The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings,
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
Experimental Process
In the embodiment of the present invention, the methyl thiazolyl tetrazolium (MTT) method and cell counting were used to measure the cell survival rates. MTT is a conventional method used for measuring the survival rate of cells. The principle of MTT assay is that the viable cells reduce the MTT into dark blue formazan and deposit them in cells by mitochondrial dehydrogenase, which reflects the normal function of mitochondria and cell viability. Then, the cells were lysed with dimethyl sulfoxide (DMSO) to yield the color solution. Finally, the absorbance was measured to quantify the amount of formazan formed. Accordingly, the amount of formazan formed is proportional to the viability of the cells.
Moreover, assessment of cell viability may also be accomplished with detecting viable cells by trypan blue dye exclusion. Since viable cells have intact membranes, they exclude the dye. However, while cell membranes of nonviable cells are damaged, trypan blue can penetrate into cells and convert cells into blue. Hence, nonviable cells can be labeled with the dye. By using a hematocyte counter, viable cells and nonviable cells can be distinguished under the microscope. More detail process and the result of the experiment are as follows.
(A) Preparation of Adult Melanocytes as a Suspension
First, referring to
In order to detach melanocytes from the culture dishes, trypsin was added to degrade the adherent proteins between melanocytes (step 207). Next, melanocytes obtained were washed (step 208). Then, they were resuspended at a density of 1.2-1.5×106 cells/ml in Ham's F 12 solution (step 209). Ham's F 12 solution is a widely used cell culture and biocompatible medium which comprises rich substances for cell growth, such as amino acids, polysaccharides, fatty acid, and salts, etc. In addition to Ham's F 12 solution, other incubation mediums were also used, for example, Dulbecco's Modified Eagle medium (DMEM), minimal essential medium (MEM), phosphate buffered saline (PBS) and Roswell Park Memorial Institute 1640 medium (RPMI 1640 medium). Finally, the melanocyte suspensions were separated into tubes to proceed to the following experiment (step 210).
(B) An Experiment of Storing Baby Melanocytes
To keep cells at low temperature, the cells can be transported in a portable cold box during transportation then stored in a refrigerator when they arrive to the destination. To simulate this process and to figure out how temperature and time duration affect melanocytes during the process, the melanocytes obtained from babies were processed by two-stage storage. As shown in
In the embodiment of the present invention, table I shows each condition for storing baby melanocytes: (a) analyzed directly before storage; (b) stored at 4° C. for 4 hrs; (c) stored at 4° C. for 24 hrs; (d) stored at 4° C. for 48 hrs; (e) stored in the cold box for 8 hrs first, and then at 4° C. for 16 hrs (total 24 hrs at low temperature); (f) stored in the cold box for 24 hrs; (g) stored in the cold box for 24 hrs first, and then at 4° C. for 24 hrs (total 48 hrs at low temperature).
(C) An Experiment of Storing Adult Melanocytes
The following experiment was designed to verify the preferred temperature and time duration for storing adult melanocytes.
As indicated in
In the embodiment of the present invention, table II shows each condition for storing adult melanocytes: (h) analyzed directly before storage; (i) stored at 4° C. for 24 hrs; (j) stored at 10° C. for 24 hrs; (k) stored at 15° C. for 24 hrs; (l) stored at 22.5° C. for 24 hrs; (m) stored at 32.5° C. for 24 hrs; (n) stored at 37° C. for 24 hrs; (o) stored at 4° C. for 48 hrs; (p) stored at 10° C. for 48 hrs; (q) stored at 15° C. for 48 hrs; (r) stored at 22.5° C. for 48 hrs; (s) stored at 32.5° C. for 48 hrs; (t) stored at 37° C. for 48 hrs.
(D) Results and Discussions
(1) Conditions for Storing Baby Melanocytes
Table III shows the experiment results of cell viability of baby melanocytes that were stored at different temperatures and time durations.
These results indicate that baby melanocyte suspensions can be stored at 4-15° C. for up to 48 hours and still sustain good viability.
(2) Conditions for Storing Adult Melanocytes
In the experiment (C) the preferred temperature and time duration for storing adult melanocytes was studied and the results were shown in Table IV.
The results indicated that adult melanocytes stored at 10-22.5° C. sustained higher viability. The storage temperatures lower or higher than this range resulted in lower viability. Adult melanocytes stored at 10-22.5° C. for 24 hrs (
Moreover, it was tested whether the superiority of the storage temperature range can be applied to the melanocytes stored in other biocompatible solutions. In the embodiment of the present invention, melanocytes were stored in four different biocompatible solutions at 15° C., 22.5° C., 25° C., and 37° C. for 24 hrs respectively. Then, they were plated in culture dishes for two days and photographed. These four biocompatible solutions were DMEM, MEM, PBS, and RPMI medium 1640. The experiment results are shown from 15° C., 22.5° C., 25° C., to 37° C. in
Judging by the result of cell viability and degree of aggregation, the appropriate temperature range for storing adult melanocytes suspension is 10-22.5° C. The melanocytes stored for 24 hours in this range of temperature sustained at least 72% of viability and the cells remained well segregated.
It is possible to use melanocyte transplantation to improve clinical symptoms resulted from the deficiency of pigmentation, such as all types of leukoderma or gray hairs. The application requires appropriate storage of melanocytes. The present invention enables stored melanocytes to sustain high viability and prevent cell aggregation, therefore enhances efficiency and homogeneity of pigmentation in the treated site.
Number | Date | Country | Kind |
---|---|---|---|
95126591 | Jul 2006 | TW | national |
95132050 | Aug 2006 | TW | national |