1. Field of the Invention
The present invention relates to a method for shrinking the dimension of a gate, and more particularly to a method for forming an oxide layer on the gate so as to consume it so that the dimension of the gate is shrunk.
2. Description of the Prior Art
MOS transistor (Metal-Oxide-Semiconductor Transistor) is presently the most important unit construction in the VLSI (Very Large Scale Integrated). The basic structure of the MOS includes a capacitor, a source and a drain, which are located on two sides of the capacitor, wherein a structure of the capacitor is a gate. Typically, the gate consists of a polysilicon, a silicon dioxide and a silicon substrate. Today, one of the important drivers for increased performance in computers is the high level of integration in circuits. This is accomplished by miniaturizing or shrinking device sizes on a given chip. Shrinking the dimension of the gate will cause the shape or volume of a die to be reduced. After shrinking the dimension of the die, the amount of the die of a wafer can be improved. Thus, the throughput is enhanced.
In logic product applications, the smaller gate structure means that having the faster handling speed and a higher integrity of semiconductor devices. Therefore, the production in gate structures with a small dimension will be the most important trend in the present day. Today, control of the transistor gate critical dimension (CD) on the order of a few nanometers is a top priority in many advanced IC fabs. Each nanometer deviation from the target gate length translates directly into the operational speed to these devices. That is, a photolithography and etching process are the choke point of the semiconductor process. As a result the fabrication costs are getting more expensive, an improvement of apparatus and processes of the semiconductor processes in logic application has become imperative. The photolithography is the most influenced step of the semiconductor processes, which determines the structure about MOS transistor. In semiconductor industry, MOS transistors whether or not have the smaller word line that depends on the development of the photolithography process. However, an etching process is focused on the etching of the poly gate and the silicon dioxide so that the ability of the patterning in logic circuit can be improved. Moreover, shrinking the semiconductor is getting so precise that the integrity of the IC is enhanced.
Following, as shown in
Subsequently, utilizing the patterning photoresist layer 111 as a mask and performing an etching process on the polysilicon layer 107 and the oxide layer 105. Then, a polygate 108 is formed on the surface of the semiconductor substrate 101 that comprises the polysilicon layer 107 and oxide layer 105, as shown in
As a result, the dry etching process utilizes the photoresist layer 111 as a mask in order to selectively strip the thin film on the MOS transistor. However, the Vt (threshold voltage) and Idsat (saturated drain current) of the MOS transistor depends on the channel length of the gate, which means depending on the width of the photoresist layer. Moreover, the resolution of the word line of the gate is limited to the width of the photoresist layer. When the photolithography process could not surmount the technique in the present time, the devices on the MOS transistor could not toward having a smaller dimension.
Due to the fact of utilizing the conventional photolithography process in order to shrink the dimension of a gate that is easily limited to the ability of the photolithography of a photoresist layer. Hence, a semiconductor process that can shrink the dimension of the gate is required.
It is an objective of the present invention to provide a method for shrinking a dimension of a gate that utilizes a way of the thermal oxidation, which can stably and uniformly form an oxide layer on the gate. By controlling the thickness of the oxide layer, the word line of the gate can be controlled. Moreover, shrinking the dimension of the gate is achieved.
It is another objective of the present invention to provide a method for shrinking a dimension of a gate that utilizes an etching solution, which can stably consume the oxide layer on the gate and not damage the gate, furthermore; the yield is improved.
It is further objective of the present invention to provide a method for shrinking a dimension of a gate that can overcome the limitations of a traditional photolithography process. It is an economical and unsophisticated method for shrinking the dimension of the gate.
In order to achieve the objects as mentioned above, the present invention provides a method for shrinking a dimension of a gate. At first, providing a semiconductor substrate, for instance a p-type silicon substrate. In the semiconductor substrate comprises plurality of the isolation zones therein, for instance a plurality of the shallow trenches, which are placed on the two sides of the semiconductor substrate. Then, depositing a silicon dioxide layer, a polysilicon layer and a photoresist layer on the semiconductor substrate respectively. Next, utilizing the photoresist layer as a mask in order to etch the polysilicon layer and silicon dioxide layer by a way of the dry etching process, for instance reactive ion etch (RIE) method. After stripping the photoresist layer, a structure of a gate is formed on the semiconductor substrate, moreover, placed between the plurality of the isolation zones. Thereafter, an oxide layer is deposited on the surface of the semiconductor substrate and the gate by a process of thermal oxidation. The thickness of the oxide layer can refer to another thickness of the oxide layer, which is on a surface of a dummy wafer. By calculation, the oxide layer on the gate can be controlled, furthermore, control the word line of the gate. Finally, utilizing an etching solution, for instance a DHF solution (HF in deionized water) or a BOE solution (buffered oxide etch) to remove the oxide layer and achieve the object for shrinking the dimension of the gate.
The objectives and features of the present inventions as well as advantages thereof will become apparent from the following detailed description, considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings, which are not to scale, are designed for the purpose of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims.
The present invention can be best understood through the following description and accompanying drawings, wherein:
Preferred embodiments of this invention will be explained with reference to the drawings of
Following, a silicon dioxide layer 205, a polysilicon layer 207 and a photoresist layer 211 is respectively deposited on the surface of the semiconductor substrate 201 and plurality of the isolation zones 203. Each thin film as mentioned above is deposited by a suitable method of vapor deposition, for instance low pressure chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition (APCVD) or high density plasma chemical vapor deposition (HDPCVD). The polysilicon layer 207 is used a doping process such as doping a plurality of ions therein to reduce the resistance of the polysilicon layer 207, and enhance the conductivity.
Subsequently, referring to
Following, referring to
Accordingly, in order to resolve the problem with shrinking the width of the photoresist because of ability of the photolithography result in the gate can not have the smaller word line. As shown in
After forming the oxide layer 213 on the semiconductor substrate 201 and the gate 208, referring to the
According to the preferred embodiment of this invention, which can realize one of the advantages of the present invention that a method for shrinking the dimension of the gate is provided. That is, utilizing a thermal oxidation to simultaneously form an oxide layer on a semiconductor substrate and a gate. As a result, the oxide layer is grown on the surface of the semiconductor substrate, a portion of the polysilicon layer also have an oxidation thereon, that is to say; the thickness and width of the gate and polysilicon layer will be consumed. When a dummy wafer, which has the same recipe with this present invention to form an oxide layer thereon, accurately controls the thickness of the oxide layer. That is, utilizing the thickness of the oxide layer on the dummy wafer as a reference to exactly calculate the thickness of the oxide layer on the gate and semiconductor substrate by calculation. Hence, the word line of the gate can be precisely and effectively shrunk. Besides, the oxide layer on the gate and semiconductor substrate is stripped by a suitable etching solution, which can stably consume the oxide layer and not damage the gate, furthermore; shrinkage of the dimension of the gate is achieved. That is, utilizing the method of the present invention has overcame the problem with the resolution of the word line of the gate is limited to the width of the photoresist layer, and shrinking the dimension of the gate to reach an advanced process by the economical and convenient method.
The preferred embodiments are only used to illustrate the present invention, not intended to limit the scope thereof. Many modifications of the preferred embodiments can be made without departing from the spirit of the present invention.