The present invention relates mainly to petroleum processing, in particular to lubricant oil and wax production. The invention concerns separation of petroleum wax from oil by virtue of crystallization of wax from the waxy feedstock and subsequent filtering and evacuation of the solvent from the soft and hard wax mixture.
It should be borne in mind, however that the present invention is not limited strictly to the petroleum processing. The present invention can be used also in the food industry, in manufacturing of vegetable oils, in particular for their winterization when fractionizing of vegetable oils is carried out by crystallization of solid fats with their subsequent filtration.
There are known numerous publications describing separating of petroleum wax from hydrocarbon oils in a waxy feedstock. The processes employed for this purpose are based on crystallization of wax from the feedstock, which is a mixture of slack wax, solvent and oil.
An example of such a process can be found in U.S. Pat. No. 5,196,116 in which there is disclosed a process for solvent dewaxing of a waxy oil feed to obtain petroleum base oil. The process comprises the step of contacting of a warm waxy oil feed by indirect heat exchange first with the cold filtrate and then with the refrigerant to crystallize the wax in the oil feed to form an oil/solvent/wax mixture. The disadvantage of this method is associated with the fact that it is not suitable to separation of petroleum oils having low pour point.
Typical method of crystallization can be found in a book “Lubricant base oil and wax processing” p. 167-169, 1994 by Avelino Sequeira. According to this method the waxy feedstock is heated to 10-15 Degrees F. above the cloud point of the oil/wax/solvent mixture and is diluted with a solvent while chilling at a controlled rate in double-pipe scraped surface exchanger and chiller. The shortcoming of this method is low filtration rate of the slurry and low yield of dewaxed oil and hard wax. Furthermore, the crystallization method employing double-pipe scraped exchanger is inefficient since it requires often cleaning of clogged filtration surfaces. This, in its turn, requires high consumption of solvent and therefore its high losses and besides of all requires high consumption of energy.
Apart of the above-mentioned disadvantages the method of crystallization disclosed in the above book does not ensure full separation of oil occluded within dendrite structure of crystallized wax.
Strong competition in the field of petroleum processing as well as severe ecological requirements call upon permanent improvement of the processing of base oil and wax. An attempt to improve the crystallization technology based on the principle of double pipe scraped surface exchanger and chiller is described in U.S. Pat. No. 6,413,480. In this patent is disclosed an apparatus for separation of wax from a feedstock comprising a solvent, an oil component and a wax component. The apparatus comprises vertically oriented crystallization column, which interior is separated by hollow partitions into a plurality of compartments functioning as individual crystallization chambers. The feedstock flows through the column in one direction. The compartments are connected by zigzag tubular connections to allow the flow of cooling agent therethrough in the opposite direction. The wax crystals are formed on the outside surface of the partitions and there are provided also scraping means for scraping the wax crystals from the outside surface of the partitions.
By virtue of separation the column into individual crystallization chambers it is possible to organize the crystallization process at conditions, which are favorable for nucleation and formation of large wax crystals.
Unfortunately, the separation apparatus provided with vertically oriented column has several drawbacks. Its maintenance is complicate and very inconvenient. Replacement of scrapers requires dedicated auxiliary devices. In the lower and upper part of the column stagnation zones are formed, in which mixing is impossible and therefore crystallization becomes inefficient.
On the other hand the known in the art horizontally oriented double-pipe scraped-surface exchanger and chiller does not provide favorable conditions for nucleation and growth of wax crystals. The prior art references do not teach, suggest or motivate how to establish these conditions by virtue of separation the double-pipe exchanger into individual crystallization chambers.
Therefore despite existing numerous apparatuses for separation of hydrocarbon oils and wax there is nevertheless still felt a need in a new and improved apparatus and method for separation, which would combine advantages of the existing solutions, without however having their drawbacks.
The main object of the present invention is to provide for a new and improved method of separation and an apparatus for its implementation, which will sufficiently reduce or overcome the above-mentioned drawbacks of the known-in-the-art methods and apparatuses.
The other object of the invention is to provide for a new and improved method and apparatus for separation of petroleum or vegetable oils from a waxy or fatty feedstocks by wax or fat crystallization in a horizontally directed vessel, which would be convenient in operation and maintenance, in which there would be no stagnation zones and efficient mixing of the feedstock would be possible along the entire length.
Still further object of the invention is to provide for a new and improved solution for separation of petroleum or vegetable oils from a waxy or fatty feedstock by a crystallization apparatus, which is divided into discrete crystallization compartments, in which crystallization can be carried out at the most favorable conditions and most efficiently.
Yet another object of the present invention is to provide for a new and improved solution for separation of petroleum oils from wax or vegetable oils from solid fat, which allows their separation with increased slurry filtration rate and with improved yield of petroleum dewaxed oil and hard wax or vegetable oil and solid fat.
For a better understanding of the present invention as well of its benefits and advantages, reference will now be made to the following description of its embodiments taken in combination with the accompanying drawings.
a and 3b are partial cross-sectional views, which respectively depict clearance gap between the disks and the shell and sealing arrangement therebetween.
a, 4b are partial cross-sectional views, which depict clearance gap between the disks and the shaft and sealing arrangement therebetween.
a is a partial view of the scraper arrangement.
b is a cross-section of
With reference to
The outside diameter of the disks is less than the inside diameter of the shell such that a clearance gap G1 is provided therebetween. This clearance gap is schematically shown in
In accordance with the invention at all even disks 22, 24, 26, 28 this gap is open, while at all odd disks 23, 25, 27 and 29 this gap is sealed by a sealing arrangement, which will be explained in more details with reference to
Shown in
The lateral covers are respectively provided with an inlet port 38 and an outlet port 40, through which a waxy feedstock in the form of slurry) is introduced into the vessel and is evacuated therefrom by appropriate pumping means (not shown). The feedstock consists essentially of a wax component and an oil component. The feedstock can contain also a solvent component. The non-limiting list of suitable solvents comprises acetone, methyl ethyl ketone, methyl isobutyl ketone, dichloroethane, methylenedichloride, propane, toluene, benzene, cyclohexane, monohydroxy alcohols or their mixtures.
As will be explained further the feedstock proceeds in the longitudinal direction from the forward region to the rear region of the vessel.
Extending along the longitudinal central axis of the vessel a shaft 42 is provided. The shaft is mounted on bearings (not shown). The shaft is rotatable by an external drive for example a gear 44 driven by a motor 46.
The shaft extends through the disks by virtue of a clearance gap G2 provided between the shaft and the central region of the disks. The gap G2 ensures that the disks remain steady when the shaft rotates. For the sake of brevity this gap is shown in
It will be explained further that since at the even disks gap the G1 is open, while at the odd discs the gap G2 is open the feed stock flows along the vessel in a serpentine fashion.
Again with reference to
The entrance of the feedstock into the vessel is designated in
It will be explained further that to make this serpentine pattern possible, two types of sealing arrangements are provided. The sealing arrangement of the first type seals the gaps G1 between the odd disks 23, 25, 27, 29 and the shell. The sealing arrangements of the second type seal the gap G2 between the even discs 22, 24, 26, 28 and the shaft. By virtue of this provision transfer of the feedstock from one compartment to another is possible in a serpentine fashion. The movement of the feedstock in the serpentine pattern minimizes temperature and concentration gradients within the slurry volume that is preferable for the crystallization process.
Seen in
It is also shown that adjacent discs are connected therebetween by a plurality of branch pipes 56, 58, 60, 62, 64, 66, 68. Each branch pipe is provided with a bridging portion, with an outlet port connected to a one disk and with an inlet port connected to an adjacent disk. So, for example, bridging portion of the branch pipe 56 between disks 29 and 28 is connected to outlet port 73 of disk 29 and to inlet port 72 of the adjacent disk 28. The cooling agent enters into disc 29 through entrance port 52 flows to the branch pipe 56 via outlet port 73, then it proceeds through the bridging portion to the inlet port 72, through which it enters in the adjacent disk 28. The rest of the branch pipes is arranged in the similar fashion, i.e. the next branch pipe that is numbered 58 is connected to outlet port 74 of disk 28 and to inlet port 75 of the adjacent disk 27. By virtue of this connection the cooling agent is allowed to pass the entire length of the vessel while flowing successively from one disk to the adjacent disk such that the cooling agent can flow in the direction from rear disk 29 to forward disk 22. This direction is designated in
In accordance with the invention the branch pipes are situated outside of the vessel's interior and at the same side with respect to the longitudinal axis X-X. By virtue of this provision the branch pipes are easily accessible and therefore the apparatus assembling and maintenance is convenient.
The cooling agent is driven from one disk to another by appropriate pumping means, which is not shown. As suitable cooling agent one can use filtrate obtained during separation of the slurry by filters, or water.
Secured on the shaft are scraper arrangements 76, 78, 80, 82, 84, 86, 88, 90, which are provided with scrapers situated in close proximity to respective discs 22, 23, 24, 25, 26, 27, 28, 29. When the shaft rotates, the scrapers scrape the wax crystals formed on the disc's surfaces and mix the slurry.
The main factor for efficient separation of oils from waxes is the initial stage of wax crystallization, i.e. the nucleation, when micro wax nuclei are formed, which then grow into large crystals. The nucleation conditions determine the amount of the obtained wax crystals, their quality in terms of their size and shape, and the amount of occluded oil.
The present invention seeks to provide crystallization apparatus and method for separation of oils from waxes, which establishes the most favorable conditions for nucleation and subsequent growth of large and homogeneous crystals. In accordance with the invention this is achieved by virtue of two measures: arranging the feedstock flow path in the serpentine fashion as described above and maintaining an empirical relationship between the cooling area and the volume of the waxy feedstock present in each compartment.
When the feedstock flows in the serpentine fashion from one compartment to another it is cooled by the cooling agent flowing in the counter-current direction from one disk to another. The serpentine flow path and the slurry mixing assists(s) to formation of the wax crystals both on the disk's surfaces and within the volume of the feedstock.
In accordance with the invention it is advantageous to maintain an empirical relationship between the cooling area and the volume of the feedstock. This empirical relationship satisfies the expression α=S/V, where S is the cooling area in square meters, V is the volume of waxy feedstock to be cooled in cubic meters and α is a parameter. It has been empirically revealed that the most favorable conditions for crystallization can be established if the above parameter is 4-7 m−1.
Accordingly one should divide the vessel by the plurality of disks in such a manner that the volume of the feedstock in each compartment and the cooling area of each compartment would satisfy the above expression.
Thus the conditions are achieved required for obtaining large wax crystal, which grows essentially in the volume of the feedstock at conditions of low supersaturation.
Besides, it has been found that by virtue of the above provisions it is possible to double or even to triple the over-all heat transfer coefficient in this apparatus comparing with double-pipe scraped-surface exchanger.
Now with reference to
Now with reference to
A bushing is rigidly secured on the shaft. The bushing is provided with a tubular neck portion 112, which is affixed to the shaft and with a flange portion 114, which is perpendicular to the neck portion. Flange portion 114 is located in close proximity to flat partition 107 and is separated therefrom by a narrow space of at least several millimeters.
Diameter of the flange portion is less than diameter of gap G2 such that a small space S2 of at least several millimeters is provided between flange portion 114 and annular inner wall 108.
Since a very narrow space is left between the flat partition and the flange portion the feedstock is in fact prevented from flowing between the shaft and the disks and therefore it flows essentially between the annular external disk's wall and the shell. At the same time free rotation of the shaft with respect to the disk is allowed.
It should be borne in mind, that the above-described sealing arrangements are only an example. For sealing the disks from the shell and from the rotating shaft one could use any other suitable sealing arrangement, which is know in the art.
Referring now to
Interior of disc 28 is defined by external annular wall 96 and inner annular wall 108. Disc 28 is provided with inlet port 72 and with outlet port 74 having respective tubular portions 116, 118 and end portions 120, 122. Tubular portions are welded to the external annular wall of the disk at respective locations 124, 126 at one side of the longitudinal axis X-X.
Disc 28 is deployed within shell 16, which is provided with caps 128, 130, situated at the upper side of the shell. Tubular portions 116, 118 pass through respective caps and are welded to the caps at respective locations 132, 134 such that the end portions and respective tubular bridging portions remain outside the shell being above the caps and at one side of the longitudinal axis X-X. By virtue of this provision the branch pipe can be conveniently accessed, which renders the maintenance easy.
Furthermore, since tubular portions of the inlet and outlet ports are welded to the disks and to the caps at the same side with respect to axis X-X the disks hang on the shell. By virtue of this provision there is no danger for thermal stress formation during operation of the apparatus.
Referring now to
The further explanation refers to disc 28 provided with scraper arrangement 88. Similar explanation refers to the rest of discs.
In accordance with the invention the scraper arrangement comprises elongate scraping blade 136 affixed to supporting rod 138 by at least two fastening assemblies 140, 142. Each fastening assembly comprises a cup member 144 and a pusher 146 displaceable along the cup member perpendicularly to the supporting rod. Supporting rod 138 is rigidly secured on shaft 42.
The pusher is connected to the scraping blade by a fastening screw 148. A biasing spring 150 is provided in the cup member. The spring is located between butt end of the cup member and the pusher and it is biased to exert force on the pusher and thus to push the scraping blade towards the disk. An adjusting bolt 152 is provided for controlling the pushing force and thus for adjusting the distance between the scraping blade and the disk. By virtue of the biasing spring the scraper blade is pressed to the disk while being allowed to “float” above the disk surface when it scrapes crystals formed thereon.
In practice it is especially advantageous in terms of desired over-all heat transfer coefficient and of the crystals growth if the scraper arrangements are rotated (by the shaft) with peripheral linear velocity in the range of 0.3-1.5 m/sec.
Now referring to
Mixer 48 is of the anchor type and it is configured as an impeller comprising two symmetrical paddles 154, 156 rigidly secured on shaft 42 by a collar 158. Each paddle is provided with respective mixing blades 160, 162. The curvature of blades 154,156 follows the contour of the shell 16 such that a minimal clearance is provided between the mixing blades and the inwardly facing surface of the shell. It is advantageous if the wings are provided with windows 164, 166 and the mixing blades have perforations 168. By virtue of this provision it is possible to efficiently mix even relatively viscous feedstock.
It is not shown specifically but should be understood that the apparatus is also equipped with appropriate instrumentation for measuring and controlling of various parameters of the process, e.g. temperatures, flows rate, pressure drops, shaft rotation rate, etc.
It has been revealed that by virtue of the new crystallization apparatus of the present invention it is possible to sufficiently improve the process of separation, irrespective whether the separation is carried out during the process of dewaxing of oils or the process of slack wax deoiling. Due to formation of large and homogeneous wax crystals there are achieved many advantages, like for example increase of the slurry filtration rate, reducing of the filter cloth clogging, increase of the time of filtering operation without hot washing of filter cloths, reducing of solvent/feedstock dilution ratio, increase of dewaxed oil and hard wax yield, reducing of the solvent losses.
Since the pressure drop of the slurry flow in the new crystallizer is negligible (10-20 mm H20), the slack wax deoiling can be carried out without preliminary dilution of the feedstock by solvent. This renders the wax deoiling process simpler and more effective.
With reference to
The various flows participating in the process are designated by Roman numerals and the various items of the equipment used for implementation of the separation process are designated by Arabic numerals. As seen in
The last stages of the process are designated by numerals 180 and 182. These stages are intended for the solvent recovery. During the stage 180 solvent is recovered by evaporation from the hard wax. During stage 182 solvent is recovered from soft wax by the same manner. The flow X of said two solvent returns into the system for the slack wax (feed) dilution and for the filters washing. The produced hard wax XII and soft wax XI are pumped from the deoiling unit to storage.
Referring to
After passing through the apparatus 184 the feedstock slurry V goes further to the final crystallization step (chilling by dilution), which is carried out in a conventional mixer 186. Here a supercooled solvent VIII chills the feedstock slurry. Thus, by virtue of a very efficient crystallization established in the crystallization apparatus 184 the final crystallization step does not require relatively complicated double-pipe chiller, nor does it require chilling by a refrigerant as in the above described prior art double-pipe scraped-surface chiller. Instead, a very simple mixer 186 can be employed, in which crystallization is completed upon diluting the slurry by a supercooled solvent. Mechanical mixing follows diluting. One can readily appreciate that employing of a simple mixer instead of rather complicated DPSC renders the whole system simpler, less expensive and more convenient in operation and in maintenance.
The further steps of the separation process are similar to those of the prior art and therefore the same numerals are used for the designation of the same elements in
One should appreciate that by virtue of this provision the system becomes even simpler, more economical and more convenient in operation and in maintenance.
Now with reference to non-limiting Example 1 and Table 1 it will be described how the present invention was implemented in practice for separating of petroleum based oils from wax.
Deoiling of a slack wax feedstock was carried out in the crystallization apparatus of the present invention. The apparatus was of a pilot-size with feedstock capacity up to 18 kg per hour. The obtained results are presented below after they were scaled to an apparatus having feedstock capacity of 6000 kg per hour.
Mixture of Methyl Ethyl Ketone (MEK) with toluene was used as a solvent Temperature of filtration was kept +5° C.
Some parameters of the slack wax deoiling along with the obtained results in terms of feedstock oil content and produced hard wax quality, the process temperatures, filtration rate, filtration surface, hard wax yield and others are summarized in non-limiting Table 1 below. The data is compared with the conventional slack wax deoiling process using DPSE and DPSC with the same feedstock charge.
From the Table 1 follows that apparatus of the invention is advantageous in comparison with the conventional crystallizers: there is no need in the second step of filtration (repulp filters), amount of crystallizers decreases twice, filtration rate is higher, the amount of filters is two time less and hard wax yield is higher.
It should be appreciated that the present invention is not limited to the above-described embodiments and that changes and one ordinarily skilled in the art can make modifications without deviation from the scope of the invention, as will be defined in the appended claims.
It should also be appreciated that the features disclosed in the foregoing description, and/or in the following claims, and/or in the accompanying drawings may, both separately and in any combination thereof, be material for realizing the present invention in diverse forms thereof.
When used in the following claims, the terms “comprise”, “include”, “have” and their conjugates mean “including but not limited to”.