The present invention is related generally to surgical instruments and to surgical methods, and more particularly to: a method for sealing a blood vessel of a patient; to a medical system including a mechanical-based or an energy-based ligation instrument such as an ultrasonic surgical shears, a clip applier, a stapler, and an RF (radio-frequency) bipolar vessel sealer; and to a medical instrument having a medical end effector including an ultrasound propagating element.
A conventional ultrasonic surgical shears includes an end effector having an ultrasonic surgical blade and a clamping arm operable to open and close toward the blade, wherein the ultrasonic surgical blade is adapted for vibrating at a frequency in the range of 20 kilohertz to 500 kilohertz. In one known application, the ultrasonic surgical shears is used as an energy-based ligation instrument for transecting and sealing a blood vessel, or other tissue, of a patient. Other conventional ligation instruments include a clip applier, a stapler, and an RF (radio-frequency) bipolar vessel sealer. Known medical agents include hemostatic agents such as coagulum, other therapeutic agents such as medicines, and tissue-imaging-enhancing material such as a tissue dye for improved radiographic imaging. Medical syringes are known for applying a liquid to patient tissue.
Still, scientists and engineers continue to seek improved medical instruments which have a medical end effector including an ultrasound propagating element, improved medical systems which include a mechanical-based or an energy-based ligation instrument, and improved methods for sealing a blood vessel of a patient.
A first embodiment of the invention is for a medical instrument including a medical end effector and a user-actuated media transporter. The medical end effector includes an ultrasound propagating element and includes a path adapted for directing a medical agent, when conveyed therealong, to the ultrasound propagating element. The user-actuated media transporter is adapted for conveying the medical agent along the path and into contact with the ultrasound propagating element.
A second embodiment of the invention is for a medical system including a medical instrument and a user-actuated hemostatic-agent transporter. The medical instrument is adapted for treating patient tissue and is chosen from the group consisting of a mechanical-based ligation instrument and an energy-based ligation instrument. The user-actuated hemostatic-agent transporter is adapted for conveying a hemostatic agent to the patient tissue.
A method of the invention is for sealing a blood vessel of a patient. The method includes applying a hemostatic agent to the blood vessel. The method includes treating the blood vessel with a medical instrument chosen from the group consisting of a mechanical-based ligation instrument and an energy-based ligation instrument.
Several benefits and advantages are obtained from one or more of the method and the embodiments of the invention. In one example, the medical agent has a more viscous state when conveyed (without being ultrasonically vibrated) via mechanical translation, mechanical rotation, mechanical translation with rotation, fluidic pressure differentials, et cetera along the path and has a less viscous state when ultrasonically vibrated by the ultrasound propagating element allowing for improved dispersal of the medical agent. In another example, conveying a hemostatic agent to patient tissue, such as applying the hemostatic agent to a blood vessel, improves hemostasis when the patient tissue, such as a blood vessel, is treated with a mechanical-based or energy-based ligation instrument.
The present invention has, without limitation, application in hand-activated instruments as well as in robotic-assisted instruments.
Before explaining the present invention in detail, it should be noted that the invention is not limited in its application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative embodiments of the invention may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments of the present invention for the convenience of the reader and are not for the purpose of limiting the invention.
It is understood that any one or more of the following-described embodiments, examples, et cetera can be combined with any one or more of the other following-described embodiments, examples, et cetera.
Referring now to the Figures, in which like numerals indicate like elements,
In one enablement of the first expression of the embodiment of
An ultrasound propagating element 16 is an element adapted for vibrating at ultrasonic frequencies. In one utilization, the ultrasound propagating element 16 is adapted to vibrate at a frequency in the range of 20 kilohertz to 500 kilohertz. In one example, the ultrasound propagating element 16 has a distal-most vibration antinode 22 and the media transporter 14 is adapted for conveying the medical agent 20 along the path 18 and in contact with an area of the ultrasound propagating element 16 at or near its distal-most vibration antinode 22. In one application, the ultrasound propagating element 16 is a curved ultrasonic blade. The ultrasound propagating element 16 delivers thermal energy to the medical agent 20. This energy delivery can occur quickly to the medical agent 20 and can occur in close proximity to the contract area (i.e. energy deposition can be characterized by a steep thermal gradient) thus providing control of energy delivery to the medical agent 20. With this controlled energy delivery, the medical agent 20 can be delivered in a controlled manner; the user can initiate and stop delivery of the medical agent 20 in rapid succession.
Examples of medical agents include, without limitation, therapeutic agents which have a medical effect on patient tissue and imaging-enhancing agents which improve visibility of the medical agent and adjacent tissue (such as is necessary for marking tissue sites and identifying boundaries for clinical follow-up) when the site is viewed with a medical imaging device. Examples of medical imaging devices include, without limitation, diagnostic ultrasound, magnetic resonance imaging, computed tomography imaging, and radiographic imaging devices. Examples of tissue-imaging-enhancing agents include, without limitation, radioisotopes, radiographic dyes, microbubbles, iron particles, gadolinium chelates, manganese chelates, et cetera. In one application, a therapeutic agent has a medically active portion and a medically inactive portion, wherein the medically inactive portion is chosen such that the medical agent has a more viscous state when conveyed along the path and a less viscous state when ultrasonically vibrated by the ultrasound propagating element. Once in place, the medical agent cools until it reaches thermal equilibrium with the surrounding tissue, thus returning the medical agent to a more viscous state (such as, without limitation, the solid state). Imaging of the medical agent and adjacent tissue is improved by virtue of at least one of the following: a) the aforementioned enhancing agents present mismatched and differentiated boundaries with the inactive portion of the medical agent or tissue that the imaging modalities listed above are known to resolve; and b) the cooled medical agent itself presents a mismatched and differentiated boundary with adjacent tissue that, again, the imaging modalities listed above are known to resolve.
Examples of therapeutic agents include, without limitation, polymers, glues, cements, and drugs that individually or as a combined agent provide clinical effects such as having a procoagulative (via tamponade or chemically induced such as by clot promotion), cell death, growth inhibition, cell growth transplantation, ablation, bulking, infection inhibition, pain relief, and/or approximation (such as by adhesively bonding) effect. In one variation, the therapeutic agent includes a biodegradable material that is absorbed by the patient tissue over a period of time. This biodegradable agent can be a solid polymer or viscous fluid and can include bound drugs, gene therapies or viable biological entities that, by virtue of the extended time frame for local absorption (versus delivered alone in a less viscous state), provide for a controlled or long lasting clinical effect. In the same or a different variation, the therapeutic agent includes an adhesive material that approximates or joins structures such as devices, implants or patient tissue. In the same or a different variation, the therapeutic agent has a medically active state and a medically inactive state, wherein the medical agent is made medically active by external means such as ultrasonic pressure waves or light.
In an implementation of the first expression of the embodiment of
Other shapes of the ultrasound propagating element, not shown, include: those having a hole through which the medical agent 20 passes through as it contacts the wall surrounding the hole; those having a split element (one curved up, the other curved down) and two paths (one directing a first medical agent to the curved-up element and another directing a second medical agent to the curved-down element); those having a single element, with an upper end pin and a lower end pin, and two paths (one directing a medical agent to the upper end pin and another directing a medical agent to the lower end pin); and those whose ultrasound propagating element is proximal a distal needle carried by an outer tube having a sidewall cutout exposing the element.
A first alternate embodiment of the medical instrument 110 is shown in
A second alternate embodiment of the medical instrument 210 is shown in
A method for medically treating patient tissue using the medical instrument 10 of the first expression of the embodiment of
In one employment, the medical agent 20 has at least one effect chosen from the group consisting of tissue marking, tissue site imaging enhancement, coagulation via tamponade, coagulation via chemically induced clot promotion, cell death, tissue growth inhibition, tissue ablation, tissue bulking, infection inhibition, pain relief, cell growth/transplantation, approximation of tissues, approximation of devices, and approximation of implants. In the same or a different employment, the user-actuated media transporter includes a lead screw. In the same or a different employment, there is also included coating the medical agent 20 with a coating material to reduce sticking of the medical agent 20 to the ultrasound propagating element 16. Examples of coating materials include, without limitation, Teflon suspensions, Paralene, MDX (a silicone dispersion), and titanium nitride.
Referring again to the Figures,
In one enablement of the first expression of the embodiment of
In one application of the first expression of the embodiment of
In one implementation of the first expression of the embodiment of
A method of the invention is for sealing a blood vessel 322 of a patient. The method includes applying a hemostatic agent 320 to the blood vessel 322. The method includes treating the blood vessel 322 with a medical instrument 312 chosen from the group consisting of a mechanical-based ligation instrument and an energy-based ligation instrument 318.
In one implementation of the method, the medical instrument 312 is the energy-based ligation instrument 318, and the energy-based ligation instrument 318 is chosen from the group consisting of an ultrasonic surgical shears 324 and a bipolar vessel sealer. In one variation, the hemostatic agent 320 includes a protein adapted to be denatured creating coagulum by energy from the energy-based ligation instrument 318. In the same or a different variation, the energy-based ligation instrument 318 is an ultrasonic surgical shears 324 having a prong 328 (either the ultrasonic blade 330 or the clamping arm 332 of the ultrasonic surgical shears 324) and the hemostatic agent 320 includes a sleeve 334 (e.g., the hemostatic agent has an annular shape) which includes coagulum and is adapted to be carried on the prong 328 (two sleeves 330 and two prongs 328 are shown in
Several benefits and advantages are obtained from one or more of the method and the embodiments of the invention. In one example, the medical agent has a more viscous state when conveyed (without being ultrasonically vibrated) via mechanical translation, mechanical rotation, mechanical translation with rotation, fluidic pressure differentials, et cetera along the path and has a less viscous state when ultrasonically vibrated by the ultrasound propagating element allowing for improved dispersal of the medical agent. In another example, conveying a hemostatic agent to patient tissue, such as applying the hemostatic agent to a blood vessel, improves hemostasis when the patient tissue, such as a blood vessel, is treated with a mechanical-based or energy-based ligation instrument.
While the present invention has been illustrated by a description of several embodiments and a method, it is not the intention of the applicants to restrict or limit the spirit and scope of the appended claims to such detail. Numerous other variations, changes, and substitutions will occur to those skilled in the art without departing from the scope of the invention. For instance, the medical instrument and the medical system of the invention have application in robotic assisted surgery taking into account the obvious modifications of such systems, components and methods to be compatible with such a robotic system. It will be understood that the foregoing description is provided by way of example, and that other modifications may occur to those skilled in the art without departing from the scope and spirit of the appended Claims.