Information
-
Patent Grant
-
6394330
-
Patent Number
6,394,330
-
Date Filed
Thursday, August 13, 199826 years ago
-
Date Issued
Tuesday, May 28, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Griswold; Gary L.
- Sprague; Robert W.
- Bond; William J.
-
CPC
-
US Classifications
Field of Search
US
- 083 56
- 083 302
- 083 332
- 083 407
- 083 408
- 083 425
- 083 4252
- 083 4253
- 083 4254
- 083 505
- 083 506
- 083 5083
- 083 649
- 083 678
- 083 23
- 083 27
- 225 2
- 225 3
- 225 96
- 225 97
-
International Classifications
-
Abstract
A method of converting a web of indefinite length into a plurality of web portions by slitting the web at a transverse point prior to processing the web portions into a plurality of use supply forms (such as rolls), wherein the plurality of web portions are separated by a two-stage process. A first stage of the process is a partial separation operation that almost entirely separates the web portions, but leaves the web portions connected, such as by a slitting operation that leaves a series of connected zones. The second stage includes the complete separation, such as by breaking of the connected zones. The complete separation of the web portions preferably occurs near the station at which the use supply forms are created, such as a winding station. Thus, the web portions, after substantial separation at the first stage can be handled (for example, guided and tensioned) as if the plurality of web portions were a full width web. But, after handling and transporting of the web portions to the use supply form station, the web portions are completely split so that the plural web portions can be wound or otherwise converted into a plurality of use supply forms.
Description
TECHNICAL FIELD
The present invention generally relates to web processing apparatus and methods for slitting a wide web of material into plural web portions and subsequently winding the web portions into separate rolls. In particular, the web material is initially slit while leaving connections between the web portions and breaking the connections prior to winding.
BACKGROUND OF THE INVENTION
In some situations, it is desirable to split a single, relatively wide web of material into a plurality of relatively narrow web portions and wind the web portions into several rolls (or otherwise convert the web portions into use supply forms). It is generally more efficient to produce and/or process material in wider webs but often more convenient to package, ship, sell, and/or use the material in narrower rolls. Also, the narrower web portions are preferred or required for some applications. Common examples of web materials that are often split into web portions include paper (for example, toilet paper, computer paper, paper towels, etc.) and tape (for example, adhesive tape, magnetic tape, etc.). Slitting can be done on single webs (for example, films), structured webs (for example, webs with structured features), multilayer laminates, or coated webs (for example, adhesive coated webs for making adhesive tape).
A plurality of web portions can be formed from a web by slitting (or otherwise cutting) the web in the lengthwise direction so that the individual web portions are separated from one another. U.S. Pat. No. 3,695,131 issued to Zimmermann relates to one such approach wherein a web is carried by a traveling support surface across razor sharp cutting edges of circular slitting blades, wherein the web is held on the traveling support to reduce longitudinal or transverse shifting of the web portions. The slitter blades are rotated so as to distribute wear uniformly about the circumferences of the slitter blades. After slitting, the various web portions are directionally separated by directing adjacent web portions through different guide means that thread the web portions to different winding reels.
U.S. Pat. No. 2,897,893 issued to Rockstrom et al. relates to another slitting mechanism in which a continuous web of material is taken from a mill roll and passed over a compensating roll in a rewind machine and under a cutter roll against which the web is slit into web portions before winding into a rewind roll. Slitting wheels bear against a hardened sleeve of the cutter roll at any desired position along the sleeve and they bear with sufficient pressure to sever the web into web portions. The slitting wheels are softer than the hardened sleeve and, although preferably not given a sharp edge, they divide the web. Immediately after the web is cut by the slitting wheels, an angular-faced spreader having a vertical, forward-extending center with backswept sides bears against the web with the forward center of the spreader bearing on the line of the cut to push the web portions apart and to assure their complete separation along the cutting line. U.S. Pat. No. 1,465,967 issued to Cameron et al. relates to a somewhat similar slitting and rewinding machine that also includes a secondary separating device having a knife blade for severing any stray fibers connecting adjacent web portions that have not been severed by the slitting action. The secondary separating device severs the stray fibers after slitting and before winding of the web portions.
After the plural web portions are split and separated, they typically pass individually through guiding and tensioning rollers and then are ultimately wound about a core to form a roll of web material. Each web portion may be individually guided to a distinct core, or plural cores can be supported in axial alignment on a single shaft. Often, adjacent web portions are divided to different winding shafts supporting such plural cores so that they can be guided without interfering with one another. Alternatively, the plural web portions can ultimately be folded, cut, or otherwise processed to form a stack (or other form) of web material. The roll or stack of web material is the use supply form that is used by the consumer of the web portions. To process the split, separated web portions to create use supply forms, each web portion must be individually guided, which requires accurate control to prevent each web portion from wandering. Tension control is an important aspect of web guiding, and web properties (such as the thickness of the web across the web) can cause slight variations in guiding and tensioning each web portion. Variations in guiding and tensioning can cause the web portions to wander and be wound with uneven edges and, where several rolls are wound side by side about a common winding shaft, to be wound with overlapping and interweaved edges that cause the several rolls to become intermeshed.
It is also known to perforate web or web portions prior to forming the use supply forms in order to provide a perforation or tear line so that someone or something provided with the web material in use supply form can split the web material by tearing along the perforations. The perforation or tear line is formed by cutting a plurality of small, spaced slits in the web material. The connections of the web material that remain between the slits maintain the structural integrity of the web material until the connections are torn to further separate the web or web portion along the perforation line. A number of different configurations of perforations lines have been developed.
Perforations can be created in the machine direction of a web or web portion by a perforating wheel having a beveled cutting edge in which one or more notches are formed at angularly spaced intervals so as to define cutting and non-cutting portions of the cutting edge. Typically, several perforating wheels are spaced and rotatably mounted along a bar so that the perforating wheels tangentially contact the outer surface of a back-pressure roll, which is rotated by a motor or the like. The rotation of the back-pressure roll causes the perforating wheels to rotate. The web is run between the perforating wheel and the back-pressure roll and, as the perforating wheels rotate and the cutting portions of the cutting edges come into contact with the web, the cutting portions of the cutting edges penetrate and cut the web to form the perforations. When the perforating wheels further rotate and the non-cutting portions move over the web, the notches formed in the cutting edges prevent the web from being cut, which forms the connections in the perforation line. A perforating wheel of this general type is disclosed in U.S. Pat. No. 3,978,753 issued to Meaden et al. Thus, perforations can be provided in the longitudinal direction so as to define two or more connected web subportions that are wound or stacked into the use supply form.
Perforations can be provided across the transverse width of the web or web portion so as to define individual sheets of the web material. Examples include paper towels and toilet paper, which are typically perforated so that individual sheets can be separated from the roll by the consumer. Many techniques have been developed to make transverse perforation as a web is moved in a machine direction. Most rely on a perforating roll that creates the perforation lines at spaced intervals on the web based upon a notched cutting edge extended transversely on the roll. Whether longitudinally or transversely perforated, such connected web subportions are designed to be separated by a consumer as the web material is converted from its use supply form.
One noteworthy application of perforations in web or web strands is in continuous paper of the type commonly used in computer printers, especially contact or dot matrix type computer printers. Continuous paper of this type is commonly sold as a stack or roll of paper having rows of perforations across the width of the paper. The spacing of the these rows determines the length of the page. Typically, the paper is folded along the perforations alternately in opposite directions, resembling a fan or accordion. Such continuous paper can be moved past a printer mechanism of a printer using a friction feed mechanism that pinches the paper between two rollers, one of which is typically driven by a motor. However, when more than a few pages are printed using only a friction feed mechanism, the continuous paper tends to wander out of alignment.
One solution to the wandering problem adapted for contact or dot matrix type computer printers involves the use of a tractor feed mechanism in which sprockets engage holes in special computer paper. The computer paper is continuous as described above but also has a narrow guide strip on each side along the length of the paper. The guide strips have a plurality of regularly spaced holes for engaging the sprockets in the tractor feed mechanism to advance the paper. Each guide strip is typically separated from the sheet by perforations that define tear lines.
Although the pages of a printout (the printout being computer paper on which the printer has printed) are sometimes left joined together end to end, the guide strips on the sides are usually removed. Because removing the guide strips after the paper has exited the printer can be time consuming (for example, if the guide strips are removed page by page) and/or can damage the paper (for example, if the guide strips are removed from several sheets of folded paper at once), several approaches to separating the guide strips from the paper immediately after printing but before the paper exits the printer have been developed. For example, U.S. Pat. No. 5,259,543 issued to Downing relates to a parting tool that can be attached to a tractor feed mechanism for separating the guide strips from computer paper as the paper passes through the tractor feed mechanism. The parting tool includes a blade intersecting the plane of the paper for shearing the paper along the perforations connecting the guide strips to the sheets of paper.
The continuous and computer papers described above are provided to the consumer in use supply form with perforations provided in the web material in its use supply form. Separation of the perforations occurs, if ever, at or after use by the consumer. In other words, the perforations are not separated in the process of making the use supply form.
SUMMARY OF THE INVENTION
The present invention relates to an apparatus and method of converting a web of indefinite length into a plurality of web portions by slitting the web at at least one transverse point prior to processing the web portions into a plurality of use supply forms (such as rolls), wherein the plurality of web portions are separated by a two-stage process. Preferably, the converting process is continuous in a machine direction of travel by the web. A first stage of the process is a partial separation operation that almost entirely separates the web portions, but leaves the web portions connected, such as by a slitting operation that leaves a series of connected zones. The second stage includes the complete separation, such as by breaking of the connected zones. The complete separation of the web portions preferably occurs near the station at which the use supply forms are created, such as a winding station. Thus, the web portions, after substantial separation at the first stage can be handled (for example, guided and tensioned) as if the plurality of web portions were a full width web. But, after handling and transporting of the web portions to the use supply form station, the web portions are completely split so that the plural web portions can be wound or otherwise converted into a plurality of use supply forms. By handling and transporting the plurality of substantially split web portions as a fall width web, the handling and transporting of each of the web portions separately and the possible resulting variations in guiding and tensioning that can lead to wandering and other problems can be avoided.
One aspect of the present invention is a method of converting a web having a transverse width and of indefinite length into plural use supply forms as the web is moved in a machine direction by slitting the web into plural web portions of indefinite length. The method comprises supplying a web having a transverse width and of indefinite length and transporting the web in a machine direction. The method also includes moving the web through a first separation stage and thereby partially separating the web at a point along its transverse direction for making a partially separated web and defining connected web portions running in the machine direction of the partially separated web. In addition, the method includes transporting the partially separated web from the first separation stage to and through a second separation stage and thereby separating the connected web portions into discrete web portions, and converting the discrete web portions into use supply forms thereof.
Another aspect of the present invention is an apparatus for converting a web having a transverse width and of indefinite length into plural supply use forms by moving the web in a machine direction and slitting the web into plural web portions of indefinite length. The apparatus comprises a source of a web having a transverse width and of indefinite length and transport means for moving the web from said source in a machine direction. The apparatus also includes a first separation stage located downstream from the source and comprising a first separation device that partially separates the web at a point along its transverse direction and makes a partially separated web having defined connected web portions that extend in the machine direction of the partially separated web. In addition, the apparatus includes a second separation stage located downstream from the first separation stage and comprising a second separation device that separates the connected web portions into discrete web portions, and a use form conversion station for converting the discrete web portions into use supply forms.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a schematic illustration of an apparatus for slitting and converting a web having an indefinite length into plural roll use supply forms.
FIG. 2
is a perspective view of a plurality of slitting wheels positioned at transverse points across a web moving in a machine direction that substantially divide a web into web portions by spaced slits while leaving connected zones at predetermined intervals usable as a slitting mechanism for the apparatus of FIG.
1
.
FIG. 3
is a perspective view of a plurality of breaking tools, usable as a breaking mechanism in the apparatus of
FIG. 1
, positioned at transverse points across a moving, substantially divided web near the use supply form conversion station at which the rolls are created.
FIG. 4
is a side view of a slitting wheel of the slitting mechanism shown in FIG.
2
.
FIG. 5
is an enlarged side view of a portion of the slitting wheel shown in FIG.
4
.
FIG. 6
is a perspective view of a breaking tool shown in FIG.
3
.
FIG. 7
is a plan view of a roll winding device for use in the apparatus shown in FIG.
1
.
FIG. 8
is a schematic illustration of an extruding apparatus that can be substituted for the web supply of the apparatus shown in FIG.
1
.
DETAILED DESCRIPTION OF THE INVENTION
An apparatus and method of slitting and winding a web according to the present invention is schematically illustrated in
FIG. 1
, wherein an elongate web
10
of indefinite length is supplied from a supply station
12
, moved through a first stage separation mechanism
14
, transported to and through a second stage separation mechanism
18
by way of a guiding and transporting system
16
, and converted at a use supply form conversion station
20
. In the illustrated version, the supply station
12
comprises a large roll
22
of web material from which the web
10
is unwound. Any conventional or developed manner of supporting the roll
22
of web material for unwinding is contemplated for use in accordance with the present invention. Web
10
from the supply station
12
is guided to the first stage separation mechanism
14
, such as by a conventionally supported guide roller
24
. The first stage separation mechanism
14
, which will be described in greater detail below, operates to substantially, but not completely, divide web
10
at one or more predetermined transverse points into a partially separated web having a plurality of defined but connected web portions
26
(shown in FIGS.
2
-
3
). The first stage separation mechanism
14
can include a wide variety of separating devices, some examples of which will be discussed and suggested below.
As shown in
FIG. 2
, a specific embodiment of a first stage separation mechanism
14
in the form of a slitting mechanism
28
comprises a plurality of slitting wheels
30
positioned at transverse points across web
10
. The slitting wheels
30
are rotatably mounted axially about a shaft
32
so that the slitting wheels
30
tangentially contact an outer surface
34
of a back-pressure roll
36
. Control pressure is preferably selectively applicable to the slitting wheels
30
individually to control the effectiveness of each slitting process as shown at P in FIG.
1
. Control pressure can be applied by a pneumatic control system, for example, (not shown) or otherwise. The control system itself is not otherwise of relevance to the present invention and is not described or illustrated in greater detail herein. The provision of and supporting of cutting wheels at spaced transverse points along a machine direction of a web and the use of pneumatic control systems are well known in commercial machines for slitting a web into discrete portions. An example of such known machines are available from New Era Converting Machinery, Inc. of Hawthorne, N.J. Thus, the slitting wheels
30
can be conventionally or otherwise supported relative to a back-pressure roll
36
.
The web
10
passes between the slitting wheels
30
and the outer surface
34
of the back-pressure roll
36
. The slitting wheels
30
rotate freely about the shaft
32
in response to rotation of the back-pressure roll
36
, which is typically driven in a conventional manner. As web
10
passes between the slitting wheels
30
and the back-pressure roll
36
, web
10
is partially separated by the slitting wheels
30
, which substantially cut web
10
into connected web portions
26
by forming (for example, by cutting a series of spaced slits
37
) separation lines
40
(also generally referred to herein as lines of weakening) extending in the machine direction of web
10
. Although the web portions
26
are defined and substantially cut, web portions
26
are still connected to one another by connections
38
formed in the separation lines
40
. Because the substantially cut web portions
26
are connected, a partially separated web is made where the defined web portions
26
act together as a full width web for purposes of handling and transporting.
The slitting mechanism
28
shown in
FIG. 2
also can include one or more cutting wheels
42
rotatably mounted on the shaft
32
for completely cutting web
10
when web
10
passes through the slitting mechanism
28
. The cutting wheels
42
may be used to cut one or more strips
44
from the lateral sides
46
of web
10
. For example, often it is desirable to remove a portion of web
10
adjacent the lateral sides
46
of web
10
because the edges
48
of the lateral sides
46
may not be clean or uniform or because the spacing of the web portions
26
within web
10
is such that a portion of web
10
is waste. A strip
44
can, for example, be cut from a lateral side
46
of web
10
by the cutting wheels
42
so that the laterally outermost web portions
26
are properly sized and have clean, uniform outer edges. Preferably, the strips
44
are cut and separated from the web
10
at the same time that the connected web portions
26
are substantially cut from web
10
by the first stage separation mechanism
14
but may be otherwise cut before or after the separation lines
40
are formed. Also, the strips
44
can be defined in web
10
by forming outer separation lines (not shown) and severing the connections of the outer separation lines at the same time (or before or after) and in the same manner as the connections
38
that connect the web portions
26
to one another.
After substantially cutting web
10
to make the partially separated web with defined connected web portions
26
, the connected web portions
26
are physically transported to the use form conversion station
20
by the guiding and transporting system
16
shown in FIG.
1
. Because the web portions
26
can be handled as a full width web, the guiding and transporting system
16
can comprise conventional devices (such as a system of rollers that extend at least as wide as the transverse width of the partially separated web) for guiding and transporting full width webs, thereby avoiding handling and tensioning of each of the web portions
26
separately and the possible resulting variations in guiding and tensioning that can lead to wandering and other problems. For example, as shown in
FIG. 1
, the connected web portions
26
can be routed in a conventional manner between guiding rollers
50
,
52
,
54
, and
56
and a tensioning roller
58
, with the connected web portions
26
passing in one radial direction (for example, in a counter-clockwise direction) around the guiding roller
54
and in the opposite radial direction (for example, in a clockwise direction) around another guiding roller
56
. The tensioning roller
58
is preferably adjustable in that a load L (
FIG. 1
) that is applied to the tensioning roller
58
can be varied to increase or decrease the tension applied to the partially separated web within the guiding and transporting system
16
. Such tensioning rollers and adjustment mechanisms are conventionally known, and may include pneumatic, hydraulic or electrical systems or other mechanical systems such as using springs. In any case, the tensioning roller
58
can be located in between the guiding rollers
54
and
56
to suitably tension the connected web portions
26
at that point. Each and/or any of the rollers
50
,
52
,
54
,
56
, and
58
may be driven or may be idle (that is, rotate in response to web movement).
Moreover, other conversions or web processes (especially processes that operate on full width webs) can be done during the period when web
10
is being guided and transported between the first and second separation stages. For example, the web could be coated, features could be formed in the web portions
26
, or the connected web portions
26
could be cooled or heated. At a minimum, whatever guiding and transporting necessary to physically get the connected web portions
26
to the use supply form conversion station
20
can be done during the period when web
10
is being guided and transported between the first and second separation stages.
As shown in
FIG. 3
, a specific embodiment of the second stage separation mechanism
18
comprises at least one breaking mechanism
60
. The breaking mechanism is preferably located intermediate rollers
62
and
64
so as to act on the partially separated web within the span of the partially separated web between them. The illustrated breaking mechanism
60
includes a shaft
66
on which a plurality of breaking tools
68
are mounted at transverse points across web
10
. Preferably, the breaking tools
68
are rotationally and axially fixed in position along the shaft
66
. As shown in more detail in
FIG. 6
, the breaking tools
68
are shaped to include a mounting region
70
having a hole
72
through which the shaft
66
passes. An intermediate region
74
, having lateral edges
76
, extends from the mounting region
70
and terminates at a breaking region
78
. The breaking region
78
has a beveled edge
80
projecting beyond one of the lateral edges
76
of the intermediate region
74
. As shown in
FIG. 6
, the breaking tools
68
are arranged axially along the shaft
66
so that there is one breaking tool
68
aligned with each separation line
40
connecting web portions
26
that is to be broken (as described in greater detail below, it may be desirable that not all separation lines
40
are broken prior to converting the web
10
into use supply forms). The breaking tools
68
are preferably adjustably fixed along the shaft
66
so that they can be accurately positioned to align with the separation lines
40
and to accommodate different web slitting applications. The breaking tools
68
are preferably disposed within the apparatus between the rollers
62
and
64
and adjacent to one side of the connected web portions
26
so that the shaft
66
can be rotated to have at least the beveled edges
80
of the breaking tools
68
cross the plane of the connected web portions
26
as the partially separated web is moved in the machine direction past the breaking tools
68
in order to break the connections
38
of the separation lines
40
to form discrete web portions
82
. The shaft
66
can be rotated and locked or otherwise held in an operative position by any conventional means such as by a pneumatic cylinder controlled by a system (not shown) in accordance with known techniques.
Other methods to accomplish the complete separation may not require that a device cross the plane of the connected web portions
26
in order to separate the web portions
26
to form discrete web portions
82
. Other examples of methods and techniques for partially and/or complete separating include, without limitation, burning, such as by hot wires or lasers, water jets, air blasting, ultrasonic slitting, razor slitting, rotary razor slitting, or the like. Of these, many would not require any device to cross the plane of the connected web portions
26
.
FIGS. 3 and 7
show a specific embodiment of a use form conversion station
20
. A winding roll
84
is preferably located immediately downstream (that is, as close as can be) from the second stage separation mechanism
18
so as to convert the discrete web portions
82
into use supply forms
86
so that the discrete web portion guiding and transporting is minimized. As shown in
FIG. 7
, the winding roller
84
includes a winding shaft
88
about which several cores
90
(for example, cardboard rolls) are axially arranged side-by-side. Each of the web portions
82
are wound about one of the cores
90
and, therefore, each core
90
should be as wide as the particular web portion
82
to be wound about that particular core
90
. Conventional end blocks
92
are located at both ends of the winding shaft
88
to hold the cores
90
in place between the end blocks
92
. Preferably, the winding roll
84
is of a conventional expanding core type, wherein each core
90
is individually supported on an expandable shaft which is driven to frictionally drive the cores
90
from within (to allow independent core slippage). Alternatively, all the cores
90
may be locked in place (as shown in
FIG. 7
) by the end blocks
92
to rotate together about the shaft
88
, as driven by rotation of the shaft
88
through the end blocks
92
. In either case, any conventional or developed winding technology is contemplated.
A configuration of slits
37
and connections
38
that form a separation line
40
can be characterized by the ratio of the length of the slits
37
over the length of the connections
38
. This slit-to-connection ratio of a separation line
40
is an indication of the ability of the connections
38
to hold the two connected web portions
26
together during handling and transporting, referred to herein as the “lateral strength” of the separation line
40
. The slit-to-connection ratio is inversely related to the lateral strength of a separation line
40
. The lower the slit-to-connection ratio is (all other things being equal), the higher the lateral strength will be and the harder it will be (that is, a greater force will be needed) to break the connections
38
and separate the web portions
26
to form the discrete web portions
82
; conversely, the higher the slit-to-connection ratio is, the lower the lateral strength will be and the easier it will be to break the connections
38
and separate the web portions
26
. Also, if relatively thinner and/or weaker web material is used, the slit-to-connection ratio may be lower if it is desirable to maintain the same level of lateral strength that would result from using a thicker and/or stronger web material. Thus, the slit-to-connection ratio and the strength and thickness of web material can be optimized for particular applications. As examples, a web
10
comprising polypropylene and having a mean thickness of about 100 microns can have separation lines
40
comprising connections
38
that each take up only about 0.7 mm out of each 240 mm segment of a separation line
40
to provide a slit-to-connection ratio of about 343:1. Where one connection
38
takes up about 0.9 mm out of each 240 mm segment, the slit-to-connection ratio would be about 480:1. With four connections
38
of about 0.9 mm for each 240 mm segment, a slit-to-connection ratio of about 67:1 would be provided. Thus, a preferred range for the slit-to-connection ratio for such a material web is between about 50:1 and 500:1. With other web materials, the ratios can be completely different. For a stronger web, the ratio may be much higher. With very weak webs (maybe a paper or nonwoven) a much smaller ratio may be desired, such as 1:1 or lower (i.e. with connections that are of greater length than the slits).
At the second separation stage
18
, the web portions
26
are completely separated into discrete web portions
82
by breaking the connections
38
so that the discrete web portions
82
can be converted into a plurality of use supply forms
86
. The connections
38
can be broken in a number of ways including cutting, bursting, severing, tearing, burning and the like. Preferably, the connections
38
are broken by the breaking tool
68
as shown in FIG.
6
and described above. A use supply form
86
is a configuration of web material in a form that can supply web material for some particular use. Examples of use supply forms
86
include rolls of web material that are formed by winding a web portion
82
about a core
90
and stacks of web portions
82
that are formed by either folding a web portion
82
(for example, in an accordion or fan-fold manner) or cutting a web portion
82
transversely to form cut sheets that are piled on top of one another.
In some cases, it may be desirable that one or more of the separation lines
40
not be completely separated at the second separation stage. That is, the use supply forms
86
may include lines of weakening
40
that are not separated, if ever, until after the web portions
26
have been converted into use supply forms
86
(in other words, the connections
38
of these separation lines are broken, if ever, at the point of use). For example, the web
10
can be slit so as to have primary separation lines that define web portions. One or more web portion can have secondary separation lines, which can have slit and connection configurations that differ from, or are the same as, the primary separation lines (for example, the secondary separation lines can be formed so as to have a lower slit-to-connection ratio than the primary separation lines) that subdivide the web portion into two or more web subportions separated by at least one secondary separation line. During the second separation stage, it may be desirable to only break the connections in the primary separation lines in order to completely separate the web portions while the web subportions remain connected to one another. The web portions, which have web subportions connected by secondary separation lines, can then be processed into use supply forms. Thus, the use supply form will supply a web portion having one or more secondary separation lines that can be separated by the user of the web portion so as to form web subportions.
Generally, any material that can be formed into a web
10
having separation lines
40
that are sufficiently strong to allow the connected web portions
26
to be processed as a full width web can be used with the present invention. Such materials include paper (for example, toilet paper, computer paper, paper towels, etc.), plastic-backed and paper-backed tape (for example, adhesive tape, magnetic tape, etc.), nonwovens, elastics, and the like. The webs
10
can be formed as single webs (for example, films), structured webs (for example, webs with structured features), multilayer laminates, or coated webs (for example, adhesive coated webs for making adhesive tape). Webs that have one or both of its major surfaces structured, for example a web of hook material usable as part of hook and loop connection system, provide less contact with at least some of the web handling and guiding system. Thus, such webs may have a greater tendency to wander side-to-side during the handling and guiding of such material. This may also be true of other webs having one or both major surfaces thereof treated or comprising material that either reduces the contact between the guide rollers and the web or changes its coefficient of friction. With such webs, the present invention is particularly advantageous because it allows the partially separated web to be handled as a full width web. Guiding and handling of the many smaller separated web portions is avoided.
As shown in
FIGS. 4-5
, each slitting wheel
30
has a beveled, peripheral cutting edge
94
in which one or more notches
96
are formed at angularly spaced intervals so as to define cutting and non-cutting portions
98
and
100
of the cutting edge
94
. As described above, the cutting portions
98
of the cutting edge
94
cuts the perforations of the separation lines
40
into the web
10
when the cutting portion
98
of cutting edge
96
is rotated over the web
10
, and the non-cutting portions
100
(that is, the notches
96
) do not cut the web
10
(thereby forming the connections
30
of the separation line
40
) when the non-cutting portions
100
rotate over the web
10
. Therefore, as each slitting wheel
30
is rotated over the moving web
10
, separation lines
40
, comprising a series of slits
37
separated by a series of connections
38
, are formed in the web
10
. As shown in
FIG. 2
, the separation lines
40
formed by the slitting wheels
30
define connected web portions
26
in the web
10
wherein the web portions
26
are substantially split but are connected.
As is known in the art, preferably the cutting edge
94
is softer than the outer surface
34
of the back-pressure roll
36
so that grooves are not cut into the outer surface
34
. Also, the slitting wheels
30
preferably have relatively blunt cutting edges
94
as opposed to sharp keen cutting edges to further avoid cutting grooves in the outer surface
34
of the back-pressure roll
36
. The slitting wheels
30
can be made of any relatively hard material out of which a suitable beveled cutting edge
94
can be formed. Preferably, the slitting wheel
30
is formed of steel or steel alloy. Moreover, the slitting wheels
30
have a diameter
102
that is typically between 70 and 80 mm. Cutting wheels in general are commercially available, such as for example from Alcon Tool Company of Akron, Ohio. Such commercial cutting wheels can be modified to form the connected zones in accordance with the present invention as needed by providing notches
96
by any conventional manner. The cutting wheels
42
are substantially the same as the slitting wheels
30
except that the cutting wheels
42
do not have notches
95
formed in their cutting edges
94
.
The slit-to-connection ratio of the separation line
40
formed by any given slitting wheel
30
is determined by the number, the spacing, and the radial width
104
(shown in
FIG. 5
) of the notches
96
. These parameters can be varied so as to form separation lines
40
in the web
10
having appropriate slit-to-connection ratios for a given application. The slitting wheel
30
can be formed with only one notch
96
in the cutting edge
94
(as is shown in
FIGS. 4-5
) so that only one connection
38
is formed in the separation line
40
per rotation of the slitting wheel
30
. Alternatively, the slitting wheel
30
can be formed with two or more notches
96
so that the two or more connections
38
are formed in the separation line
40
per rotation of the slitting wheel
30
. Also, the various slitting wheels
30
arranged on the slitting shaft
32
can vary from one another; for example, the slitting mechanism
28
can include slitting wheels
30
having one notch
96
that are used for slitting primary separation lines and slitting wheels
30
having four notches that are used for slitting secondary separation lines. A slitting wheel
30
suitable for perforating a web
10
comprising a 100 micrometer base film of polypropylene can have a single 0.77 millimeter notch
96
provided to a slitting wheel having a circumference, when new, of about 240 mm. This would provide a separation line
40
as noted above with a slit-to-connection ratio of about 343:1. Any ratio can be accomplished as a comparison of wheel circumference to the width and number or notches for that given circumference.
Each and any of the rollers described above may be driven or may be idle (that is, rotated in response to web movement) depending largely on the material of the web
10
, although some means must be provided for continuously driving web
10
in the machine direction through the apparatus. Typically, the back-pressure roller
36
and the winding shaft
88
are driven in order to move web
10
in the machine direction.
Alternatively, a conventional extruding apparatus
110
(shown in
FIG. 8
) or other means for forming the web
10
can replace the supply roll
22
for supplying web
10
to the apparatus of the present invention. The extruding apparatus
110
has an extruder
112
from which web material is extruded onto a moving, looped belt
114
. The moving belt
114
may simply support the film while it cools sufficiently to set up or can have a structured surface
116
for forming desired structural features in the web
10
. The formed web
10
can be separated from the moving belt
114
about a roller
118
, and rollers
120
can then appropriately and conventionally guide and transport the web
10
so that the web
10
is fed to the rest of the apparatus shown in
FIG. 1
for slitting and converting into use supply forms
86
as described above.
The extruding apparatus
110
can also include means for further processing the web
10
. For example, the extruding apparatus
110
can include heated rollers (not shown) with structured outer surfaces that can be used for heating the web
10
to form additional features on one or more surfaces of the web
10
.
As alternatives to separation lines
40
that are formed by a series of slits
37
and connections
38
described above, other lines of weakness that substantially separate web portions
26
while also connecting the web portions
26
are contemplated. For example, lines of weakness can be formed by creating lines of partial thickness in web
10
that do not penetrate the web
10
. Reducing the thickness of the web material weakens the web material along the line and is characterized as substantially cutting the web
10
. The web portions defined by the partial thickness line, however, are connected together by the remaining, relatively thin portion of web material within the line. Such a partial thickness line of weakening could be created, for example, by using a conventional cutting wheel
42
as described above with reduced contact pressure so that the cutting wheel
42
forms (or cuts) a crease or groove in the web
10
without completely cutting or penetrating the web
10
. Other types of grooving, embossing or calendaring techniques could be used.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
Claims
- 1. A method of converting a polymeric web having a transverse width and of indefinite length into plural use supply forms as the web is moved in a machine direction by slitting the web into plural web portions of indefinite length, said method comprising:supplying a full width flat polymeric web having a first transverse width and of indefinite length and transporting the full width web in a machine direction; moving the full width web through a first separation stage and thereby partially separating the web at least one point along its transverse direction creating at least one separation line thereby making a partially separated full width web said at least one separation line defining a plurality of connected web portions running in the machine direction of the partially separated full width web; transporting the partially separated web from the first separation stage to and through a second separation stage and thereby at said second separation stage separating the connected web portions into discrete web portions wherein the partially separated full width web is handled as a full width web, of said first transverse width, during said handling and transporting up to said second separation stage; and converting the discrete web portions into use supply forms thereof.
- 2. The method of claim 1, wherein the first separation stage partially separates the web at plural points along the transverse width of the web for defining the partially separated web with more than two connected web portions.
- 3. The method of claim 1, wherein the step of separating the connected web portions into discrete web portions comprises separating the connected web portions along the at least one separation line.
- 4. The method of claim 1, wherein each of the separation line is formed by making a series of slits said slits cutting through the web thickness and leaving connected zones between the slits.
- 5. The method of claim 4, wherein a slit-to-connection zone ratio of a line of weakening is in the range of about 50:1 to about 500:1.
- 6. The method of claim 3, wherein the partially separated web is transported from the first separation stage to the second separation stage while the partially separated web is guided and tensioned by a system of rollers that extend at least as wide as the transverse width of the partially separated web for handling the partially separated web as a full width web.
- 7. The method of claim 4, wherein the connection zones of each line of weakening are separated at the second separation stage by a breaking tool that is positioned so that a portion thereof extends through the thickness of the partially separated web for breaking the connection zones and making the discrete web portions as the partially separated web is moved in the machine direction.
- 8. The method of claim 7, wherein the discrete web portions are converted into rolls of the discrete web portions as the use supply forms.
- 9. The method of claim 8, wherein a roll wind-up station is used to make the rolls as the use supply forms, the roll wind-up station comprising a shaft supporting plural roll cores that are aligned substantially edge-to-edge along the shaft, and each of the roll cores is wound with a discrete web portion by rotating the shaft.
- 10. The method of claim 9, wherein the roll-wind up station is located downstream but near the second separation station, and the discrete web portions are transported from the second separation station to the roll wind-up station without being individually guided to their respective cores.
- 11. The method of claim 1, wherein the first separation stage partially separates the web at plural points along the transverse width of the web for defining the partially separated web with more than two connected web portions, the step of partially separating the web at plural transverse points comprises forming plural primary lines of weakening and at least one secondary line of weakening that extend in the machine direction of the web along the partially separated web for defining the connected web portions, and the step of separating the connected web portions into discrete web portions comprises separating the connected web portions along the primary lines of weakening so that at least one use supply form is converted from a discrete web portion that has said at least one secondary line of weakening extending along that discrete web portion.
- 12. The method of claim 11, wherein each of the primary and secondary lines of weakening is formed by making a series of slits and leaving connected zones between the slits.
- 13. The method of claim 12, wherein a slit-to-connection zone ratio of a primary line of weakening is different from a slit-to-connection zone ratio of a secondary line of weakening.
- 14. The method of claim 12, wherein the discrete web portions, including a discrete web portion that has a secondary line of weakening, are converted into rolls as the use supply forms.
- 15. The method of claim 1 wherein each of said separation lines is formed by making a partial thickness line.
US Referenced Citations (22)