The present invention relates generally to the art of storing and transporting arch-shaped chambers used in stormwater and wastewater leaching applications. More particularly, the present invention pertains to an improved packing method which achieves a lower center of gravity and maximizes load stability of such chambers during storage and transportation, thereby improving handler safety.
With ever-increasing hardcover being created by the continuing demand for commercial and residential development, natural absorption areas for stormwater and wastewater are becoming less available. For this reason, substantial efforts have heretofore been made to develop effective water management solutions which optimize the use of water and minimize the impact urban development has on the natural environment. In this regard, the use of underground corrugated plastic chambers for receiving and dispersing stormwater and wastewater into ground soil or other media have become well known in the art. Such chambers are generally molded to have arch shape cross sections with open bottoms and opposing sidewalls running upward from opposing side bases to the chamber crown (i.e., top). Each side base typically includes a flange which helps support the chamber on the media within which it is buried.
Substantial attention has been given in recent years to the nestability of such arch-shaped chambers, primarily due to the desire to optimize transportation and storage efficiency, and to reduce associated costs therewith. Since shipping and storage costs for such goods are dictated primarily by product volume, not weight, the greater the nesting density, the more economically the units can be shipped and stored. That is, improving nestability allows greater numbers of chambers to be stacked in a given height space.
However, increasing the number of stacked chambers can lead to significant safety issues involving the handling and transportation of such chambers. This is particularly true for larger sized chambers, where the chamber height can reach forty-five inches (45″) or greater, depending upon project requirements and/or needs of a particular application. Under current practices, as shown in
In addition to the above, by nesting the arch-shaped chambers in an “arch up” configuration, the center of gravity of the volume of bundled chambers becomes steadily higher, i.e., the more chambers stacked, the higher the center of gravity of the mass as a whole. Consequently, not only does the overall cumulative weight of the stacked bundle increase with more nested chambers, so does the height of the bundle's center of gravity. This makes the mass of bundled chambers as a whole top heavy and more unstable on their supporting pallet, thus leading to other potentially hazardous conditions both in the field and during transportation.
In order to help stabilize chambers being shipped in an “arch up” configuration, at least a pair of tether straps is typically crossed over the top of each chamber bundle (i.e., along the extrados surface of the arch) from one side of the pallet to the other. However, the more chambers that are stacked, the larger the bundle and the longer the straps need to be to cross over the bundle. With longer straps, there is more natural stretch of the straps once secured. Consequently, this can lead to a loosening of the straps, which further exacerbates an already unstable condition of secured cargo.
Consequently, it is evident there is a substantial need in the industry to improve the stabilization of such arch-shaped stormwater and wastewater leaching chambers during storage and transportation, so as to reduce the potential for injury and damage during handling and transport. In this regard, it is desirable to achieve a lower center of gravity of the bundled chambers to make the cargo less top heavy. To prevent bowing and overstressing the pallets, it is also desirable to distribute the weight of the chambers away from the pallet's outer edges and more toward the center where the cargo is typically hoisted by a forklift. Finally, shortening the length of the required tether straps securing the chambers to the pallets would also help to reduce the natural stretch and consequent loosening thereof during transport. These objects and more are achieved through the use of our improved method of chamber storage and transportation, as described more fully hereafter.
It has heretofore been considered conventional wisdom when palletizing most any cargo to maximize stability by spreading the weight of the cargo broadly across the entire surface area of the pallet. With regards to arch-shaped chambers utilized for stormwater and wastewater management, it has long since been considered standard practice to palletize such cargo for storage and transport in an “arch up” configuration. By so doing, a major portion of the weight of the chambers is transferred through the chamber sidewalls into the outer edges of the pallet, supposedly to maximize stability. However, for reasons presented above, this “arch up” configuration of stacking chambers has inherent drawbacks which can lead to unstable and hazardous handling conditions.
The present invention marks a stark departure from conventional practice in this regard. In accordance with the present invention, each chamber to be palletized is inverted from its normal “arch up” position, such that it opens upwardly with the crown of the chamber facing downward (i.e., “arch down”). In order to prevent the chamber(s) from rolling sideways on the pallet, the pallet is configured with a pair of spaced cradle arms which support the chamber(s) in their inverted position. The opposing cradle arms are cooperatively positioned and secured to the baseboards of the pallet so as to bear against the opposing sidewalls of the lowest chamber loaded on the pallet. Proper positioning of the cradle arms on the pallet will depend on the height of the cradle arms being used and the specific geometry of the chamber(s) being loaded on the pallet.
Loading chambers on a pallet in such an inverted “arch down” configuration provides a number of benefits for enhancing safety and reducing the potential for workplace injury and/or damage to the chambers. First, in an “arch down” configuration, the center of gravity of the load is greatly lowered, thus avoiding the load from becoming too top heavy and making the chambers safer to handle in all respects. Moreover, by inverting the chambers in this manner, all the downward force of the chambers now becomes directed toward the center of the pallet between the forks of the forklift, as opposed to the outer edges of the pallet in an “arch up” configuration. In this manner, the potential for the pallet breaking under the weight of the stacked chambers is greatly reduced.
In the “arch down” configuration, the cradle arms secured to the pallet function to support and prevent sideways rolling or tipping of the stacked chambers. In order to further stabilize the load, tethering or tie-down straps similar to those used in an “arch up” configuration are used to secure the load to the pallet. However, unlike the straps used for securing chambers stacked in an “arch up” configuration, the straps in an “arch down” configuration are not drawn transversely side-to-side across the entire arch (i.e., across the extrados surface) of the stacked bundle. Rather, the straps in an “arch down” configuration are drawn end-to-end through the natural saddle (i.e., along the intrados surface) created by inverting the chamber(s) on the pallet. By so doing, the straps used to secure the chambers require less overall strap footage. With less strap footage, the amount of natural stretch applied to the strap once secured is thus reduced, making the load more secure and safer to transport.
While the present invention has application to arch-shaped chambers of virtually all sizes, the benefits described above become greater for larger sized chambers. Taller and heavier chambers, when stacked, create larger overall loads with an increased mass and higher center of gravity. This is particularly true for arch-shaped stormwater and wastewater chambers having a height of approximately forty-five inches (45″) or greater. As provided above, with our improved method of packing such chambers, a lower center of gravity for the load is achieved and load stability of such chambers is maximized during storage and transportation through more centralized weight distribution and an improved tethering system. Handling of such palletized chambers in the field where rough terrain is frequently experienced will also be greatly improved, thereby improving handler safety. By utilizing our improved method for packing such arch-shaped chambers, injury and damage to chambers and individuals handling the chamber packs will be greatly reduced.
These and other objects and advantages of the invention will more fully appear from the following description, made in connection with the accompanying drawings, wherein like reference characters refer to the same or similar parts throughout the several views, and in which:
For purposes of the following discussion,
By nesting multiple chambers in an “arch up” configuration, the center of gravity of the bundled chambers 3 as a whole rises significantly (i.e., several feet above the base of the pallet 5). With a substantial increase in mass as well, the bundle of chambers 3 become top heavy and more unstable during transportation, particularly on uneven terrain in the field. Moreover, by shifting weight distribution toward the outer edges 7 of pallet 5, the central area 9 where a forklift typically engages the pallet tends to bow and become weakened.
As shown further in
In order to resolve the deficiencies in the foregoing conventional storage and transportation methods, with the present invention each arch-shaped chamber 1 to be palletized is initially inverted to an “arch down” position on pallet 5. As shown in
As previously noted, loading chambers 1 on a pallet 5 in such an inverted “arch down” configuration provides a number of benefits for enhancing safety and reducing the potential for workplace injury and/or damage to the chambers. In an “arch down” configuration, the center of gravity of the bundled load of chambers 3 is greatly lowered, thus avoiding the load from becoming too top heavy and making the chambers safer to handle in all respects. Also, by inverting the chambers 1 in this manner, the downward force of the bundled chambers 3 is directed primarily toward the center 9 of the pallet 5 between the forks of the forklift, as opposed to the outer edges of the pallet 5 in an “arch up” configuration. In this manner, less reinforcement of the pallet 5 is required and the potential for the pallet 5 breaking under the weight of the stacked chambers is greatly reduced. Therefore, the load as a whole, including the pallet 5 and stack of chambers 3, becomes more stable and stronger as a unit.
In order to stabilize and prevent the bundle of chambers 3 from tipping or rolling sideways on pallet 5, the pallet is configured with a pair of spaced anti-tipping restraints or cradle arms 17 which support the chamber(s) 1 in their inverted position. As shown in
Proper positioning of the cradle arms 17 on pallet 5 will depend on the configuration and height of the cradle arms 17 being used, and the specific geometry of the chamber(s) being loaded on the pallet 5. In one embodiment, as shown in
In the embodiment of
In order to provide additional stability to a bundled load of chambers 3, tethering or tie-down straps 29 may be used to secure the load firmly to the pallet 5. As best shown in
Of course, other cradle arm configurations and/or anti-tipping restraint designs may be used and are contemplated to be within the scope of the present invention. Such anti-tipping restraints must be designed and function to at least support a plurality of nested arch-shaped chambers 1 stacked as a bundled load 3 upon pallet 5 in an “arch down” orientation, so as to prevent side-to-side rolling or tipping of the chambers during storage and transportation. One such alternative embodiment is shown in
Here again, as shown in
With the present method, the crown of the lowest chamber 1 stacked on the pallet is positioned such that it is seated on the pallet 5 at or near the center 9 of the pallet. Additional chambers may then be added as desired by nesting one inverted chamber within another. The cradle arms 17 may be located on the pallet 5 in such position that they begin to engage the outer surface of the chamber sidewalls at or closely adjacent to the point where the crown 13 of the lowermost chamber 1 comes into engagement with the top of the pallet baseboards, similar to that shown in
As noted above, the benefits described above become even greater for larger sized chambers. Taller and heavier chambers, when stacked, create larger overall loads with an increased mass and higher center of gravity. This is particularly true for arch-shaped stormwater and wastewater chambers having a height of about forty-five inches (45″) or greater measured between the open bottom base 15 and crown 13 thereof. As provided above, with our improved method of packing such chambers, a lower center of gravity for the load is achieved and load stability of such chambers is maximized during storage and transportation through more centralized weight distribution and an improved tethering system. Handling of such palletized chambers in the field where rough terrain is frequently experienced will also be greatly improved, thereby improving handler safety. By utilizing our improved method for packing such arch-shaped chambers, injury and damage to chambers and individuals handling the chamber packs will be greatly reduced.
The disclosure herein is intended to be merely exemplary in nature and, thus, variations that do not depart from the gist of the disclosure are intended to be within the scope of the disclosure. Such variations are not to be regarded as a departure from the spirit and scope of the invention herein, which comprises the matter shown and described herein and set forth in the appended claims.
Number | Date | Country | |
---|---|---|---|
62217105 | Sep 2015 | US |