Method for supplying envelopes to an inserter system by way of multiple supply paths

Information

  • Patent Grant
  • 6250625
  • Patent Number
    6,250,625
  • Date Filed
    Thursday, December 16, 1999
    24 years ago
  • Date Issued
    Tuesday, June 26, 2001
    23 years ago
Abstract
A method for supplying envelopes to an inserter system, including the steps of providing an envelope supply structure having an exit point, providing at least first and second supply paths from the exit point of the envelope supply structure and providing a common path from the at least first and second supply paths. Individual envelopes are fed from the envelope supply structure to a selected one of the at least first and second supply paths wherein the envelope is conveyed to a holding area in the selected supply path and from the holding area of the selected supply path it is conveyed to the common path. The envelope then travels from the common path to an envelope insertion area wherein prearranged documents are caused to be inserted into the envelope.
Description




FIELD OF THE INVENTION




The present invention relates generally to multi-station document inserting systems, which assemble batches of documents for insertion into envelopes. More particularly, the present invention is directed towards the envelope input system for providing envelopes at high count to such multi-station document inserting systems.




BACKGROUND OF THE INVENTION




Multi-station document inserting systems generally include a plurality of various stations that are configured for specific applications. Typically, such inserting systems, also known as console inserting machines, are manufactured to perform operations customized for a particular customer. Such machines are known in the art and are generally used by organizations, which produce a large volume of mailings where the content of each mail piece may vary.




For instance, inserter systems are used by organizations such as banks, insurance companies and utility companies for producing a large volume of specific mailings where the contents of each mail item are directed to a particular addressee. Additionally, other organizations, such as direct mailers, use inserts for producing a large volume of generic mailings where the contents of each mail item are substantially identical for each addressee. Examples of such inserter systems are the 8 series and 9 series inserter systems available from Pitney Bowes, Inc. of Stamford, Conn.




In many respects the typical inserter system resembles a manufacturing assembly line. Sheets and other raw materials (other sheets, enclosures, and envelopes) enter the inserter system as inputs. Then, a plurality of different modules or workstations in the inserter system work cooperatively to process the sheets until a finished mailpiece is produced. The exact configuration of each inserter system depends upon the needs of each particular customer or installation.




For example, a typical inserter system includes a plurality of serially arranged stations including an envelope feeder, a plurality of insert feeder stations and a burster-folder station. There is a computer generated form or web feeder that feeds continuous form control documents having control coded marks printed thereon to a cutter or burster station for individually separating documents from the web. A control scanner is typically located in the cutting or bursting station for sensing the control marks on the control documents. According to the control marks, these individual documents are accumulated in an accumulating station and then folded in a folding station. Thereafter, the serially arranged insert feeder stations sequentially feed the necessary documents onto a transport deck at each insert station as the control document arrives at the respective station to form a precisely collated stack of documents which is transported to the envelope feeder-insert station where the stack is inserted into the envelope. A typical modem inserter system also includes a control system to synchronize the operation of the overall inserter system to ensure that the collations are properly assembled.




In order for such multi-station inserter systems to process a large number of mailpieces (e.g., 18,000 mailpieces an hour) it is thus required that each mailing piece consisting of mail pages is inserted in an envelope at high rates wherein throughput with reliability is always an objective. To achieve reliability it is sometimes advantageous to provide parallel paths, each path operating at a lower throughput than the desired overall throughput so that mail piece components do not change velocity so quickly as to be damaged or to jam in the mailing system.




Many mailing systems include insertion engines, which insert mail pages into an envelope (after the mail pages are folded, if necessary). In some mailing systems with an insertion engine, throughputs as high as 18,000 mail pieces per hour (five per second) are achieved. In such a mailing system, an insertion engine is provided with the envelopes of the mail pieces by an envelope transport system (and is provided with the pages of the mail pieces, to be inserted into the envelopes, by a page transport system).




The envelope transport system includes an envelope hopper (


12


of

FIG. 2

) that must be periodically loaded with envelopes. In some mailing systems, because of various constraints, it is necessary that the envelope hopper be on the same side of the mailing system as where the operator is stationed, and of course that the envelope hopper be easily loadable. An envelope hopper typically holds about 1500 envelopes when fully loaded, and so must be replenished about every five minutes when used in a mailing system operating at a throughput of five mail pieces per second.




In some mailing system architectures, all of these requirements combine so that a layout of the envelope transport system can use a planar envelope hopper (


12


of

FIG. 2

) feeding envelopes (


11


of

FIG. 2

) on edge. In such a situation, what is needed is a design for an envelope transport system that allows using such a feeder, and that provides envelopes at the required high throughput, but that keeps changes in the envelope velocity to within acceptable limits.




SUMMARY OF THE INVENTION




The present invention provides a method for supplying envelopes to an inserter system including the steps of providing an envelope supply structure having an exit point and stacking a plurality of envelopes in the envelope supply structure such that each envelope is stacked on its flap fold edge portion. First and second supply paths are provided from the exit point of the envelope supply structure and a diverting gate is provided intermediate the exit point of the envelope supply structure and entry points to the first and second supply paths, the diverting gate being movable between first and second positions. A common path is provided from the at least first and second supply paths to an envelope insertion area where documents are caused to be inserted into the envelope.




In operation, individual envelopes are caused to be fed from the envelope supply structure to a selected one of the at least first and second supply wherein the diverting gate is positioned in one of its first and second positions so as to selectively cause an individual envelope to convey from the exit point of the envelope supply structure to the selected supply path. The envelope is next conveyed to a holding area in the selected supply path whereafter the envelope is conveyed from the holding area of the selected supply path to the common path. The envelope is then conveyed from the common path to an envelope insertion area wherein prearranged documents are caused to be inserted into the envelope.











BRIEF DESCRIPTION OF THE DRAWINGS




The above and other objects and advantages of the present invention will become more readily apparent upon consideration of the following detailed description, taken in conjunction with accompanying drawings, in which like reference characters refer to like parts throughout the drawings and in which:





FIG. 1

is a block diagram schematic of a document inserting system in which the present invention envelope transport system is incorporated;





FIG. 2

is a perspective drawing of an envelope transport system according to the present invention depicted in

FIG. 1

;





FIG. 3

is a detailed perspective drawing of part an envelope transport system according to the present invention, showing part of two parallel transport paths;





FIG. 4

is a detailed orthographic drawing of part an envelope transport system according to the present invention, showing a view of part of a merge station; and





FIG. 5

is a detailed orthographic drawing of a view of the merge station called out in FIG.


4


.











DETAILED DESCRIPTION




In describing the preferred embodiment of the present invention, reference is made to the drawings, wherein there is seen in

FIG. 1

a schematic of a typical document inserting system, generally designated


10


, which implements the envelope insertion station


100


embodying the present invention envelope transport system. In the following description, numerous paper handling stations implemented in inserter system


10


are set forth to provide a thorough understanding of the operating environment of the present invention. However it will become apparent to one skilled in the art that the present invention may be practiced without the specific details in regards to each of these paper-handling stations.




As will be described in greater detail below system


10


preferably includes an input system


110


that feeds paper sheets from a paper web to an accumulating station that accumulates the sheets of paper in collation packets. Preferably, only a single sheet of a collation is coded (the control document), which coded information enables the control system


115


of inserter system


10


to control the processing of documents in the various stations of the mass mailing inserter system. The code can comprise a bar code, UPC code or the like.




Essentially, input system


110


feeds sheets in a paper path, as indicated by arrow “a,” along what is commonly termed the “main deck” of inserter system


10


. After sheets are accumulated into collations by input system


110


, the collations are folded in folding station


112


and the folded collations are then conveyed to a transport station


114


, preferably operative to perform buffering operations for maintaining a proper timing scheme for the processing of documents in inserting system


10


.




Each sheet collation is fed from transport station


114


to insert feeder station


116


. It is to be appreciated that a typical inserter system


10


includes a plurality of feeder stations, but for clarity of illustration only a single insert feeder


116


is shown. Insert feeder station


116


is operational to convey an insert (e.g., an advertisement) from a supply tray to the main deck of inserter system


10


so as to be nested with the aforesaid sheet collation being conveyed along the main deck. The sheet collation, along with the nested insert(s) are next conveyed into the envelope insertion station


100


that is operative to insert the collation into an envelope. The envelope is then preferably conveyed to postage station


120


that applies appropriate postage thereto. Finally, the envelope is preferably conveyed to sorting station


122


that sorts the envelopes in accordance with postal discount requirements.




As previously mentioned, inserter system


10


includes a control system


115


coupled to each modular component of inserter system


10


, which control system


115


controls and harmonizes operation of the various modular components implemented in inserter system


10


. Preferably, control system


115


uses an Optical Character Reader (OCR) for reading the code from each coded document. Such a control system is well known in the art and since it forms no part of the present invention, it is not described in detail in order not to obscure the present invention. Similarly, since none of the other above-mentioned modular components (namely: input system


110


, folding station


112


, transport station


114


, insert feeder station


116


, postage station


120


and sorting station


122


) form no part of the present invention envelope insertion station


100


, further discussion of each of these stations is also not described in detail in order not to obscure the present invention. Moreover, it is to be appreciated that the depicted embodiment of inserter system


10


implementing the present invention envelope insertion station


100


is only to be understood as an example configuration of such an inserter system


10


. It is of course to be understood that such an inserter system may have many other configurations in accordance with a specific user's needs.




Referring now to

FIGS. 2-5

the present invention envelope insertion station


100


is shown, which includes an envelope hopper


12


, typically having a capacity of approximately 1500 envelopes, for feeding the envelopes


11


on preferably its flap-fold edge portion to either one or another of two parallel transport paths


13


,


14


, each envelope


11


directed to one or another of the paths by a flipper gate


15


. Each envelope is preferably propelled along the path to which it is directed by a series of nips


17


, i.e. by the action of two turning, high-friction wheels disposed so as to be in mutual contact. Each pair of wheels forming a nip grabs (nips) an envelope and pulls it through the point of contact of the wheels at a linear velocity substantially equal to the angular velocity of either wheel, multiplied by its radius.




Both parallel transport paths


13


,


14


continue into a merge station


20


, where an envelope in either path


13


,


14


is manipulated, as will be described below, so as to open its flap, and is then directed to a final, common path


30


of the envelope transport system, at ninety-degrees to the two parallel paths


13


,


14


, and leading to a conveyor


23


. Envelopes


22


on the conveyor


23


lie with their flaps open, as shown, and are conveyed to an insertion engine (not shown).




Referring now in particular to

FIGS. 3 and 4

, envelopes


16




a


and


16




b


in turn move into the merge station


20


(

FIG. 1

) until reaching an adjustable stop


24


provided in an holding area


15


,


17


respectively associated with each parallel transport path


13


,


14


. The stops are accumulator-type stop and catch mechanisms, and are adjusted so that, depending on the size of the envelopes, the centerline


27


of an envelope in the merge station is aligned with the centerline


26


of the conveyor (see FIG.


1


). As an envelope


18


is transported into the merge station


20


, a conventional plow flap device


25


is used to plow open ninety degrees the flap


18




a


of the envelope. Plowing open the flap of an envelope only ninety degrees allows the envelope to be crease-line justified.




Once inside the merge station, in response to a signal from an arming station (not shown) of the inserter system


10


(via its control system


15


), the envelope is hoisted out of its parallel path


13


,


14


onto a final, common path


30


, at preferably ninety degrees to the parallel transport paths


13


,


14


, by the action of preferably a D-shaped roller


19


, there being provided one such roller for each parallel transport path


13


,


14


, and a combination of merge nips


21


. During the hoisting motion, the flap of the envelope is opened the remaining 90 degrees, to full open, by arms


24




a


extending out from guides


28


for the parallel transport paths inside the merge station


20


. The end result is that an envelope


22


is laid on the conveyor


23


with its flap


22




a


down and full open, and moving along the final, common path


30


on the conveyor


23


toward an inserter engine (not shown).




Of course it is possible that in some applications the parallel transport paths


13


,


14


do not continue always in a straight line to the merge station


20


. Therefore, the redirection performed at the merge station


20


, which is substantially ninety degrees, is to be understood as measured with respect to the direction of the parallel transport paths


13


,


14


at the point where they enter the merge station


20


.




It is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention, and the appended claims are intended to cover such modifications and arrangements.



Claims
  • 1. A method for supplying envelopes to an inserter system, comprising the steps of:providing an envelope supply structure having an exit point; providing at least first and second supply paths from the exit point of the envelope supply structure; providing a common path from the at least first and second supply paths; feeding individual envelopes from the envelope supply structure to a selected one of the at least first and second supply paths; conveying the envelope to a holding area in the selected supply path; conveying the envelope from the holding area of the selected supply path to the common path; and conveying the envelope from the common path to an envelope insertion area wherein prearranged documents are caused to be inserted into the envelope.
  • 2. A method for supplying envelopes to an inserter system as recited in claim 1 further comprising the step of:stacking a plurality of envelopes in the envelope supply structure such that each envelope is stacked on an edge portion.
  • 3. A method for supplying envelopes to an inserter system as recited in claim 2 further comprising the step of stacking each envelope on its flap fold edge portion such that the flap fold edge portion of each envelope resides against the supply structure.
  • 4. A method for supplying envelopes to an inserter system as recited in claim 1 further including the steps of:providing a diverting gate intermediate the exit point of the envelope supply structure and entry points to the at least first and second supply paths; and positioning the diverting gate in one of a first and second position so as to selectively cause the individual envelope to convey from the exit point of the envelope supply structure to the selected supply path.
  • 5. A method for supplying envelopes to an inserter system as recited in claim 1 further including the steps of:providing a flapping device in each one the first and second supply paths; and flapping open an envelope by engaging the envelopes flap fold edge portion with the flapping device located in one of the first and second supply paths.
  • 6. A method for supplying envelopes to an inserter system as recited in claim 5 further including the step of opening the flap of the envelope by approximately 90° relative to the envelope's body in the selected supply path.
  • 7. A method for supplying envelopes to an inserter system as recited in claim 6 further including the step of separating the flap of the envelope by an additional 90° as the envelope is caused to convey to the common path from the selected supply path such that the flap of the envelope is substantially co-planar with the envelope body.
  • 8. A method for supplying envelopes to an inserter system as recited in claim 1 further including the step of:changing an envelopes direction of travel by approximately 90° when the envelope is caused to convey from the holding area of the selected supply path to the common envelope path.
  • 9. A method for supplying envelopes to an inserter system as recited in claim 1 further including the steps of:causing first and second envelopes to be respectively positioned simultaneously in the holding area for each of the first and second envelope supply paths; and selectively causing an envelope to be conveyed from the holding area of one of the first and second supply paths to the common path.
  • 10. A method for supplying envelopes to an inserter system, comprising the steps of:providing an envelope supply structure having an exit point; stacking a plurality of envelopes in the envelope supply structure such that each envelope is stacked on its flap fold edge portion; providing first and second supply paths from the exit point of the envelope supply structure; providing a diverting gate intermediate the exit point of the envelope supply structure and entry points to the first and second supply paths, the diverting gate being movable between first and second positions; positioning the diverting gate in one of its first and second positions so as to selectively cause an individual envelope to convey from the exit point of the envelope supply structure to the selected supply path; providing a common path from the at least first and second supply paths; feeding individual envelopes from the envelope supply structure to a selected one of the at least first and second supply paths; conveying the envelope to a holding area in the selected supply path; conveying the envelope from the holding area of the selected supply path to the common path; and conveying the envelope from the common path to an envelope insertion area wherein prearranged documents are caused to be inserted into the envelope.
  • 11. A method for supplying envelopes to an inserter system as recited in claim 10 further including the steps of:providing a flapping device in each one the first and second supply paths; and flapping open an envelope by engaging the envelopes flap fold edge portion with the flapping device located in one of the first and second supply paths.
  • 12. A method for supplying envelopes to an inserter system as recited in claim 11 further including the step of opening the flap of the envelope by approximately 90° relative to the envelope's body in the selected supply path.
  • 13. A method for supplying envelopes to an inserter system as recited in claim 12 further including the step of separating the flap of the envelope by an additional 90° as the envelope is caused to convey to the common path from the selected supply path such that the flap of the envelope is substantially co-planar with the envelope body.
  • 14. A method for supplying envelopes to an inserter system as recited in claim 11 further including the step of:changing an envelopes direction of travel by approximately 90° when the envelope is caused to convey from the holding area of the selected supply path to the common envelope path.
  • 15. A method for supplying envelopes to an inserter system as recited in claim 12 further including the steps of:causing first and second envelopes to be respectively positioned simultaneously in the holding area for each of the first and second envelope supply paths; and selectively causing an envelope to be conveyed from the holding area of one of the first and second supply paths to the common path.
US Referenced Citations (9)
Number Name Date Kind
4615519 Holodnak et al. Oct 1986
4817368 DePasquale et al. Apr 1989
5083769 Young, Jr. Jan 1992
5116039 Braen et al. May 1992
5119954 Svyatsky et al. Jun 1992
5464099 Stevens et al. Nov 1995
5934666 Rabindran et al. Aug 1999
5947461 Holbrock Sep 1999
6164640 Stengl et al. Dec 2000