their computers, or even save their work on a secure server over the network.
The first-person viewer, in this embodiment of the invention, is an interactive panoramic viewer. Users can click-and-drag on the image to look all around 360 degrees, and fully up and down, 180 degrees. Note that a regular photograph/image player is a constrained panoramic viewer, where the viewer is constrained to the exact field of view of the image. The dots on the first-person viewer represent other nearby locations (nodes.) Clicking on a dot will smoothly, continuously, and in a three-dimensional manner, move the user to the location, as described in Appendix 1.
The map viewer is an interactive map where a user can click-and-drag to pan the map, zoom in and out, and interact with various objects on the map. In an embodiment of the invention, dots signify a position on the map, where panoramic photography or other images have been acquired. The lines that connect the dots signify links to other nearby panoramas. Of course, such links may be represented with other symbols.
The experience script editor in the right column is the main control GUI feature for creating an experience. The user can add/delete specific panoramas/images, control view directions, add annotations, etc., to tell a story. An illustrative flow diagram for authoring an experience is shown in
To start, the user selects “New experience” from the menu bar, and then fills out the Title, Description, and Introduction on the experience script editor widget in the right column.
Next, the user can add a sequence of panoramas by using the first-person viewer and the map viewer.
From the supertour network, the user can add a specific location into the experience authoring process by selecting a dot (node) on the map. As shown in
Once the user selects a desired panorama, the panorama may be added to the experience sequence by selecting the “Add” button in the text box that is part of the authoring tool. As shown in
The user can further edit this sequence by selecting a node, such as with a pointing device. Once selected, dragging-and-dropping the node on the list enables the user to move and modify the sequence of panoramas. The user can also edit the viewing direction for each panorama. The parameters to be entered are angles phi and theta that represent the viewing direction from a point in 3D space, and the zoom parameter of the camera, i.e., the field of view.
Within the current panorama, the user can animate the sequence of the first-person viewer by adding keyframes. More specifically, the user first selects a panorama, and then under the “Effect” menu, selects the “Look At” feature (
pause effects (for specific viewing directions within a specific panorama);
pause effects before transitions; and
rotate the view in a location, controlling direction of rotation and/or the speed of rotation.
The user can further enrich the experience by adding an in-context annotation. This enables the user to add specified text into the first-person viewer. As shown in
The present invention may be embodied in many different forms, including, but in no way limited to, computer program logic for use with a processor (e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer), programmable logic for use with a programmable logic device (e.g., a Field Programmable Gate Array (FPGA) or other PLD), discrete components, integrated circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means including any combination thereof. In an embodiment of the present invention, predominantly all of the reordering logic may be implemented as a set of computer program instructions that is converted into a computer executable form, stored as such in a computer readable medium, and executed by a microprocessor within the array under the control of an operating system.
Computer program logic implementing all or part of the functionality previously described herein may be embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, and various intermediate forms (e.g., forms generated by an assembler, compiler, etc.) Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language such as FORTRAN, C, C++, JAVA, or HTML) for use with various operating systems or operating environments. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.
The computer program may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g., PCMCIA card), or other memory device. The computer program may be fixed in any form in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies, networking technologies, and internetworking technologies. The computer program may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software or a magnetic tape), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web.)
Hardware logic (including programmable logic for use with a programmable logic device) implementing all or part of the functionality previously described herein may be designed using traditional manual methods, or may be designed, captured, simulated, or documented electronically using various tools, such as Computer Aided Design (CAD), a hardware description language (e.g., VHDL or AHDL), or a PLD programming language (e.g., PALASM, ABEL, or CUPL.)
While the invention has been particularly shown and described with reference to specific embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. As will be apparent to those skilled in the art, techniques described above for panoramas may be applied to images that have been captured as non-panoramic images, and vice versa.
The present U.S. patent application is a continuation application of U.S. application Ser. No. 15/798,873 filed on Oct. 31, 2017, entitled “Method for Scripting Inter-Scene Transitions,” which itself is a continuation application of U.S. application Ser. No. 14/942,620 filed on Nov. 16, 2015, entitled “Method for Scripting Inter-Scene Transitions,” which itself is a continuation application of U.S. application Ser. No. 11/936,990 filed on Nov. 8, 2007, entitled “Method for Scripting Inter-Scene Transitions,” which itself claims priority from U.S. Provisional Patent Application Ser. No. 60/858,511, filed on Nov. 13, 2006, entitled “Method for Scripting Inter-Scene Transitions,” all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5353391 | Cohen | Oct 1994 | A |
5359703 | Robertson et al. | Oct 1994 | A |
5359712 | Cohen et al. | Oct 1994 | A |
5613048 | Chen et al. | Mar 1997 | A |
5646843 | Gudat et al. | Jul 1997 | A |
5926190 | Turkowski et al. | Jul 1999 | A |
5946425 | Bove et al. | Aug 1999 | A |
6052124 | Stein et al. | Apr 2000 | A |
6084979 | Kanade et al. | Jul 2000 | A |
6246412 | Shum et al. | Jun 2001 | B1 |
6271855 | Shum et al. | Aug 2001 | B1 |
6337683 | Gilbert et al. | Jan 2002 | B1 |
6405107 | Derman | Jun 2002 | B1 |
6411338 | Neill | Jun 2002 | B1 |
6466865 | Petzold | Oct 2002 | B1 |
6549828 | Garrot et al. | Apr 2003 | B1 |
6559846 | Uyttendaele et al. | May 2003 | B1 |
6600491 | Szeliski et al. | Jul 2003 | B1 |
6611268 | Szeliski et al. | Aug 2003 | B1 |
6636220 | Szeliski et al. | Oct 2003 | B1 |
6636234 | Endo et al. | Oct 2003 | B2 |
6654019 | Gilbert et al. | Nov 2003 | B2 |
6661353 | Gopen | Dec 2003 | B1 |
6674461 | Klapman | Jan 2004 | B1 |
6714215 | Flora et al. | Mar 2004 | B1 |
6738073 | Park et al. | May 2004 | B2 |
6900817 | Uesugi | May 2005 | B2 |
6947059 | Pierce et al. | Sep 2005 | B2 |
6978208 | Endo et al. | Dec 2005 | B2 |
7002583 | Rabb, III | Feb 2006 | B2 |
7199793 | Oh et al. | Apr 2007 | B2 |
7302113 | Pilu et al. | Nov 2007 | B2 |
7327374 | Oh et al. | Feb 2008 | B2 |
7424218 | Baudisch et al. | Sep 2008 | B2 |
20020075284 | Rabb, III | Jun 2002 | A1 |
20020113756 | Tuceryan et al. | Aug 2002 | A1 |
20020154812 | Chen et al. | Oct 2002 | A1 |
20020158873 | Williamson | Oct 2002 | A1 |
20020163482 | Sullivan | Nov 2002 | A1 |
20030028848 | Choi | Feb 2003 | A1 |
20030033402 | Battat et al. | Feb 2003 | A1 |
20030063133 | Foote et al. | Apr 2003 | A1 |
20030091226 | Cahill et al. | May 2003 | A1 |
20030182052 | DeLorme et al. | Sep 2003 | A1 |
20030234859 | Malzbender et al. | Dec 2003 | A1 |
20040017404 | Schileru-Key | Jan 2004 | A1 |
20040095357 | Oh et al. | May 2004 | A1 |
20040183826 | Taylor et al. | Sep 2004 | A1 |
20040196282 | Oh | Oct 2004 | A1 |
20040217975 | Oh et al. | Nov 2004 | A1 |
20040254698 | Hubbard et al. | Dec 2004 | A1 |
20060132482 | Oh | Jun 2006 | A1 |
20070025723 | Baudisch et al. | Feb 2007 | A1 |
20070217672 | Shannon et al. | Sep 2007 | A1 |
20080143727 | Oh et al. | Jun 2008 | A1 |
20100305847 | Gluck | Dec 2010 | A1 |
Entry |
---|
Beier, T. et al., “Feature-Based image Metamorphosis,” Computer Graphics, New York, NY US, vol. 26, No. 2, Jul. 1992. |
Tolba, O. et al., “A Projective Drawing System,” Proceedings of the 2001 Symposium on Interactive 3D Graphics, Research Triangle Park, NC, Mar. 19, 2001. |
Uyttendaele et al., “High Quality Image Based Interactive Exploration of Real-World Environments,” Microsoft Technical Report MSR—TR-2003-61, Oct. 2003, XP002511672 Redmond, WA 98052, pp. 1-33. |
Gibson et al., “Accurate Camera Calibration for Off-Line, Video-Based Augmented Reality,” Proceedings of the International Symposium on Mixed and Augmented Reality, Oct. 2002, ISMAR 2002, pp. 1-10. |
International Searching Authority, International Search Report and Written Opinion of the International Searching Authority, Application No. PCT/US2007/084039, dated Feb. 4, 2009. |
Snavely et al., “Photo Tourism: Exploring Photo Collections in 3D,” ACM Transactions on Graphics—Proceedings of ACM SIG-GRAPH 2006, vol. 25, No. 3, 12 pages, Jul. 2006. |
European Patent Office, Examination Report, Application No. 07868697.9-1906, dated Sep. 27, 2013, 6 pages. |
Christopher Gibbs Haseltine Lake LLP, Response to Examination Report dated Sep. 27, 2013 for Application No. 07868697.9-1906, filed on Apr. 2, 2014, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20190172239 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
60858511 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15798873 | Oct 2017 | US |
Child | 16272845 | US | |
Parent | 14942620 | Nov 2015 | US |
Child | 15798873 | US | |
Parent | 11936990 | Nov 2007 | US |
Child | 14942620 | US |