1. Field of the Invention
The present invention relates to a method for selecting a modulation and coding scheme, and more particularly, to a method for selecting a modulation and coding scheme according to signal to noise ratio.
2. Description of the Related Art
In Wi-Fi wireless local area networks, such as those following the IEEE 802.11n standard, a receiver is required to suggest transmitter modulation and coding schemes (MCS) based on transmission environment, and the MCS adopted by the transmitter is adjusted with the variation of the transmission environment so as to maintain the highest transmission throughput.
One rate adaptation method adjusts the MCS adopted by the transmitter based on the packet error rate (PER) of the signals received by the receiver. If the PER exceeds an upper threshold, the MCS adopted by the transmitter is adjusted to another MCS with lower data rate. If the PER drops below a lower threshold, the MCS adopted by the transmitter is adjusted to another MCS with higher data rate. If the PER is between the upper threshold and the lower threshold, the MCS adopted by the transmitter remains the same. However, this rate adaptation method adjusts the MCS adopted by the transmitter from an original MCS to an adjacent one passively, but fails to find the optimum MCS according to the transmission environment.
Another rate adaptation method adjusts the MCS adopted by the transmitter based on signal to noise ratio (SNR).
However, this table requires an excessively large storage space of the receiver such that the hardware cost increases significantly. Further, if a triple antenna system or a system with more antennas is used, the required storage space would increase exponentially such that the hardware limitations could be prohibitive. Therefore, if a method for selecting a modulation and coding scheme capable of approximating the optimum MCSs were designed, not only would the transmission throughput of the transmitter increase, but the hardware cost of the receiver would also be significantly reduced.
One objective of the present invention is the ability to determine MCS according to a mathematical formula. Use of such type of rate adaption method allows the present invention to significantly reduce the storage space required compared to conventional methods.
The method for selecting MCS for double-antenna communication system to select an MCS from available MCSs based on SNR of received signals according to one embodiment of the present invention comprises the steps of: calculating combined SNRs of single spatial stream signals emitted by the double antennas and calculating throughputs of the MCSs corresponding to the single spatial stream signals according to the combined SNR and a first equation; calculating throughputs of the MCSs corresponding to double spatial stream signals and code rate smaller than a threshold according to the SNRs of these double spatial stream signals and a second equation; calculating throughputs of the MCSs corresponding to double spatial stream signals and code rate greater than the threshold according to the SNRs of these double spatial stream signals and a third equation; and selecting an MCS from the available MCSs as the MCS for signal transmission according to these calculated throughputs.
The method for selecting MCS for multiple-antenna communication system to select an MCS from available MCSs according to SNR of received signals according to another embodiment of the present invention comprises the steps of: calculating throughputs of the MCSs with code rate smaller than a threshold according to the SNRs of multiple spatial stream signals and a first equation; calculating throughputs of the MCSs with code rate greater than a threshold according to the SNRs of multiple spatial stream signals and a second equation; and selecting an MCS from the available MCSs as the MCS for signal transmission according to these calculated throughputs.
The objectives and advantages of the present invention will become apparent upon reading the following description and upon referring to the accompanying drawings of which:
The methods for selecting a modulation and coding scheme according to embodiments of the present invention utilize mathematical equations to approximate the experiment results shown in
In step 201, the throughputs are calculated according to MCSs of the single spatial stream signals. Therefore, the combined SNR is calculated according to the two SNRs corresponding to these two antennas in the present embodiment. Preferably, the higher SNR of the two SNRs is selected as the combined SNR.
data_rate(i), if SNR≧thrd(i) and S0×(SNR−thrd(i))>1;
S0×data_rate(i)×(SNR−thrd(i)), if SNR≧thrd(i) and S0×(SNR−thrd(i))≦1; and
0, if SNR<thrd(i); wherein S0 is the constant slope, data_rate(i) is the maximum data rate of the i-th MCS, i is an integer between 0 and 7 inclusive, thrd(i) is the lowest transmittable SNR of the i-th MCS and SNR is the combined SNR.
In the present embodiment, the code rates of the MCSs with boundaries of straight lines are all smaller than ½, wherein the code rates of the MCSs with boundaries of hyperbolic curves are all greater than ½. Therefore, the threshold in step 202 and 203 is ½.
In step 202, the throughputs are calculated according to MCSs of the double spatial stream signals, i.e. MCS 8, 9 and 11. As shown in
data_rate(i), if SNR0+SNR1≧thrd(i) and S1(SNR0+SNR1−thrd(i))>1;
S1×data_rate(i)×(SNR0+SNR1−thrd(i)), if SNR0+SNR1≧thrd(i) and S1×(SNR0+SNR1−thrd(i))≦1; and
0, if SNR0+SNR1<thrd(i), wherein S1 is the constant slope, data_rate(i) is the maximum data rate of the i-th MCS, i is an integer between 8 and 11 inclusive, thrd(i) is the lowest transmittable SNR of the i-th MCS and SNR0 and SNR1 are the SNRs of the two antennas.
In step 203, the throughputs are calculated according to MCSs of the double spatial stream signals, i.e. MCS 12-15. As shown in
data_rate(i), if SNR0≧thrd(i), SNR1≧thrd(i) and S2×(SNR0−thrd(i))(SNR1−thrd(i))>1;
S2×data_rate(i)×(SNR0−thrd(i))(SNR1−thrd(i)), if SNR0≧thrd(i), SNR1≧thrd(i) and S2×(SNR0−thrd(i))(SNR1−thrd(i))≦1; and
0, if SNR0<thrd(i) and SNR1<thrd(i), wherein S2 is the constant slope, data_rate(i) is the maximum data rate of the i-th MCS, i is an integer equal to 10 or between 12 and 15 inclusive, thrd(i) is the lowest transmittable SNR of the i-th MCS and SNR0 and SNR1 are the SNRs of the two antennas.
In step 204, the MCS corresponding to the highest throughput is selected from the 16 MCSs.
The methods for selecting a modulation and coding scheme according to embodiments of the present invention are not limited to double-antenna system, but can also be applied to multiple-antenna system.
In step 501, the throughputs of these MCSs can be represented as follows:
0, if
wherein S(i) is the slope constant of the i-th MCS, data_rate(i) is the maximum data rate of the i-th MCS, SS(i) is the required number of spatial signals for the i-th MCS, SNR(SS(i), j) is the SNR of the j-th spatial signal among the spatial signals of the i-th MCS and thrd(i) is the lowest transmittable SNR of the i-th MCS.
In step 502, the throughputs of these MCSs can be represented as follows:
data_rate(i), if for all SS(i), all of the corresponding SNR(SS(i),j)≧thrd(i) and
if for all SS(i), all of the corresponding SNR(SS(i), j)≧thrd(i) and
0, if for any SS(i), there is a SNR(SS(i), j)<thrd(i), wherein S(i) is the slope constant of the i-th MCS, data_rate(i) is the maximum data rate of the i-th MCS, SS(i) is the required number of spatial signal for the i-th MCS, SNR(SS(i), j) is the SNR of the j-th spatial signal among the spatial signals of the i-th MCS and thrd(i) is the lowest transmittable SNR of the i-th MCS.
In steps 501 and 502, if SS(i) is less than the number of the total number of antennas, SNR(SS(i), j) could be selected as the j-th highest SNR of the SS(i) number of spatial signals. For example, if applied to a five antenna structure, and SS(i) is 3, then the three highest SNRs could be selected as SNR(SS(i), j). In addition, to simplify the computation, S(i) in step 501 could be set as a constant, and S(i) in step 502 could be set as another constant.
In step 503, the MCS corresponding to the highest throughput is selected from the available MCSs.
In conclusion, the methods for selecting a modulation and coding scheme according to embodiments of the present invention utilize several equations to determine the MCS for signal transmission. Compared with the conventional methods, which require a great amount of storage space, the methods according to embodiments of the present invention approximate the effect of the conventional methods by merely executing a small amount of computation.
The above-described embodiments of the present invention are intended to be illustrative only. Those skilled in the art may devise numerous alternative embodiments without departing from the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
097147951 | Dec 2008 | TW | national |