Claims
- 1. In the spark erosive cutting of a conductive workpiece by a tool electrode under the control of a digital tool control system, the method of securing to the workpiece a workpiece part which is to be cut from the workpiece along a preprogrammed cutting path where the workpiece part is secured to the workpiece by a web of workpiece material extending between the workpiece and the workpiece part in which the preprogrammed cutting path comprises first and second intersecting cutting paths of different cutting angles, characterized in that in a first traverse of the preprogrammed cutting path along the first cutting path a first erosion treatment is performed by the tool electrode leaving a portion of the cutting path uncut to initially form the web; subsequently the tool electrode performs at least one additional erosion treatment along the preprogrammed cutting path in which the cutting position of the tool electrode between said first and second cutting paths is modified incrementally in consideration of the width of the tool electrode and the cutting gap between the tool electrode and the workpiece so that the workpiece volume between said first and second cutting paths is completely eroded; and before completing a final erosion treatment along the preprogrammed cutting path the tool electrode is passed through a modified cutting angle setting to maintain a residual web section of workpiece material between the workpiece and the workpiece part, said residual web section extending over part of the height of cut in the workpiece along only one of the first and second cutting paths and being configured so that it may be broken and the workpiece part detached from the workpiece upon application of a predetermined breakoff force.
- 2. In the spark erosive cutting of a conductive workpiece by a tool electrode under the control of a digital tool control system, the method of securing to the workpiece a workpiece part which is to be cut from the workpiece along a preprogrammed cutting path where the workpiece part is secured to the workpiece by a web of workpiece material extending between the workpiece and the workpiece part in which the preprogrammed cutting path comprises first and second intersecting cutting paths of different cutting angles, characterized in that in a first traverse of the preprogrammed cutting path along the first cutting path a first erosion treatment is performed by the tool electrode leaving a portion of the cutting path uncut to initially form the web; subsequently the tool electrode performs at least one additional erosion treatment along the preprogrammed cutting path; and before completing a final erosion treatment along the preprogrammed cutting path the tool electrode is passed through a modified cutting angle setting to maintain a residual web section of workpiece material between the workpiece and the workpiece part, said residual web section extending over part of the height of cut in the workpiece along only one of the first and second cutting paths and being configured so that it may be broken and the workpiece part detached from the workpiece upon application of a predetermined breakoff force; said first and second cutting paths being programmed so that there is no workpiece volume to be eroded between the cutting paths on a first side of the intersection of the cutting paths, and said residual web section is formed along the preprogrammed cutting path on the side of the intersection of the cutting paths opposite said first side.
- 3. In the spark erosive cutting of a conductive workpiece by a tool electrode under the control of a digital tool control system, the method of securing to the workpiece a workpiece part which is to be cut from the workpiece along a preprogrammed cutting path where the workpiece part is secured to the workpiece by a web of workpiece material extending between the workpiece and the workpiece part in which the preprogrammed cutting path comprises first and second intersecting cutting paths of different cutting angles, characterized in that in a first traverse of the preprogrammed cutting path along the first cutting path a first erosion treatment is performed by the tool electrode leaving a portion of the cutting path uncut to initially form a web extending over the height of the workpiece; subsequently the tool electrode performs at least one additional erosion treatment along the preprogrammed cutting path; and before completing a final erosion treatment along the preprogrammed cutting path the tool electrode is passed through a modified cutting angle setting to maintain a residual web section of workpiece material between the workpiece and the workpiece part, said residual web section extending only over part of the height of cut in the workpiece and being configured so that it may be broken and the workpiece part detached from the workpiece upon application of a predetermined breakoff force.
Priority Claims (1)
Number |
Date |
Country |
Kind |
3173/83 |
Jun 1983 |
CHX |
|
Parent Case Info
This application is a continuation of application Ser. No. 617,628, filed on June 6, 1984 and issued as U.S. Pat. No. 4,571,477.
US Referenced Citations (6)
Foreign Referenced Citations (11)
Number |
Date |
Country |
2303842 |
Aug 1974 |
DEX |
2351357 |
Jun 1975 |
DEX |
51-116674 |
Oct 1976 |
JPX |
55-137835 |
Oct 1980 |
JPX |
56-27736 |
Mar 1981 |
JPX |
56-82128 |
Jul 1981 |
JPX |
114621 |
Sep 1981 |
JPX |
56-126526 |
Oct 1981 |
JPX |
57-127626 |
Aug 1982 |
JPX |
57-144629 |
Sep 1982 |
JPX |
58-28429 |
Feb 1983 |
JPX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
617628 |
Jun 1984 |
|