Method for starting an electromechanical regulating device especially designed for controlling the charge cycle in an internal combustion engine

Information

  • Patent Grant
  • 6308668
  • Patent Number
    6,308,668
  • Date Filed
    Tuesday, December 26, 2000
    24 years ago
  • Date Issued
    Tuesday, October 30, 2001
    23 years ago
Abstract
A method for starting an electromechanical regulating device especially designed for controlling the charge cycle in an internal combustion engine. The electromechanical regulating device has an actuating element and an actuating drive. The actuating drive includes a first electromagnet with a first coil and a second electromagnet with a second coil, an armature which can move between contact faces of the first and second electromagnets, and at least one restoring means which is mechanically coupled to the armature. To start the regulating device, the second coil is energized until a first predefined condition is fulfilled and then the first coil is energized from the time at which a second condition is fulfilled until the armature comes into contact with the contact face.
Description




BACKGROUND OF THE INVENTION




Field of the Invention




A known regulating device (DE 33 07 070 C2) has an actuating element, which is embodied as a charge cycle valve, and an actuating drive. The actuating drive has two electromagnets between which an armature plate of an armature is mounted so as to be movable counter to the force of a restoring means. In order to start the regulating device, i.e. to move the armature from a static position of rest into a position of contact with one of the electromagnets, the coils of the electromagnets are excited in the vicinity of the natural frequency of the spring/mass system to oscillate with increasing amplitude. This method is, however, unreliable at very low temperatures (for example<−20° C.) and if the static position of rest of the armature is different from its geometric center position between the contact faces of the two electromagnets.




Summary of the Invention




It is accordingly an object of the invention to provide a method for starting an electromechanical regulating device which overcomes the above-mentioned disadvantages of the prior art methods of this general type, and which is independent of operating and ambient conditions.




With the foregoing and other objects in view there is provided, in accordance with the invention a method for starting an electromechanical regulating device. The method includes providing an electromechanical regulating device having an actuating element and an actuating drive; providing the actuating drive with a first electromagnet which has a contact face and a first coil; providing the actuating drive with a second electromagnet which has a contact face and a second coil; providing the actuating drive with an armature which can move between the contact face of the first electromagnet and the contact face of the second electromagnet; and providing the actuating drive with at least one restoring device which is mechanically coupled to the armature. The method includes defining a first position that is located separate from an open position and from a closed position on one of the contact faces. A first condition is defined as being satisfied if the armature has reached the first position; The second coil is energized until the first condition is satisfied. The first coil is energized from a time at which a second condition is fulfilled until the armature comes into contact with the contact face of the first electromagnet.




The invention is characterized in that first the second coil is energized until a first predefined condition is fulfilled, and then the first coil is energized from the time at which a second condition is fulfilled until the armature comes into contact with the contact face of the first electromagnet.




The advantages of the invention come into play in particular if the actuating element is embodied as an outlet valve of an internal combustion engine. The static position of rest of the armature is then advantageously adjusted from the geometric center position to the open position of the outlet valve. The outlet valve can thus be opened more easily counter to the forces of the gases in the cylinder of the internal combustion engine.




Other features which are considered as characteristic for the invention are set forth in the appended claims.




Although the invention is illustrated and described herein as embodied in a method for starting an electromechanical regulating device especially designed for controlling the charge cycle in an internal combustion engine, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.




The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a configuration of a regulating device in an internal combustion engine; and





FIG. 2A

shows the current I_S


1


through the first coil and the current I_S


2


through the second coil as functions of time;





FIG. 2B

shows a spring force F_F and an electromagnetic actuating force F_MAG as a function of time; and





FIG. 2C

shows the position X of the armature plate as a function of time.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring now to the figures of the drawing in detail and first, particularly, to

FIG. 1

thereof, there is shown a regulating device that includes an actuating drive


1


and an actuating element


2


. The actuating element


2


is embodied, for example, as a charge cycle valve and has a shaft


21


and a plate


22


. The actuating drive


1


has a housing


11


in which a first and a second electromagnet are configured. The first electromagnet has a first core


12


in which a first coil


13


is embedded in an annular groove. The second electromagnet has a second core


14


in which a second coil


15


is embedded in a further annular groove. An armature is provided whose armature plate


16


is configured in the housing


11


so as to be movable between the contact faces


17




a,




17




b


of the first and second electromagnets. The armature also includes an armature shaft


17


which is guided through cutouts in the first and second cores


12


,


14


and which can be coupled to the shaft


21


of the actuating element


2


via a hydraulic play-compensating element


19


. The hydraulic play-compensating element


19


compensates for manufacturing inaccuracies of the armature, of the electromagnets, of the first restoring means


18




a


and the second restoring means


18




b


of the actuating element


2


, and of the cylinder head


31


. The play-compensating element


19


is connected to the oil circuit of the internal combustion engine. The hydraulic pressure in the play-compensating element


19


is set by means of an oil pump (not illustrated) while the internal combustion engine is operating. If the internal combustion engine is not operating, the oil pressure drops away, which leads to a static position of rest X_R of the armature plate


16


being reset from a geometric center position X_G of the armature plate


16


to an open position X_A


2


. The first restoring means


18




a


and the second restoring means


18




b


prestress the armature plate


16


into the position of rest X_R. The restoring means


18




a,




18




b


are preferably embodied as springs.




The regulating device is rigidly connected to a cylinder head


31


. The cylinder head


31


is assigned an intake duct


32


and a cylinder


33


with a piston


34


. The piston


34


is coupled to a crank shaft


36


via a connecting rod


35


. An exhaust duct


39


is also assigned to the cylinder head


31


. In this exemplary embodiment, the actuating element


2


is embodied as an outlet valve. However, it may also be embodied as an inlet valve of the cylinder


33


.




A control device


4


is provided which detects signals from sensors and generates actuating signals as a function of which the first or the second coil


13


,


15


of the regulating device is actuated by power controllers


6




a,




6




b.


The sensors are embodied as a first ammeter


5




a


which detects a current through the first coil


13


or a current in the power controller


6




a,


or as a second ammeter


5




b


which detects the current through the second coil


15


or the current in the power controller


6




b.


In addition, a position sensor


19




a


is configured in the housing


11


, which detects the position of the armature, and thus that of the armature plate


16


. Further sensors may also be provided in addition to the aforementioned sensors.




In the control device


4


, a regulator which regulates the current through the respective coil


13


,


15


to a predefined set point value is provided for each of the coils


13


,


15


. The regulator is preferably embodied as a two-point regulator. If the first coil


13


and the second coil


15


are not energized for longer than a predefined time period (for example five seconds)—this is the case, for example, in the operating state in which the internal combustion engine is stopped—the armature plate


16


is in its position of rest X_R. The position of rest X_R is displaced from the geometric center position X_G to the open position X_A


2


. This has the advantage that when the regulating device is operating, the armature plate


16


can be moved more easily and with greater force in the direction of the open position X_A


2


. This ensures more reliable opening of the actuating element


2


, which is embodied as an outlet valve, counter to the strong forces of the gases in the cylinder


33


. If the oil pressure in the oil circuit of the internal combustion engine drops, as is the case for example in the operating state in which the internal combustion engine is stopped because of the deactivated oil pump, the position of rest X_R of the armature plate


16


is displaced further in the direction of the open position X_A


2


. When the internal combustion engine starts, all the charge cycle valves (inlet and outlet valves) must firstly be placed in the position which closes the cylinder. When the internal combustion engine starts, the regulating device is also started. When the regulating device starts, energization of the second coil


15


is controlled by the control device


4


until a first predefined condition is fulfilled. The first coil


13


is then energized from the time at which a second condition is fulfilled until the armature comes into contact with the contact face


17




a


of the first electromagnet and can be held against the face


17




a.


The first condition is preferably that the armature has reached a predefined first position X_


1


in which the supplied potential energy is sufficient to move, by converting the potential energy into kinetic energy, its position in the direction of the closed position X_A


1


to the extent that the force which is brought about by the energization of the first coil


13


and is exerted on the armature plate


16


is sufficient to bring the armature plate


16


into contact with the contact face


17




a,


i.e. to move it into the closed position X_A


1


.




The second condition is preferably that the armature has reached a predefined second position X_


2


. The second position X_A


2


can very easily be identical with the first position X_


1


. However, it can advantageously also be between the first position X_


1


and the position of rest X_R, as a result of which the power loss of the first coil


13


is reduced.




The power loss in the first coil


13


is at a minimum if the second position X_


2


is approximately in the position of rest X_R. The predefined first and second positions X_


1


, X_


2


can be permanently predefined, that is to say can be determined for example by trials on a test bench. If the first position X_


1


and/or the second position X_


2


depends on the temperature TOIL of the oil of the oil circuit, the energy required to attract the armature plate


16


to the closed position X_A


1


can be supplied to the armature very precisely because the energy depends essentially on the viscosity of the oil. In a different embodiment of the invention, the first and second positions X_


1


, X_


2


depend on the time profile of the movement of the armature. For this purpose, the position of the armature is detected at permanently predefined time intervals and the locations at which the first and/or second positions X_


1


, X_


2


must be in order to reliably bring the armature plate


16


into contact with the contact face


17




a


are derived from the speed profile.





FIG. 2



a


shows the time profile of the current I_S


1


and I_S


2


through the first coil


13


and through the second coil


15


plotted against time t.

FIG. 2



b


shows the profile of the spring force F_F which is brought about by the restoring means


18




a, b,


and the profile of the electromagnetic actuating force F_MAG plot ted against time t.

FIG. 2



c


shows the profile of the position X of the armature plate


16


plotted against the time t. The scale of the time axis of the

FIGS. 2



a,




2




b,




2




c


is the same in each case.




The starting process of the regulating device begins at a time t


0


. The current I_S


2


through the second coil


15


is regulated to a first set point value SP


1


up to a time t


1


. At the time t


1


, the armature plate


16


has reached the first position X_


1


. The set point value of the current I_S


2


through the second coil is set to zero amperes starting from this time. At the same time, the set point value of the current I_S


1


through the first coil


13


is set to the first set point value SP


1


until the armature plate


16


has reached the closed position X_A


1


at the time t


2


. After the time t


2


, the set point value of the current I_S


1


through the first coil is set to a hold value which is predefined in such a way that the electromagnetic actuating force F_MAG which is brought about is sufficient to hold the armature plate


16


in the closed position X_A


1


.



Claims
  • 1. A method for starting an electromechanical regulating device, which comprises:providing an electromechanical regulating device having an actuating element and an actuating drive; providing the actuating drive with a first electromagnet which has a contact face and a first coil; providing the actuating drive with a second electromagnet which has a contact face and a second coil; providing the actuating drive with an armature which can move between the contact face of the first electromagnet and the contact face of the second electromagnet; providing the actuating drive with at least one restoring device which is mechanically coupled to the armature; defining a first position located separate from an open position and from a closed position on one of the contact faces; defining a first condition as being satisfied if the armature has reached the first position; energizing the second coil until the first condition is satisfied; and energizing the first coil from a time at which a second condition is fulfilled until the armature comes into contact with the contact face of the first electromagnet.
  • 2. The method according to claim 1, which comprises defining the second condition as a state when the armature has reached a predefined second position.
  • 3. The method according to claim 2, wherein the second position is between the first position and a position of rest.
  • 4. The method according to claim 2, wherein:the armature is in a position of rest before the electromechanical regulating device starts; and the second position is approximately the position of rest.
  • 5. The method according to claim 1, which comprises defining the first position as a function of a temperature of oil.
  • 6. The method according to claim 1, which comprises defining the first position dependent upon a movement of the armature with respect to time.
  • 7. The method according to claim 2, which comprises defining the second position dependent upon a movement of the armature with respect to time.
Priority Claims (1)
Number Date Country Kind
198 28 612 Jun 1998 DE
CROSS-REFERENCE TO RELATED APPLICATION

This is a continuation of copending International Application PCT/EP99/04387, filed Jun. 24, 1999, which designated the United States.

US Referenced Citations (5)
Number Name Date Kind
5671705 Matzumoto et al. Sep 1997
5742467 Schmitz Apr 1998
5799630 Moriya et al. Sep 1998
5915347 Yanai et al. Jun 1999
6176208 Tsuzuki et al. Jan 2001
Foreign Referenced Citations (2)
Number Date Country
3307070C2 Nov 1985 DE
19518056A1 Nov 1996 DE
Non-Patent Literature Citations (1)
Entry
Japanese Patent Abstract No. 11093711 (Toshio), dated Apr. 6, 1999.
Continuations (1)
Number Date Country
Parent PCT/EP99/04387 Jun 1999 US
Child 09/748808 US