Embodiments of the invention are illustrated by way of example and not by way of limitation in the accompanying drawings, in which like references indicate similar elements and in which:
Various embodiments of the invention relate to a system and method for preventing the cloning or tampering of a storage medium by hashing and then encrypting the operational state for content to be stored within the storage medium using attributes of the storage medium and/or using a separate storage device such as flash memory mounted on the motherboard for example. The operational state of content relates to the current digital rights of the content such as the number of remaining plays or time allowed, which can change as the rights get used up and the content is “consumed”.
As described herein, cloning or tampering of a storage medium may be prevented by hashing and storing some or all of the up-to-date digital rights state information for the stored content in a different storage medium to produce a resultant hash value. The resultant hash value later being compared to a hash value computed for the same information currently on the storage medium.
According to another embodiment of the invention, a keyed or encrypted version of a hash of the up-to-date digital rights state information and encrypted storage medium attributes on the storage medium itself. In this embodiment, access to the content, and to an optional content encryption key if the content is encrypted, is conditioned on successful comparison of the hash value with a calculated hash value of the current digital rights state information and of the stored attributes with the current attributes of the storage medium to determine if it is the same drive and whether the content has been tampered.
The embodiments of the invention described herein can be used with other techniques for securing content on the hard drive such as using a unique, secret encryption key for each device or Digital Rights Management (DRM) techniques which effectively “locks” content to a particular device. These embodiments of the invention are designed to prevent cloning to another hard drive and even to prevent tampering, e.g. copying of data back into the original hard drive which other security technologies do not address. While these anti-cloning and anti-tampering mechanisms are described for protecting a hard drive, it is contemplated that such mechanisms can be applied to a number of other storage mediums such as flash memory, a compact disk (CD), a digital versatile disk (DVD), a Blu-Ray® disk, or the like.
In the following description, certain terminology is used to describe features of the invention. For instance, “digital content” may include, but is not limited or restricted to a digitized image, audio, video or any combination thereof. The term “component” is representative of hardware and/or software configured to perform one or more functions.
Examples of “software” include a series of executable instructions in the form of an application, an applet, routine, or even one or more executable instructions. The software may be stored in any type of machine readable medium such as a programmable electronic circuit, a semiconductor memory device such as volatile memory (e.g., random access memory, etc.) and/or non-volatile memory (e.g., any type of read-only memory “ROM”, flash memory), a floppy diskette, an optical disk (e.g., compact disk or digital video disc “DVD”), a hard drive disk, tape, or the like.
The term “decrypt” and varying forms thereof is generally defined as the transformation of data from an obfuscated format (e.g., encrypted, scrambled, etc.) to a perceivable format (e.g., viewable and/or audible). Likewise, the term “encrypt” and varying forms thereof is generally defined as the transformation of data from a perceivable format to an obfuscated format.
The term “digital rights” generally refers to the control of access to and/or usage of digital content. Such control may involve usage rules such as restrictions on the number of times, the amount of time or when digital content can be played back, restrictions or prohibition of the copying or moving of content from one device or location to another, restrictions on transcoding or transrating of the digital content, restrictions on the downstream link encryption and security technology which may be used such as Digital Transmission Copy Protection (DTCP) or High Bandwidth Digital Copy Protection (HDCP), restrictions on where the content may be played back such as regional coding on DVDs, and the like. Digital rights may change as the initial rights get used up. For example, after certain content has been played back three (3) out of a possible five (5) times, there are only two (2) plays left. Another example of digital rights that get used up is when there is only 12 hours left in a 24 hour “rental” period.
Referring to
Various types of digital content may be downloaded into hard drive 150 for storage and subsequent retrieval for playback. For instance, where transceiver 140 operates as a communication interface to the Internet, digital music and video may be downloaded from a web server hosting a website. Where transceiver 140 operates as a physical connector, such as a universal serial bus (USB) port or IEEE 1394 port for example, digital content may be downloaded from an audio-recording device (e.g., MP3 player), a video-recording device (e.g., digital recorder), and/or an image-recording device (e.g., digital camera, cellular phone, etc.). Where transceiver 140 operates as a wireless communication interface, digital content may be downloaded from any device with wireless transmission capability such as Bluetooth® enabled devices and WiFi-enabled devices. Where transceiver 140 operates as a broadcast tuner and demodulator, digital content may be downloaded from cable, satellite and telco transmissions, and the like.
As shown, incoming signaling is received by transceiver 140, which routes information extracted from the incoming signal to processor 120 via interconnect 110. The information includes digital content and digital rights such as usage rules associated with the digital content. Interconnect 110 may include, but is not limited to electrical wires, optical fiber, coaxial cable, a wireless link established by wireless signaling circuitry, or the like. Interconnect 110 is further able to route some of all of the information to hard drive 150 or to any other storage medium in communication with interconnect 110 such as a portable storage device (e.g., USB flash drive, Sony® Memory Stick, compact flash component, etc.) that is directly or indirectly coupled to interconnect 110 and includes memory for storage of digital content.
After receipt of the incoming information, processor 120 extracts the digital content as well as the digital rights associated with incoming digital content for storage within hard drive 150. For instance, processor 120 executes digital rights management (DRM) software 180, which is stored in hard drive 150 as shown and/or memory 130. DRM software 180 controls the decryption of the received digital content when placed in an encrypted format. Of course, it is contemplated that DRM software 180 may also control the encryption of the received digital content before storage in hard drive 150.
In addition to executed DRM software 180, it is contemplated that data storage system 100 may include cryptographic hardware to aid with these decryption and encryption operations. Also, in lieu of processor 120, it is contemplated that the cryptographic operations may be performed by a component independent of processor 120, such as a co-processor, a dedicated encryption/decryption engine, or the like.
Referring to
As shown, in
According to this embodiment of the invention, digital rights 2201 include copy control information 315 while attributes 225 are represented as a plurality of Self-Monitoring, Analysis and Reporting Technology (SMART) attributes associated with hard drive 150 of
Attributes 225 are not required for the hash calculation because a different storage medium (e.g. memory 160 of
Herein, as shown, program identifier 310 is stored to provide programming information associated with the digital content. For example, the programming information may be a unique identifier for the movie, news broadcast, television programming, or the like. Manufacturer code 320 and model number 325 identify a manufacturer and model number (e.g., serial number) of storage medium 200 of
Copy control information 315 constitutes usage rules for digital content 2101, namely whether digital content 2101 can be copied without restriction (Copy Free “00”), copied once (Copy Once “01”), copied no more (Copy No More “10”), or never copied (Copy Never “11”). These usage rules may be a subset of digital rights 2101 and may be left in the clear on the hard disk drive 150 to allow for easy comparison and analysis by the anti-cloning system. The values of the usage rules, digital rights (if used and present) are incorporated in hash value 230 of
According to another embodiment of the invention using the storage medium 150 itself, attributes 225 may be encrypted using a secret key 460 (see
The resolution of POH can be down to the second depending on the manufacturer, and is useful in tracking changes in the up-to-date digital rights state information of the content on a second-by-second basis if needed. For example, if the system wants to track that the playback time for content was being used up, by recording the POH attribute change every minute to the separate storage medium would force the content on the storage medium to “age”, and would only allow a hacker to extend the time by at most one minute through a cloning or tamper attack.
Therefore, the threshold attributes can be used effectively to detect cloning to different hard drives or tampering, e.g. writing back to the original hard drive.
According to one embodiment of the invention, attributes 225 include one or more of the following attributes as shown in Table A below, and are not limited or restricted to these attributes. The following attributes associated with hard drive 150 are presented in
Referring back to
According to this embodiment of the invention, as shown, hash value 230 is to be stored on a different storage medium 250 than hard drive 150 in order to improve security. However, in a different embodiment, it is contemplated that hash value 230 may be stored within hard drive 150 itself. In this embodiment, attributes 225 would be used unless they are not too dynamic and cannot be used in the hash value 230. When using the hard drive 150 itself, some or all of the storage medium attributes listed in
If an attempt is made to clone or tamper with the stored contents of hard drive 150, an earlier version of the digital content 210 could be copied onto a different storage medium 260. However, attributes 225 for hard drive 150 would not be copied. Rather, attributes 225 would be fetched by the security (DRM) software in control of storage medium 260. In the event that digital content 210 is encrypted, accessing the encryption key used to encrypt the content will entail examining the storage medium attributes recorded along with the content 210. By examining the “current” attributes and comparing these attributes with the stored attributes of hard drive 150, any attempts to recover digital content 210 will likely be precluded if the attributes between hard drive 150 and storage medium 260 vary (or vary beyond a prescribed threshold of error).
For instance, the DRM software controlling storage medium 260 may rely on different attributes. Hence, in order to authenticate digital content 210 copied onto storage medium 260, the up-to-date digital rights state information for the content underwent a one-way hashing operation to produce a computed value. This value may then be encrypted using secret key 460 to produce result 400. In addition, result 400 may then be used to encrypt the attributes at encryption operation 450 in
Likewise, when decrypting the stored attributes and comparing them against the current attributes, the DRM software can determine whether the stored medium is the same or not. Therefore, when digital content 210 is authenticated using the encrypted, computed value based on the up-to-date content digital rights state information and encrypted attributes of hard drive 150, this cloning attack will not succeed since the current drive attributes will not compare properly to the stored decrypted values.
For example, if a drive is not the same manufacturer or the same model number and thus the computed hash values differ, then this is obviously not the same drive, and the DRM software will prevent access to the content. If there are fewer unfixable disk errors than previously recorded, then this is not the same drive. If a drive is younger than what was previously recorded, then this is not the same drive. For this type of comparison, the POH attribute is useful since it can have a resolution down to a second of time. Of course, besides these differing attributes, other differences in digital rights 220 (e.g., copy control information 315, manufacturer code 320 and model number 325 of
In general, as shown in
As an illustrative example, if SHA-256 hash function is used as the one-way hash function, hash value 230 is a 256-bit value. Hash value 230 would be divided into two separate sub-values 410 and 420, which are XOR'ed together to produce result 400. Result 400 may be used as a cryptographic key for a stream cipher 440 through which digital content 210 is now cryptographically protected prior to storage within hard drive 150. It is envision that this security system may only be used to prevent cloning and tampering of the stored medium, mainly to modify the stored digital rights, but not necessarily to encrypt the content as other mechanisms may be used for that.
Alternatively, as shown in
As shown in
Referring now to
According to one embodiment of the invention, the operation performed on the combined result may be a one-way hash function in order to produce a hash value. According to another embodiment of the invention, the operation may be a cyclic redundancy check (CRC) operation to produce a CRC value. It is contemplated that digital rights station information may be encrypted prior to performing the one-way hash or CRC operation as described above.
Thereafter, if the digital content is cloned (copied to another storage medium), in response to a particular event such as a power-up of another data storage system (and the storage medium), the attributes of the current storage medium are recovered (blocks 540 and 550). Otherwise, if additional digital content is received, the first value is updated (block 545).
These attributes undergo hash or CRC operations and are subsequently compared with the static value generated and stored in the first storage medium (blocks 560 and 570). In the event of a failure in the comparison, the digital content cannot be decrypted and recovered (block 580). However, if the comparison is successful, no cloning or tampering has occurred and the system attempts to recover the digital content (block 590).
Referring to
In addition, storage medium 600 is adapted with dedicated area to store up-to-date digital rights state information 640. For instance, “state information” 640 includes information that involves a change in the secured operational state of content based on a change in usage or access to digital content 610 stored therein. For instance, when digital content 6101 is played back and one of digital rights 6201 limit the number of times digital content 6101 can be played back. Based on a change in the count value directed to such playback, this constitutes a change in usage or access of digital content 610, namely digital content 6101. Thus, state information 630 records this change in the secured operational state. Similarly, if content 610 playback is for a certain amount of time, e.g. 24 hours. The state information 630 can record this change in the advancement of time periodically, e.g. every minute or 10 minutes.
However, if digital rights 6201 did not limit playback of digital content 6101, any playback would not constitute a change in the secure operational state of the content stored in the data storage system. Hence, state information 630 would not include information directed to playback.
In order to ensure that the most recent changes in the secure operational state are maintained, state information 640 is stored in accordance with a first-in, first-out (FIFO) queuing structure. Thus, the most recent changes in the secure operational state are set and stored in response to a first event (e.g., power-down, hibernate, etc.) and are compared in response to a second event (e.g., power-up, resume, etc.).
Herein, in order to reduce the amount of data stored, up-to-date digital rights state information associated with content 640 undergoes a one-way hashing operation to produce a hash value 650. According to this embodiment of the invention, hash value 650 is stored on a different storage medium 660 (e.g., flash memory) than storage medium 600 (e.g., hard drive).
If an attempt is made to clone or tamper with the contents of storage medium 600, digital content 610, the up-to-date digital rights state information 640 would be copied. On boot-up, the contents of the up-to-date digital rights state information 640 will be hashed and compared to that in the different storage medium 660. If any rights had been used-up between cloning or tamper operations, e.g. number of copies allowed reduced, amount of remaining playback time reduced, then the hash value 650 will differ from the calculated hash from the cloned storage medium. The security software can then decide what to do, e.g. deny access to the content or perhaps reduce the rights to “Copy No More”. It is envisioned that with any electronic system, the hash could somehow get out of sync with the calculated hash from the storage medium as some type of glitch. With such a possibility, it may be desirous to divide the storage medium into sectors—with each sector's up-to-date digital rights state information 620 being hashed and stored in the different storage medium. In such a scenario, only the content from the particular sector with the incorrect calculated hash would be affected.
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the present invention as set forth in the appended claims. The specification and drawings are accordingly to be regarded in an illustrative rather than in a restrictive sense.
This application claims the benefit of priority on U.S. Provisional Patent Application No. 60/793,399, filed on Apr. 19, 2006.
Number | Date | Country | |
---|---|---|---|
60793399 | Apr 2006 | US | |
60793293 | Apr 2006 | US |