This disclosure relates to a gas turbine engine, and more particularly to a method for setting a gear ratio of a fan drive gear system of a gas turbine engine.
A gas turbine engine may include a fan section, a compressor section, a combustor section, and a turbine section. Air entering the compressor section is compressed and delivered into the combustor section where it is mixed with fuel and ignited to generate a high-speed exhaust gas flow. The high-speed exhaust gas flow expands through the turbine section to drive the compressor and the fan section. Among other variations, the compressor section can include low and high pressure compressors, and the turbine section can include low and high pressure turbines.
Typically, a high pressure turbine drives a high pressure compressor through an outer shaft to form a high spool, and a low pressure turbine drives a low pressure compressor through an inner shaft to form a low spool. The fan section may also be driven by the inner shaft. A direct drive gas turbine engine may include a fan section driven by the low spool such that a low pressure compressor, low pressure turbine, and fan section rotate at a common speed in a common direction.
A speed reduction device, which may be a fan drive gear system or other mechanism, may be utilized to drive the fan section such that the fan section may rotate at a speed different than the turbine section. This allows for an overall increase in propulsive efficiency of the engine. In such engine architectures, a shaft driven by one of the turbine sections provides an input to the speed reduction device that drives the fan section at a reduced speed such that both the turbine section and the fan section can rotate at closer to optimal speeds.
Although gas turbine engines utilizing speed change mechanisms are generally known to be capable of improved propulsive efficiency relative to conventional engines, gas turbine engine manufacturers continue to seek further improvements to engine performance including improvements to thermal, transfer and propulsive efficiencies.
In one exemplary embodiment, a gas turbine engine includes a fan section including a fan rotatable about an axis of rotation of the gas turbine engine. A speed reduction device is in communication with the fan. The speed reduction device includes a star drive gear system with a star gear ratio of at least 1.5. A fan blade tip speed of the fan is less than 1400 fps. A bypass ratio is between about 11.0 and about 22.0.
In a further embodiment of the above, the speed reduction device includes a star gear system gear ratio of at least 2.6.
In a further embodiment of any of the above, the speed reduction device includes a system gear ratio less than or equal to 4.1.
In a further embodiment of any of the above, the star system includes a sun gear, a plurality of star gears, a ring gear, and a carrier.
In a further embodiment of any of the above, each of the plurality of star gears includes at least one bearing.
In a further embodiment of any of the above, the carrier is fixed from rotation.
In a further embodiment of any of the above, a low pressure turbine is mechanically attached to the sun gear.
In a further embodiment of any of the above, a fan section is mechanically attached to the ring gear.
In a further embodiment of any of the above, an input of the speed reduction device is rotatable in a first direction and an output of the speed reduction device is rotatable in a second direction opposite to the first direction.
In a further embodiment of any of the above, a low pressure turbine section that is in communication with the speed reduction device is included. The low pressure turbine section includes at least three stages and no more than four stages.
In a further embodiment of any of the above, the fan blade tip speed of the fan is greater than 1000 fps.
In a further embodiment of any of the above, there is a low pressure turbine which is one of three turbine rotors. The low pressure turbine drives the fan section and the other two of the three turbine rotors each drive a compressor section.
In a further embodiment of any of the above, there is a high pressure turbine. Each of a low pressure turbine and the high pressure turbine drives a compressor rotor.
In a further embodiment of any of the above, the speed reduction device is positioned intermediate a compressor rotor driven by the low pressure turbine and the fan section.
In a further embodiment of any of the above, the speed reduction device is positioned intermediate the low pressure turbine and the compressor rotor driven by the low pressure turbine.
The exemplary gas turbine engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine centerline longitudinal axis A. The low speed spool 30 and the high speed spool 32 may be mounted relative to an engine static structure 33 via several bearing systems 31. It should be understood that other bearing systems 31 may alternatively or additionally be provided, and the location of bearing systems 31 may be varied as appropriate to the application.
The low speed spool 30 generally includes an inner shaft 34 that interconnects a fan 36, a low pressure compressor 38 and a low pressure turbine 39. The inner shaft 34 can be connected to the fan 36 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 45, such as a fan drive gear system 50 (see
A combustor 42 is arranged in exemplary gas turbine 20 between the high pressure compressor 37 and the high pressure turbine 40. A mid-turbine frame 44 may be arranged generally between the high pressure turbine 40 and the low pressure turbine 39. The mid-turbine frame 44 can support one or more bearing systems 31 of the turbine section 28. The mid-turbine frame 44 may include one or more airfoils 46 that extend within the core flow path C. It will be appreciated that each of the positions of the fan section 22, compressor section 24, combustor section 26, turbine section 28, and fan drive gear system 50 may be varied. For example, gear system 50 may be located aft of combustor section 26 or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the location of gear system 50.
The inner shaft 34 and the outer shaft 35 are concentric and rotate via the bearing systems 31 about the engine centerline longitudinal axis A, which is co-linear with their longitudinal axes. The core airflow is compressed by the low pressure compressor 38 and the high pressure compressor 37, is mixed with fuel and burned in the combustor 42, and is then expanded over the high pressure turbine 40 and the low pressure turbine 39. The high pressure turbine 40 and the low pressure turbine 39 rotationally drive the respective high speed spool 32 and the low speed spool 30 in response to the expansion.
In a non-limiting embodiment, the gas turbine engine 20 is a high-bypass geared aircraft engine. In a further example, the gas turbine engine 20 bypass ratio is greater than about six (6:1). The geared architecture 45 can include an epicyclic gear train, such as a planetary gear system, a star gear system, or other gear system. The geared architecture 45 enables operation of the low speed spool 30 at higher speeds, which can enable an increase in the operational efficiency of the low pressure compressor 38 and low pressure turbine 39, and render increased pressure in a fewer number of stages.
The pressure ratio of the low pressure turbine 39 can be pressure measured prior to the inlet of the low pressure turbine 39 as related to the pressure at the outlet of the low pressure turbine 39 and prior to an exhaust nozzle of the gas turbine engine 20. In one non-limiting embodiment, the bypass ratio of the gas turbine engine 20 is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 38, and the low pressure turbine 39 has a pressure ratio that is greater than about five (5:1). In another non-limiting embodiment, the bypass ratio is greater than 11 and less than 22, or greater than 13 and less than 20. It should be understood, however, that the above parameters are only exemplary of a geared architecture engine or other engine using a speed change mechanism, and that the present disclosure is applicable to other gas turbine engines, including direct drive turbofans. In one non-limiting embodiment, the low pressure turbine 39 includes at least one stage and no more than eight stages, or at least three stages and no more than six stages. In another non-limiting embodiment, the low pressure turbine 39 includes at least three stages and no more than four stages.
In this embodiment of the exemplary gas turbine engine 20, a significant amount of thrust is provided by the bypass flow path B due to the high bypass ratio. The fan section 22 of the gas turbine engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet. This flight condition, with the gas turbine engine 20 at its best fuel consumption, is also known as bucket cruise Thrust Specific Fuel Consumption (TSFC). TSFC is an industry standard parameter of fuel consumption per unit of thrust.
Fan Pressure Ratio is the pressure ratio across a blade of the fan section 22 without the use of a Fan Exit Guide Vane system. The low Fan Pressure Ratio according to one non-limiting embodiment of the example gas turbine engine 20 is less than 1.45. In another non-limiting embodiment of the example gas turbine engine 20, the Fan Pressure Ratio is less than 1.38 and greater than 1.25. In another non-limiting embodiment, the fan pressure ratio is less than 1.48. In another non-limiting embodiment, the fan pressure ratio is less than 1.52. In another non-limiting embodiment, the fan pressure ratio is less than 1.7. Low Corrected Fan Tip Speed is the actual fan tip speed divided by an industry standard temperature correction of [(Tram° R)/(518.7° R)]0.5, where T represents the ambient temperature in degrees Rankine. The Low Corrected Fan Tip Speed according to one non-limiting embodiment of the example gas turbine engine 20 is less than about 1150 fps (351 m/s). The Low Corrected Fan Tip Speed according to another non-limiting embodiment of the example gas turbine engine 20 is less than about 1400 fps (427 m/s). The Low Corrected Fan Tip Speed according to another non-limiting embodiment of the example gas turbine engine 20 is greater than about 1000 fps (305 m/s).
The sun gear 52 receives an input from the low pressure turbine 39 (see
A star system gear ratio of the fan drive gear system 50 is determined by measuring a diameter of the ring gear 54 and dividing that diameter by a diameter of the sun gear 52. In one embodiment, the star system gear ratio of the geared architecture 45 is between 1.5 and 4.1. In another embodiment, the system gear ratio of the fan drive gear system 50 is between 2.6 and 4.1. When the star system gear ratio is below 1.5, the sun gear 52 is relatively much larger than the star gears 56. This size differential reduces the load the star gears 56 are capable of carrying because of the reduction in size of the star gear journal bearings 57. When the star system gear ratio is above 4.1, the sun gear 52 may be much smaller than the star gears 56. This size differential increases the size of the star gear 56 journal bearings 57 but reduces the load the sun gear 52 is capable of carrying because of its reduced size and number of teeth. Alternatively, roller bearings could be used in place of journal bearings 57.
Improving performance of the gas turbine engine 20 begins by determining fan tip speed boundary conditions for at least one fan blade of the fan 36 to define the speed of the tip of the fan blade. The maximum fan diameter is determined based on the projected fuel burn derived from balancing engine efficiency, mass of air through the bypass flow path B, and engine weight increase due to the size of the fan blades.
Boundary conditions are then determined for the rotor of each stage of the low pressure turbine 39 to define the speed of the rotor tip and to define the size of the rotor and the number of stages in the low pressure turbine 39 based on the efficiency of low pressure turbine 39 and the low pressure compressor 38.
Constraints regarding stress levels in the rotor and the fan blade are utilized to determine if the rotary speed of the fan 36 and the low pressure turbine 39 will meet a desired number of operating life cycles. If the stress levels in the rotor or the fan blade are too high, the gear ratio of the fan drive gear system 50 can be lowered and the number of stages of the low pressure turbine 39 or annular area of the low pressure turbine 39 can be increased.
Although the different non-limiting embodiments are illustrated as having specific components, the embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from any of the non-limiting embodiments in combination with features or components from any of the other non-limiting embodiments.
It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed and illustrated in these exemplary embodiments, other arrangements could also benefit from the teachings of this disclosure.
The foregoing description shall be interpreted as illustrative and not in any limiting sense. A worker of ordinary skill in the art would understand that certain modifications could come within the scope of this disclosure. For these reasons, the following claim should be studied to determine the true scope and content of this disclosure.
This disclosure is a continuation in part of PCT/US2013/061115 filed on Sep. 23, 2013, which claims priority to U.S. Provisional Patent Application No. 61/706,212 filed on Sep. 27, 2012.
Number | Date | Country | |
---|---|---|---|
61706212 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2013/061115 | Sep 2013 | US |
Child | 14705459 | US |